1
|
Holbrook SE, Hicks AN, Martin PB, Hines TJ, Castro HP, Cox GA. Clinically relevant mouse models of severe spinal muscular atrophy with respiratory distress type 1. Hum Mol Genet 2024; 33:1800-1814. [PMID: 39128026 PMCID: PMC11457999 DOI: 10.1093/hmg/ddae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024] Open
Abstract
Spinal Muscular Atrophy with Respiratory Distress (SMARD1) is a lethal infantile disease, characterized by the loss of motor neurons leading to muscular atrophy, diaphragmatic paralysis, and weakness in the trunk and limbs. Mutations in IGHMBP2, a ubiquitously expressed DNA/RNA helicase, have been shown to cause a wide spectrum of motor neuron disease. Though mutations in IGHMBP2 are mostly associated with SMARD1, milder alleles cause the axonal neuropathy, Charcot-Marie-Tooth disease type 2S (CMT2S), and some null alleles are potentially a risk factor for sudden infant death syndrome (SIDS). Variant heterogeneity studied using an allelic series can be informative in order to create a broad spectrum of models that better exhibit the human variation. We previously identified the nmd2J mouse model of SMARD1, as well as two milder CMT2S mouse models. Here, we used CRISPR-Cas9 genome editing to create three new, more severe Ighmbp2 mouse models of SMARD1, including a null allele, a deletion of C495 (C495del) and a deletion of L362 (L362del). Phenotypic characterization of the IGHMBP2L362del homozygous mutants and IGHMBP2C495del homozygous mutants respectively show a more severe disease presentation than the previous nmd2J model. The IGHMBP2L362del mutants lack a clear denervation in the diaphragm while the IGHMBP2C495del mutants display a neurogenic diaphragmatic phenotype as observed in SMARD1 patients. Characterization of the Ighmbp2-null model indicated neo-natal lethality (median lifespan = 0.5 days). These novel strains expand the spectrum of SMARD1 models to better reflect the clinical continuum observed in the human patients with various IGHMBP2 recessive mutations.
Collapse
Affiliation(s)
- Sarah E Holbrook
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
- The University of Maine, 75 Long Rd., Orono, ME 04469 United States
| | - Amy N Hicks
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Paige B Martin
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Timothy J Hines
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Harold P Castro
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
- The University of Maine, 75 Long Rd., Orono, ME 04469 United States
| |
Collapse
|
2
|
Nishio H, Niba ETE, Saito T, Okamoto K, Lee T, Takeshima Y, Awano H, Lai PS. Clinical and Genetic Profiles of 5q- and Non-5q-Spinal Muscular Atrophy Diseases in Pediatric Patients. Genes (Basel) 2024; 15:1294. [PMID: 39457418 PMCID: PMC11506990 DOI: 10.3390/genes15101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term "SMA" usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on chromosome 5q13). However, long before the discovery of SMN1, it was known that other forms of SMA existed. Therefore, SMA is currently divided into two groups: 5q-SMA and non-5q-SMA. This is a simple and practical classification, and therapeutic drugs have only been developed for 5q-SMA (nusinersen, onasemnogene abeparvovec, risdiplam) and not for non-5q-SMA disease. METHODS We conducted a non-systematic critical review to identify the characteristics of each SMA disease. RESULTS Many of the non-5q-SMA diseases have similar symptoms, making DNA analysis of patients essential for accurate diagnosis. Currently, genetic analysis technology using next-generation sequencers is rapidly advancing, opening up the possibility of elucidating the pathology and treating non-5q-SMA. CONCLUSION Based on accurate diagnosis and a deeper understanding of the pathology of each disease, treatments for non-5q-SMA diseases may be developed in the near future.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Poh-San Lai
- Department of Pediatrics, National University of Singapore, 1E Lower Kent Ridge Road, Singapore 119228, Singapore;
| |
Collapse
|
3
|
Zhou C, Chen Z, Chen Q, Feng X. Case report: Heterozygous variation in the IGHMBP2 gene leading to spinal muscular atrophy with respiratory distress type 1. Front Neurol 2024; 15:1289625. [PMID: 38872814 PMCID: PMC11169606 DOI: 10.3389/fneur.2024.1289625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
A rare autosomal recessive genetic disease is spinal muscular atrophy with respiratory distress type 1 (SMARD 1; OMIM #604320), which is characterized by progressive distal limb muscle weakness, muscular atrophy, and early onset of respiratory failure. Herein, we report the case of a 4-month-old female infant with SMARD type 1 who was admitted to our hospital owing to unexplained distal limb muscle weakness and early respiratory failure. This report summarizes the characteristics of SMARD type 1 caused by heterozygous variation in the immunoglobulin mu DNA binding protein 2 (IGHMBP2) gene by analyzing its clinical manifestations, genetic variation characteristics, and related examinations, aiming to deepen clinicians' understanding of the disease, assisting pediatricians in providing medical information to parents and improving the decision-making process involved in establishing life support.
Collapse
Affiliation(s)
- Chaoai Zhou
- Department of Pediatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zefu Chen
- Department of Pediatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Qiqing Chen
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiaowei Feng
- Department of Pediatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
4
|
Jablonka S, Yildirim E. Disease Mechanisms and Therapeutic Approaches in SMARD1-Insights from Animal Models and Cell Models. Biomedicines 2024; 12:845. [PMID: 38672198 PMCID: PMC11048220 DOI: 10.3390/biomedicines12040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal childhood motoneuron disease caused by mutations in the IGHMBP2 gene. It is characterized by muscle weakness, initially affecting the distal extremities due to the degeneration of spinal α-motoneurons, and respiratory distress, due to the paralysis of the diaphragm. Infantile forms with a severe course of the disease can be distinguished from juvenile forms with a milder course. Mutations in the IGHMBP2 gene have also been found in patients with peripheral neuropathy Charcot-Marie-Tooth type 2S (CMT2S). IGHMBP2 is an ATP-dependent 5'→3' RNA helicase thought to be involved in translational mechanisms. In recent years, several animal models representing both SMARD1 forms and CMT2S have been generated to initially study disease mechanisms. Later, the models showed very well that both stem cell therapies and the delivery of the human IGHMBP2 cDNA by AAV9 approaches (AAV9-IGHMBP2) can lead to significant improvements in disease symptoms. Therefore, the SMARD1 animal models, in addition to the cellular models, provide an inexhaustible source for obtaining knowledge of disease mechanisms, disease progression at the cellular level, and deeper insights into the development of therapies against SMARD1.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany;
| | | |
Collapse
|
5
|
Tian Y, Xing J, Shi Y, Yuan E. Exploring the relationship between IGHMBP2 gene mutations and spinal muscular atrophy with respiratory distress type 1 and Charcot-Marie-Tooth disease type 2S: a systematic review. Front Neurosci 2023; 17:1252075. [PMID: 38046662 PMCID: PMC10690808 DOI: 10.3389/fnins.2023.1252075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Background IGHMBP2 is a crucial gene for the development and maintenance of the nervous system, especially in the survival of motor neurons. Mutations in this gene have been associated with spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth disease type 2S (CMT2S). Methods We conducted a systematic literature search using the PubMed database to identify studies published up to April 1st, 2023, that investigated the association between IGHMBP2 mutations and SMARD1 or CMT2S. We compared the non-truncating mutations and truncating mutations of the IGHMBP2 gene and selected high-frequency mutations of the IGHMBP2 gene. Results We identified 52 articles that investigated the association between IGHMBP2 mutations and SMARD1/CMT2S. We found 6 hotspot mutations of the IGHMBP2 gene. The truncating mutations in trans were all associated with SMARD1. Conclusion This study provides evidence that the complete LOF mechanism of the IGHMBP2 gene defect may be an important cause of SMARD1.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfang Xing
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Sierra-Delgado JA, Sinha-Ray S, Kaleem A, Ganjibakhsh M, Parvate M, Powers S, Zhang X, Likhite S, Meyer K. In Vitro Modeling as a Tool for Testing Therapeutics for Spinal Muscular Atrophy and IGHMBP2-Related Disorders. BIOLOGY 2023; 12:867. [PMID: 37372153 DOI: 10.3390/biology12060867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Spinal Muscular Atrophy (SMA) is the leading genetic cause of infant mortality. The most common form of SMA is caused by mutations in the SMN1 gene, located on 5q (SMA). On the other hand, mutations in IGHMBP2 lead to a large disease spectrum with no clear genotype-phenotype correlation, which includes Spinal Muscular Atrophy with Muscular Distress type 1 (SMARD1), an extremely rare form of SMA, and Charcot-Marie-Tooth 2S (CMT2S). We optimized a patient-derived in vitro model system that allows us to expand research on disease pathogenesis and gene function, as well as test the response to the AAV gene therapies we have translated to the clinic. We generated and characterized induced neurons (iN) from SMA and SMARD1/CMT2S patient cell lines. After establishing the lines, we treated the generated neurons with AAV9-mediated gene therapy (AAV9.SMN (Zolgensma) for SMA and AAV9.IGHMBP2 for IGHMBP2 disorders (NCT05152823)) to evaluate the response to treatment. The iNs of both diseases show a characteristic short neurite length and defects in neuronal conversion, which have been reported in the literature before with iPSC modeling. SMA iNs respond to treatment with AAV9.SMN in vitro, showing a partial rescue of the morphology phenotype. For SMARD1/CMT2S iNs, we were able to observe an improvement in the neurite length of neurons after the restoration of IGHMBP2 in all disease cell lines, albeit to a variable extent, with some lines showing better responses to treatment than others. Moreover, this protocol allowed us to classify a variant of uncertain significance on IGHMBP2 on a suspected SMARD1/CMT2S patient. This study will further the understanding of SMA, and SMARD1/CMT2S disease in particular, in the context of variable patient mutations, and might further the development of new treatments, which are urgently needed.
Collapse
Affiliation(s)
| | - Shrestha Sinha-Ray
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abuzar Kaleem
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Meysam Ganjibakhsh
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Mohini Parvate
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Samantha Powers
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Xiaojin Zhang
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
7
|
Rzepnikowska W, Kaminska J, Kochański A. Validation of the Pathogenic Effect of IGHMBP2 Gene Mutations Based on Yeast S. cerevisiae Model. Int J Mol Sci 2022; 23:ijms23179913. [PMID: 36077311 PMCID: PMC9456350 DOI: 10.3390/ijms23179913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a heritable neurodegenerative disease characterized by rapid respiratory failure within the first months of life and progressive muscle weakness and wasting. Although the causative gene, IGHMBP2, is well defined, information on IGHMBP2 mutations is not always sufficient to diagnose particular patients, as the gene is highly polymorphic and the pathogenicity of many gene variants is unknown. In this study, we generated a simple yeast model to establish the significance of IGHMBP2 variants for disease development, especially those that are missense mutations. We have shown that cDNA of the human gene encodes protein which is functional in yeast cells and different pathogenic mutations affect this functionality. Furthermore, there is a correlation between the phenotype estimated in in vitro studies and our results, indicating that our model may be used to quickly and simply distinguish between pathogenic and non-pathogenic mutations identified in IGHMBP2 in patients.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Rzepnikowska W, Kochański A. Models for IGHMBP2-associated diseases: an overview and a roadmap for the future. Neuromuscul Disord 2021; 31:1266-1278. [PMID: 34785121 DOI: 10.1016/j.nmd.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Models are practical tools with which to establish the basic aspects of a diseases. They allow systematic research into the significance of mutations, of cellular and molecular pathomechanisms, of therapeutic options and of functions of diseases associated proteins. Thus, disease models are an integral part of the study of enigmatic proteins such as immunoglobulin mu-binding protein 2 (IGHMBP2). IGHMBP2 has been well defined as a helicase, however there is little known about its role in cellular processes. Notably, it is unclear why changes in such an abundant protein lead to specific neuronal disorders including spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S). SMARD1 is caused by a loss of motor neurons in the spinal cord that results in muscle atrophy and is accompanied by rapid respiratory failure. In contrast, CMT2S manifests as a severe neuropathy, but typically without critical breathing problems. Here, we present the clinical manifestation of IGHMBP2 mutations, function of protein and models that may be used for the study of IGHMBP2-associated disorders. We highlight the strengths and weaknesses of specific models and discuss the orthologs of IGHMBP2 that are found in different systems with regard to their similarity to human IGHMBP2.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
9
|
Perego MGL, Galli N, Nizzardo M, Govoni A, Taiana M, Bresolin N, Comi GP, Corti S. Current understanding of and emerging treatment options for spinal muscular atrophy with respiratory distress type 1 (SMARD1). Cell Mol Life Sci 2020; 77:3351-3367. [PMID: 32123965 PMCID: PMC11104977 DOI: 10.1007/s00018-020-03492-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease that is characterized by distal and proximal muscle weakness and diaphragmatic palsy that leads to respiratory distress. Without intervention, infants with the severe form of the disease die before 2 years of age. SMARD1 is caused by mutations in the IGHMBP2 gene that determine a deficiency in the encoded IGHMBP2 protein, which plays a critical role in motor neuron survival because of its functions in mRNA processing and maturation. Although it is rare, SMARD1 is the second most common motor neuron disease of infancy, and currently, treatment is primarily supportive. No effective therapy is available for this devastating disease, although multidisciplinary care has been an essential element of the improved quality of life and life span extension in these patients in recent years. The objectives of this review are to discuss the current understanding of SMARD1 through a summary of the presently known information regarding its clinical presentation and pathogenesis and to discuss emerging therapeutic approaches. Advances in clinical care management have significantly extended the lives of individuals affected by SMARD1 and research into the molecular mechanisms that lead to the disease has identified potential strategies for intervention that target the underlying causes of SMARD1. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to halt or possibly prevent neurodegenerative disease in SMARD1 patients. The recent approval of the first gene therapy approach for SMA associated with mutations in the SMN1 gene may be a turning point for the application of this strategy for SMARD1 and other genetic neurological diseases.
Collapse
Affiliation(s)
- Martina G L Perego
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Noemi Galli
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Michela Taiana
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
10
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
11
|
Kim YA, Jin HY, Kim YM. Diagnostic Odyssey and Application of Targeted Exome Sequencing in the Investigation of Recurrent Infant Deaths in a Syrian Consanguineous Family: a Case of Spinal Muscular Atrophy with Respiratory Distress Type 1. J Korean Med Sci 2019; 34:e54. [PMID: 30863264 PMCID: PMC6406039 DOI: 10.3346/jkms.2019.34.e54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/30/2018] [Indexed: 11/26/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive disorder caused by a defect in the immunoglobulin mu binding protein 2 (IGHMBP2) gene, leading to motor neuron degeneration. We identified an infant with SMARD1 by targeted exome sequencing from a consanguineous Syrian family having a history of recurrent infant deaths. The patient initially presented intrauterine growth retardation, poor sucking, failure to thrive, and respiratory failure at the age of two months, and an inborn error of metabolism was suspected at first. Over a period of one month, the infant showed rapid progression of distal muscular weakness with hand and foot contractures, which were suggestive of neuromuscular disease. Using targeted exome sequencing, the mutation in IGHMBP2 was confirmed, although the first report was normal. Targeted exome sequencing enabled identification of the genetic cause of recurrent mysterious deaths in the consanguineous family. Additionally, it is suggested that a detailed phenotypic description and communication between bioinformaticians and clinicians is important to reduce false negative results in exome sequencing.
Collapse
Affiliation(s)
- Young A Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hye Young Jin
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Yoo-Mi Kim
- Department of Pediatrics, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
12
|
Spinal muscular atrophy with respiratory distress type 1: A multicenter retrospective study. Neuromuscul Disord 2019; 29:114-126. [DOI: 10.1016/j.nmd.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
|
13
|
Theme 3 In vivo experimental models. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:130-153. [DOI: 10.1080/21678421.2018.1510570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Wright M, Manzur A, Bush A. Case of paediatric neuromuscular disease with a surprising clinical outcome: time to challenge the dogma? Thorax 2018; 73:788-790. [DOI: 10.1136/thoraxjnl-2017-211058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 11/04/2022]
|
15
|
Habibi Zoham M, Eghbalkhah A, Kamrani K, Khosroshahi N, Yousefimanesh H, Eskandarizadeh Z. Distal Spinal Muscular Atrophy: An Overlooked Etiology of Weaning Failure in Children with Respiratory Insufficiency. J Pediatr Intensive Care 2018; 7:159-162. [PMID: 31073488 DOI: 10.1055/s-0037-1617434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive neuromuscular disorder that involves the anterior horn motor neurons. It is a disease with a poor prognosis presenting with progressive distal motor weakness and respiratory insufficiency from diaphragmatic paralysis followed by distal muscle weakness before 6 months of age. With the intent to spread the awareness of this rare and life-threatening disease, we report a 2.5-month-old female infant with a subsequent diagnosis of SMARD1, who was admitted in our pediatric intensive care unit with chief complaint of progressive respiratory distress and poor feeding.
Collapse
Affiliation(s)
- Mojdeh Habibi Zoham
- Department of Pediatric Intensive Care Unit, Bahrami Children's Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Asgar Eghbalkhah
- Department of Pediatric Intensive Care Unit, Bahrami Children's Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Kamyar Kamrani
- Department of Neonatal Intensive Care Unit, Bahrami Children's Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nahid Khosroshahi
- Department of Pediatric Neurology, Bahrami Children's Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hossein Yousefimanesh
- Department of Pediatric Intensive Care Unit, Bahrami Children's Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Eskandarizadeh
- Department of Pediatric Intensive Care Unit, Bahrami Children's Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
16
|
Lingappa L, Shah N, Motepalli AS, Shaik F. Spinal muscular atrophy with respiratory distress syndrome (SMARD1): Case report and review of literature. Ann Indian Acad Neurol 2016; 19:395-8. [PMID: 27570397 PMCID: PMC4980968 DOI: 10.4103/0972-2327.168635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress syndrome (SMARD1) is a rare cause of early infantile respiratory failure and death. No cases have been currently described from India. Two low-birth-weight infants presented prior to 6 months of age with recurrent apnea and respiratory distress. Both required prolonged ventilation, and had distal arthrogryposis and diaphragmatic eventration. Nerve conduction study revealed motor sensory axonopathy. Genetic testing confirmed mutations in immunoglobulin mu binding protein (IGHMBP2). These two cases establish presence of SMARD1 in our population. Both infants died on discontinuation of ventilation. Antenatal diagnoses done in one pregnancy. Though rare, high index of suspicion is essential in view of poor outcome and aid antenatal counseling.
Collapse
Affiliation(s)
- Lokesh Lingappa
- Department of Pediatric Neurology, Rainbow Children's Hospital, Banjara Hills, Hyderabad, Telangana, India
| | - Nikit Shah
- Department of Pediatric Neurology, Rainbow Children's Hospital, Banjara Hills, Hyderabad, Telangana, India
| | - Ananth Sagar Motepalli
- Department of Pediatric Critical Care, Rainbow Children's Hospital, Banjara Hills, Hyderabad, Telangana, India
| | - Farhan Shaik
- Department of Pediatric Critical Care, Rainbow Children's Hospital, Banjara Hills, Hyderabad, Telangana, India
| |
Collapse
|
17
|
Pedurupillay CRJ, Amundsen SS, Barøy T, Rasmussen M, Blomhoff A, Stadheim BF, Ørstavik K, Holmgren A, Iqbal T, Frengen E, Misceo D, Strømme P. Clinical and molecular characteristics in three families with biallelic mutations in IGHMBP2. Neuromuscul Disord 2016; 26:570-5. [PMID: 27450922 DOI: 10.1016/j.nmd.2016.06.457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 11/28/2022]
Abstract
Biallelic mutations in IGHMBP2 cause spinal muscular atrophy with respiratory distress type 1 (SMARD1) or Charcot-Marie-Tooth type 2S (CMT2S). We report three families variably affected by IGHMBP2 mutations. Patient 1, an 8-year-old boy with two homozygous variants: c.2T>C and c.861C>G, was wheelchair bound due to sensorimotor axonal neuropathy and chronic respiratory failure. Patient 2 and his younger sister, Patient 3, had compound heterozygous variants: c.983_987delAAGAA and c.1478C>T. However, clinical phenotypes differed markedly as the elder with sensorimotor axonal neuropathy had still unaffected respiratory function at 4.5 years, whereas the younger presented as infantile spinal muscular atrophy and died from relentless respiratory failure at 11 months. Patient 4, a 6-year-old girl homozygous for IGHMBP2 c.449+1G>T documented to result in two aberrant transcripts, was wheelchair dependent due to axonal polyneuropathy. The clinical presentation in Patients 1 and 3 were consistent with SMARD1, whereas Patients 2 and 4 were in agreement with CMT2S.
Collapse
Affiliation(s)
- Christeen Ramane J Pedurupillay
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Silja S Amundsen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tuva Barøy
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Magnhild Rasmussen
- Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway; Unit for Congenital and Hereditary Neuromuscular Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Anne Blomhoff
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Barbro Fossøy Stadheim
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tahir Iqbal
- Molecular Biology laboratory, Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Petter Strømme
- Faculty of Medicine, University of Oslo, Oslo, Norway; Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
18
|
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) Report of a Spanish case with extended clinicopathological follow-up. Clin Neuropathol 2015; 35:58-65. [PMID: 26709713 PMCID: PMC4806405 DOI: 10.5414/np300902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2016] [Indexed: 12/02/2022] Open
Abstract
Background: Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a clinically and genetically distinct and uncommon variant of SMA that results from irreversible degeneration of α-motor neurons in the anterior horns of the spinal cord and in ganglion cells on the spinal root ganglia. Aims: To describe the clinical, electrophysiological, neuropathological, and genetic findings, at different stages from birth to death, of a Spanish child diagnosed with SMARD1. Patient and methods: We report the case of a 3-month-old girl with severe respiratory insufficiency and, later, intense hypotonia. Paraclinical tests included biochemistry, chest X-ray, and electrophysiological studies, among others. Muscle and nerve biopsies were performed at 5 and 10 months and studied under light and electron microscopy. Post-mortem examination and genetic investigations were performed. Results: Pre- and post-mortem histopathological findings demonstrated the disease progression over time. Muscle biopsy at 5 months of age was normal, however a marked neurogenic atrophy was present in post-mortem samples. Peripheral motor and sensory nerves were severely involved likely due to a primary axonal disorder. Automatic sequencing of IGHMBP2 revealed a compound heterozygous mutation. Conclusions: The diagnosis of SMARD1 should be considered in children with early respiratory insufficiency or in cases of atypical SMA. Direct sequencing of the IGHMBP2 gene should be performed.
Collapse
|
19
|
Wagner JD, Huang L, Tetreault M, Majewski J, Boycott KM, Bulman DE, Dyment DA, McMillan HJ. Autosomal recessive axonal polyneuropathy in a sibling pair due to a novel homozygous mutation in IGHMBP2. Neuromuscul Disord 2015; 25:794-9. [PMID: 26298607 DOI: 10.1016/j.nmd.2015.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/05/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Abstract
Charcot-Marie-Tooth disease is a group of genetically heterogeneous disorders characterized by a sensorimotor polyneuropathy with subsequent muscle atrophy, areflexia, and sensory loss. More than 60 genes have been linked to Charcot-Marie-Tooth phenotypes, including IGHMBP2. Until recently, mutations in IGHMBP2 were exclusively associated with spinal muscular atrophy with respiratory distress (SMARD1). We present a sibling pair with a novel homozygous truncating mutation in IGHMBP2. The patients presented with childhood-onset distal weakness, wasting in the upper and lower limbs, areflexia and decreased sensation, but no respiratory involvement. Exome sequencing was performed and a homozygous variant was identified (c.2601_2604del; p.Lys868Profs*109). Sanger sequencing confirmed the presence of this variant in a homozygous state in the two affected siblings, while both parents were heterozygous. Further analyses showed decreased mRNA and IGHMBP2 protein in a lymphoblast cell line derived from one of the siblings. We demonstrate the utility of next-generation sequencing in reaching a molecular diagnosis for a heterogeneous condition such as Charcot-Marie-Tooth. Taken together, our data and that from the literature suggest that the spectrum of clinical presentations associated with mutations in IGHMBP2 may be secondary, at least in part, to the amount of residual protein.
Collapse
Affiliation(s)
- Justin D Wagner
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Lijia Huang
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Martine Tetreault
- Department of Human Genetics, McGill University, Montréal, QC H3A 1B1, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, QC H3A 1B1, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Dennis E Bulman
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
20
|
Vanoli F, Rinchetti P, Porro F, Parente V, Corti S. Clinical and molecular features and therapeutic perspectives of spinal muscular atrophy with respiratory distress type 1. J Cell Mol Med 2015; 19:2058-66. [PMID: 26095024 PMCID: PMC4568910 DOI: 10.1111/jcmm.12606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress (SMARD1) is an autosomal recessive neuromuscular disease caused by mutations in the IGHMBP2 gene, encoding the immunoglobulin μ-binding protein 2, leading to motor neuron degeneration. It is a rare and fatal disease with an early onset in infancy in the majority of the cases. The main clinical features are muscular atrophy and diaphragmatic palsy, which requires prompt and permanent supportive ventilation. The human disease is recapitulated in the neuromuscular degeneration (nmd) mouse. No effective treatment is available yet, but novel therapeutical approaches tested on the nmd mouse, such as the use of neurotrophic factors and stem cell therapy, have shown positive effects. Gene therapy demonstrated effectiveness in SMA, being now at the stage of clinical trial in patients and therefore representing a possible treatment for SMARD1 as well. The significant advancement in understanding of both SMARD1 clinical spectrum and molecular mechanisms makes ground for a rapid translation of pre-clinical therapeutic strategies in humans.
Collapse
Affiliation(s)
- Fiammetta Vanoli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Rinchetti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Porro
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Parente
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
21
|
Abstract
Spinal muscular atrophies (SMAs) are hereditary degenerative disorders of lower motor neurons associated with progressive muscle weakness and atrophy. Proximal 5q SMA is caused by decreased levels of the survival of motor neuron (SMN) protein and is the most common genetic cause of infant mortality. Its inheritance pattern is autosomal recessive, resulting from mutations involving the SMN1 gene on chromosome 5q13. Unlike other autosomal recessive diseases, the SMN gene has a unique structure (an inverted duplication) that presents potential therapeutic targets. Although there is currently no effective treatment of SMA, the field of translational research in this disorder is active and clinical trials are ongoing. Advances in the multidisciplinary supportive care of children with SMA also offer hope for improved life expectancy and quality of life.
Collapse
Affiliation(s)
- Basil T Darras
- Division of Clinical Neurology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Fegan 11, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Growing up with spinal muscular atrophy with respiratory distress (SMARD1). Neuromuscul Disord 2015; 25:169-71. [DOI: 10.1016/j.nmd.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 11/17/2022]
|
23
|
Cottenie E, Kochanski A, Jordanova A, Bansagi B, Zimon M, Horga A, Jaunmuktane Z, Saveri P, Rasic VM, Baets J, Bartsakoulia M, Ploski R, Teterycz P, Nikolic M, Quinlivan R, Laura M, Sweeney MG, Taroni F, Lunn MP, Moroni I, Gonzalez M, Hanna MG, Bettencourt C, Chabrol E, Franke A, von Au K, Schilhabel M, Kabzińska D, Hausmanowa-Petrusewicz I, Brandner S, Lim SC, Song H, Choi BO, Horvath R, Chung KW, Zuchner S, Pareyson D, Harms M, Reilly MM, Houlden H. Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease type 2. Am J Hum Genet 2014; 95:590-601. [PMID: 25439726 PMCID: PMC4225647 DOI: 10.1016/j.ajhg.2014.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022] Open
Abstract
Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-μ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.
Collapse
Affiliation(s)
- Ellen Cottenie
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrzej Kochanski
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Albena Jordanova
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium
| | - Boglarka Bansagi
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Magdalena Zimon
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium
| | - Alejandro Horga
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Zane Jaunmuktane
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Paola Saveri
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Vedrana Milic Rasic
- Clinic for Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jonathan Baets
- VIB Department of Molecular Genetics, University of Antwerp, Antwerpen 2610, Belgium; Laboratory of Neurogenetics, University of Antwerp, Antwerpen 2610, Belgium; Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Marina Bartsakoulia
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rafal Ploski
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Pawel Teterycz
- Department of Medical Genetics, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Milos Nikolic
- University of Belgrade, Faculty of Medicine, 11000 Belgrade, Serbia
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matilde Laura
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mary G Sweeney
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Franco Taroni
- Unit of Genetics of Neurodegenerative and Metabolic Disease IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Michael P Lunn
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Isabella Moroni
- Child Neurology Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Michael Gonzalez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, FL 33136, USA
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Conceicao Bettencourt
- Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Elodie Chabrol
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andre Franke
- Christian-Albrechts-University, 24118 Kiel, Germany
| | - Katja von Au
- SPZ Pediatric Neurology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Irena Hausmanowa-Petrusewicz
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Centre of Biostructure, Medical University of Warsaw, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Siew Choo Lim
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673; Life Sciences Institute, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 137-710, Korea
| | - Rita Horvath
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Ki-Wha Chung
- Department of Biological Science, Kongju National University, Chungnam 134-701, Korea
| | - Stephan Zuchner
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, FL 33136, USA
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, IRCCS Foundation, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy
| | - Matthew Harms
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Molecular Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
24
|
Porro F, Rinchetti P, Magri F, Riboldi G, Nizzardo M, Simone C, Zanetta C, Faravelli I, Corti S. The wide spectrum of clinical phenotypes of spinal muscular atrophy with respiratory distress type 1: A systematic review. J Neurol Sci 2014; 346:35-42. [DOI: 10.1016/j.jns.2014.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/13/2022]
|
25
|
Jędrzejowska M, Madej-Pilarczyk A, Fidziańska A, Mierzewska H, Pronicka E, Obersztyn E, Gos M, Pronicki M, Kmieć T, Migdał M, Mierzewska-Schmidt M, Walczak-Wojtkowska I, Konopka E, Hausmanowa-Petrusewicz I. Severe phenotypes of SMARD1 associated with novel mutations of the IGHMBP2 gene and nuclear degeneration of muscle and Schwann cells. Eur J Paediatr Neurol 2014; 18:183-92. [PMID: 24388491 DOI: 10.1016/j.ejpn.2013.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 11/04/2013] [Indexed: 01/25/2023]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a very rare autosomal recessive form of spinal muscular atrophy manifested in low birth weight, diaphragmatic palsy and distal muscular atrophy. Caused by a mutation in the IGHMBP2 gene, the disease is addressed here by reference to five Polish patients in which SMARD1 has been confirmed genetically. All presented a severe form of the disease and had evident symptoms during the second month of life; with four displaying weak cries, feeding difficulties and hypotonia from birth. Two were afflicted by severe dysfunction of the autonomic nervous system. Ultrastructural analysis of a muscle biopsy revealed progressive degeneration within the nuclei of the muscle cells and Schwann cells. Neuromuscular junctions were also defective. It proved possible to identify in our patients 6 novel IGHMBP2 mutations: three missense (c.595G>C, c.1682T>C and c.1794C>A), two nonsense (c.94C>T and c.1336C>T) and one in-frame deletion (c.1615_1623del). One nonsense mutation (c.429C>T) that had been described previously was also identified. Observation of our patients makes it clear that clinical picture is still the most important factor suggesting diagnosis of SMARD1, though further investigations concerning some of the symptoms are required. As the IGHMBP2 gene is characterized by significant heterogeneity, genetic counseling of affected families is rendered more complex. IGHMBP2 protein deficiency can lead to the degeneration of nuclei, in both muscle and Schwann cells.
Collapse
Affiliation(s)
- Maria Jędrzejowska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | - Anna Fidziańska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Hanna Mierzewska
- Department of Child and Adolescent Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Ewa Pronicka
- Department of Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Monika Gos
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Tomasz Kmieć
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Marek Migdał
- Department of Anaesthesiology and Intensive Care, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Iwona Walczak-Wojtkowska
- Department of Paediatric Anaesthesiology and Intensive Care, Institute of Mother and Child, Warsaw, Poland
| | - Elżbieta Konopka
- Department of Paediatric Anaesthesiology and Intensive Care, Institute of Mother and Child, Warsaw, Poland
| | | |
Collapse
|
26
|
Breivik N, Fiskerstrand T, Sand T, Vogt C. Three siblings with progressive respiratory distress as infants. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2013; 133:1459-63. [PMID: 23929295 DOI: 10.4045/tidsskr.12.0844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Noralv Breivik
- Child Habilitation Unit, Department of Pediatric Medicine, Ålesund Hospital, Norway.
| | | | | | | |
Collapse
|
27
|
van der Pol WL, Talim B, Pitt M, von Au K. 190th ENMC international workshop: Spinal muscular atrophy with respiratory distress/distal spinal muscular atrophy type 1. Neuromuscul Disord 2013; 23:602-9. [PMID: 23726377 DOI: 10.1016/j.nmd.2013.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/23/2013] [Indexed: 11/25/2022]
|
28
|
Majid A, Talat K, Colin L, Caroline R, Helen K, Christian DG. Heterogeneity in spinal muscular atrophy with respiratory distress type 1. J Pediatr Neurosci 2013; 7:197-9. [PMID: 23560007 PMCID: PMC3611909 DOI: 10.4103/1817-1745.106478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a clinically heterogeneous disorder linked to mutations in the immunoglobulin mu-binding protein 2 (IGHMBP2) gene on chromosome 11q13-q21. Most infants with SMARD1 present between six weeks and six months of age with respiratory distress secondary to diaphragmatic weakness and progressive distal weakness. Sensory and autonomic dysfunctions sometimes accompany the motor weakness. This report describes a male infant with genetically confirmed SMARD1 presenting with onset of disease in the first two weeks of life with respiratory compromise and urinary retention, which has not been reported before and adds to the phenotypic variability of SMARD 1.
Collapse
Affiliation(s)
- Aziz Majid
- Department of Paediatric Neurology, Royal Preston Hospital, Preston, UK
| | | | | | | | | | | |
Collapse
|
29
|
Yiu EM, Ryan MM. Genetic axonal neuropathies and neuronopathies of pre-natal and infantile onset. J Peripher Nerv Syst 2012; 17:285-300. [DOI: 10.1111/j.1529-8027.2012.00412.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Chalançon M, Debillon T, Dieterich K, Commare MC. [A rare cause of respiratory failure in infants: distal spinal-muscular atrophy 1 (DSMA1 or SMARD1)]. Arch Pediatr 2012; 19:1082-5. [PMID: 22981475 DOI: 10.1016/j.arcped.2012.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/16/2012] [Accepted: 07/13/2012] [Indexed: 11/29/2022]
Abstract
Distal spinal-muscular atrophy 1 (DSMA1) or spinal-muscular atrophy with respiratory distress type 1 (SMARD1) is a rare neuromuscular disorder resulting from IGHMBP2 mutations. It is an autosomal recessive disease. We present the case of a 1-year-old girl admitted for respiratory failure associated with pneumonia. Right hemidiaphragmic elevation on the chest radiograph and distal retractions suggested the diagnosis of DSMA1. It was confirmed by muscle biopsy and molecular analysis. This unrecognized diagnosis should be considered when respiratory failure develops in the first year of life and is associated with diaphragmatic paralysis and distal muscle atrophy. Electromyography with measurement of nerve conduction velocity and muscle biopsy suggest the diagnosis, which must be confirmed by genetic analysis. After identifying the mutations, it is possible to perform prenatal diagnosis.
Collapse
Affiliation(s)
- M Chalançon
- Service de médecine néonatale et réanimation pédiatrique, hôpital Couple Enfant, CHU de Grenoble, 38043 Grenoble cedex 09, France.
| | | | | | | |
Collapse
|
31
|
Lim SC, Bowler MW, Lai TF, Song H. The Ighmbp2 helicase structure reveals the molecular basis for disease-causing mutations in DMSA1. Nucleic Acids Res 2012; 40:11009-22. [PMID: 22965130 PMCID: PMC3505976 DOI: 10.1093/nar/gks792] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutations in immunoglobulin µ-binding protein 2 (Ighmbp2) cause distal spinal muscular atrophy type 1 (DSMA1), an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. However, despite extensive studies, the mechanism of disease-causing mutations remains elusive. Here we report the crystal structures of the Ighmbp2 helicase core with and without bound RNA. The structures show that the overall fold of Ighmbp2 is very similar to that of Upf1, a key helicase involved in nonsense-mediated mRNA decay. Similar to Upf1, domains 1B and 1C of Ighmbp2 undergo large conformational changes in response to RNA binding, rotating 30° and 10°, respectively. The RNA binding and ATPase activities of Ighmbp2 are further enhanced by the R3H domain, located just downstream of the helicase core. Mapping of the pathogenic mutations of DSMA1 onto the helicase core structure provides a molecular basis for understanding the disease-causing consequences of Ighmbp2 mutations.
Collapse
Affiliation(s)
- Siew Choo Lim
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore, Structural Biology Group, European Synchrotron Radiation Facility, F-38043 Grenoble, France, Life Sciences Institute, Zhejiang University, Hangzhou, China and Department of Biochemistry, National University of Singapore, Singapore 117543, Singapore
| | - Matthew W. Bowler
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore, Structural Biology Group, European Synchrotron Radiation Facility, F-38043 Grenoble, France, Life Sciences Institute, Zhejiang University, Hangzhou, China and Department of Biochemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ting Feng Lai
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore, Structural Biology Group, European Synchrotron Radiation Facility, F-38043 Grenoble, France, Life Sciences Institute, Zhejiang University, Hangzhou, China and Department of Biochemistry, National University of Singapore, Singapore 117543, Singapore
| | - Haiwei Song
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore, Structural Biology Group, European Synchrotron Radiation Facility, F-38043 Grenoble, France, Life Sciences Institute, Zhejiang University, Hangzhou, China and Department of Biochemistry, National University of Singapore, Singapore 117543, Singapore
- *To whom correspondence should be addressed. Tel: +65 6586 9700; Fax: +65 6779 1117;
| |
Collapse
|
32
|
Eckart M, Guenther UP, Idkowiak J, Varon R, Grolle B, Boffi P, Van Maldergem L, Hübner C, Schuelke M, von Au K. The natural course of infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1). Pediatrics 2012; 129:e148-56. [PMID: 22157136 DOI: 10.1542/peds.2011-0544] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Only scarce information is available on the long-term outcome and the natural course of children with infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1) due to mutations in the IGHMBP2 gene. OBJECTIVE To describe the natural disease course, to systematically quantify the residual capacities of children with SMARD1 who survive on permanent mechanical respiration, and to identify markers predicting the disease outcome at the time of manifestation. METHODS We conducted a longitudinal study of 11 infantile SMARD1 patients over a mean observational period of 7.8 (SD 3.2) years. Disease-specific features were continuously assessed by using a semiquantitative scoring system. Additionally, we analyzed the residual enzymatic activity of 6 IGHMBP2 mutants in our patients. RESULTS After an initial rapid decline of the clinical score until the age of 2 years, residual capabilities reached a plateau or even improved. The overall clinical outcome was markedly heterogeneous, but clinical scores at the age of 3 months showed a positive linear correlation with the clinical outcome at 1 year and at 4 years of age. If expressed in an in vitro recombinant system, mutations of patients with more favorable outcomes retained residual enzymatic activity. CONCLUSIONS Despite their severe disabilities and symptoms, most SMARD1 patients are well integrated into their home environment and two thirds of them are able to attend kindergarten or school. This information will help to counsel parents at the time of disease manifestation.
Collapse
Affiliation(s)
- Maria Eckart
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Messina MF, Messina S, Gaeta M, Rodolico C, Salpietro Damiano AM, Lombardo F, Crisafulli G, De Luca F. Infantile spinal muscular atrophy with respiratory distress type I (SMARD 1): an atypical phenotype and review of the literature. Eur J Paediatr Neurol 2012; 16:90-4. [PMID: 22099258 DOI: 10.1016/j.ejpn.2011.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/13/2011] [Accepted: 10/29/2011] [Indexed: 10/15/2022]
Abstract
Spinal muscular atrophy with respiratory distress (SMARD 1) is a very rare autosomal recessive motor neuron disorder that affects infants and is characterized by diaphragmatic palsy, symmetrical distal muscular weakness, muscle atrophy, peripheral sensory neuropathy and autonomic nerve dysfunction. SMARD 1 is inherited as an autosomal recessive trait and the mutations have been identified in the gene encoding immunoglobulin μ-binding protein 2 (IGHMBP2), located on chromosome 11q13. It is considered a fatal form of infantile motoneuron disease and most of the patients dies within the first 13 months of life. We present a female child with genetically confirmed SMARD 1 displaying a mild phenotype and no severe signs of respiratory involvement, typically found in this form, up to 38 months despite a diaphragmatic palsy diagnosed at 6 months of age. Therefore, our clinical observation suggests that respiratory failure is not secondary, in any case, to the diaphragmatic palsy but other pathogenetic mechanisms might be involved.
Collapse
Affiliation(s)
- Maria F Messina
- Department of Pediatrics, University of Messina, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pierson TM, Tart G, Adams D, Toro C, Golas G, Tifft C, Gahl W. Infantile-onset spinal muscular atrophy with respiratory distress-1 diagnosed in a 20-year-old man. Neuromuscul Disord 2011; 21:353-5. [PMID: 21353777 PMCID: PMC3085694 DOI: 10.1016/j.nmd.2011.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 01/10/2011] [Accepted: 02/03/2011] [Indexed: 01/26/2023]
Abstract
Spinal muscular atrophy with respiratory distress (SMARD1) presents within the first 13months of age with low birth weight, progressive length dependent motor neuropathy, and respiratory failure from diaphragmatic paralysis. SMARD1 is caused by mutations in IGHMBP2, encoding the immunoglobulin μ-binding protein 2. Because of the severity of the disorder, many infantile-onset SMARD1 patients do not live past the first decade of life. This report documents the clinical course of a 20-year-old man diagnosed with SMARD1.
Collapse
Affiliation(s)
- Tyler Mark Pierson
- NIH Undiagnosed Diseases Program, NIH Office of Rare Disease, Research and NHGRI, Bethesda, MD 20892-3705, USA.
| | | | | | | | | | | | | |
Collapse
|