1
|
Willis AB, Zelikovich AS, Sufit R, Ajroud-Driss S, Vandenborne K, Demonbreun AR, Batra A, Walter GA, McNally EM. Serum protein and imaging biomarkers after intermittent steroid treatment in muscular dystrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308858. [PMID: 38947030 PMCID: PMC11213068 DOI: 10.1101/2024.06.14.24308858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Weekly Steroids in Muscular Dystrophy (WSiMD) was a pilot study to evaluate once weekly prednisone in patients with Limb Girdle and Becker muscular dystrophy (LGMD and BMD, respectively). At study endpoint, there were trends towards increased lean mass, reduced fat mass, reduced creatine kinase and improved motor function. The investigation was motivated by studies in mouse muscular dystrophy models in which once weekly glucocorticoid exposure enhanced muscle strength and reduced fibrosis. Methods WSiMD participants provided blood samples for aptamer serum profiling at baseline and after 6 months of weekly steroids. A subset completed magnetic resonance (MR) evaluation of muscle at study onset and endpoint. Results/Conclusions At baseline compared to age and sex-matched healthy controls, the aggregate serum protein profile in the WSiMD cohort was dominated by muscle proteins, reflecting leak of muscle proteins into serum. Disease status produced more proteins differentially present in serum compared to steroid-treatment effect. Nonetheless, a response to prednisone was discernable in the WSiMD cohort, even at this low dose. Glucocorticoids downregulated muscle proteins and upregulated certain immune process- and matrix-associated proteins. Muscle MR fat fraction showed trends with functional status. The prednisone-responsive markers could be used in larger trial of prednisone efficacy.
Collapse
Affiliation(s)
- Alexander B. Willis
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aaron S. Zelikovich
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Robert Sufit
- Dept of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Senda Ajroud-Driss
- Dept of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Abhinandan Batra
- Department of Physical Therapy, University of Louisiana at Monroe, Monroe, LA
| | - Glenn A. Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Yoon DY, Daniels MJ, Willcocks RJ, Triplett WT, Morales JF, Walter GA, Rooney WD, Vandenborne K, Kim S. Five multivariate Duchenne muscular dystrophy progression models bridging six-minute walk distance and MRI relaxometry of leg muscles. J Pharmacokinet Pharmacodyn 2024:10.1007/s10928-024-09910-1. [PMID: 38609673 PMCID: PMC11470134 DOI: 10.1007/s10928-024-09910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The study aimed to provide quantitative information on the utilization of MRI transverse relaxation time constant (MRI-T2) of leg muscles in DMD clinical trials by developing multivariate disease progression models of Duchenne muscular dystrophy (DMD) using 6-min walk distance (6MWD) and MRI-T2. Clinical data were collected from the prospective and longitudinal ImagingNMD study. Disease progression models were developed by a nonlinear mixed-effect modeling approach. Univariate models of 6MWD and MRI-T2 of five muscles were developed separately. Age at assessment was the time metric. Multivariate models were developed by estimating the correlation of 6MWD and MRI-T2 model variables. Full model estimation approach for covariate analysis and five-fold cross validation were conducted. Simulations were performed to compare the models and predict the covariate effects on the trajectories of 6MWD and MRI-T2. Sigmoid Imax and Emax models best captured the profiles of 6MWD and MRI-T2 over age. Steroid use, baseline 6MWD, and baseline MRI-T2 were significant covariates. The median age at which 6MWD is half of its maximum decrease in the five models was similar, while the median age at which MRI-T2 is half of its maximum increase varied depending on the type of muscle. The models connecting 6MWD and MRI-T2 successfully quantified how individual characteristics alter disease trajectories. The models demonstrate a plausible correlation between 6MWD and MRI-T2, supporting the use of MRI-T2. The developed models will guide drug developers in using the MRI-T2 to most efficient use in DMD clinical trials.
Collapse
Affiliation(s)
- Deok Yong Yoon
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Michael J Daniels
- Department of Statistics, University of Florida, Gainesville, FL, USA
| | | | - William T Triplett
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Juan Francisco Morales
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Glenn A Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA.
| |
Collapse
|
3
|
Barbieri M, Hooijmans MT, Moulin K, Cork TE, Ennis DB, Gold GE, Kogan F, Mazzoli V. A deep learning approach for fast muscle water T2 mapping with subject specific fat T2 calibration from multi-spin-echo acquisitions. Sci Rep 2024; 14:8253. [PMID: 38589478 PMCID: PMC11002020 DOI: 10.1038/s41598-024-58812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
This work presents a deep learning approach for rapid and accurate muscle water T2 with subject-specific fat T2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin's concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T2 data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T2 map of muscle in clinical and research studies.
Collapse
Affiliation(s)
- Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Melissa T Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kevin Moulin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyler E Cork
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, CA, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
McDonald C, Camino E, Escandon R, Finkel RS, Fischer R, Flanigan K, Furlong P, Juhasz R, Martin AS, Villa C, Sweeney HL. Draft Guidance for Industry Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Related Dystrophinopathies - Developing Potential Treatments for the Entire Spectrum of Disease. J Neuromuscul Dis 2024; 11:499-523. [PMID: 38363616 DOI: 10.3233/jnd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Duchenne muscular dystrophy (DMD) and related dystrophinopathies are neuromuscular conditions with great unmet medical needs that require the development of effective medical treatments. Objective To aid sponsors in clinical development of drugs and therapeutic biological products for treating DMD across the disease spectrum by integrating advancements, patient registries, natural history studies, and more into a comprehensive guidance. Methods This guidance emerged from collaboration between the FDA, the Duchenne community, and industry stakeholders. It entailed a structured approach, involving multiple committees and boards. From its inception in 2014, the guidance underwent revisions incorporating insights from gene therapy studies, cardiac function research, and innovative clinical trial designs. Results The guidance provides a deeper understanding of DMD and its variants, focusing on patient engagement, diagnostic criteria, natural history, biomarkers, and clinical trials. It underscores patient-focused drug development, the significance of dystrophin as a biomarker, and the pivotal role of magnetic resonance imaging in assessing disease progression. Additionally, the guidance addresses cardiomyopathy's prominence in DMD and the burgeoning field of gene therapy. Conclusions The updated guidance offers a comprehensive understanding of DMD, emphasizing patient-centric approaches, innovative trial designs, and the importance of biomarkers. The focus on cardiomyopathy and gene therapy signifies the evolving realm of DMD research. It acts as a crucial roadmap for sponsors, potentially leading to improved treatments for DMD.
Collapse
Affiliation(s)
| | - Eric Camino
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rafael Escandon
- DGBI Consulting, LLC, Bainbridge Island, Washington, DC, USA
| | | | - Ryan Fischer
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Kevin Flanigan
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Furlong
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rose Juhasz
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Chet Villa
- Trinity Health Michigan, Grand Rapids, MI, USA
| | - H Lee Sweeney
- Cincinnati Children's Hospital Medical Center within the UC Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
5
|
Lin CW, Shieh JY, Tsui PH, Chen CL, Lu CH, Hung YH, Lee HY, Weng WC, Gau SSF. Acoustic radiation force impulse shear wave elastography quantifies upper limb muscle in patients with Duchenne muscular dystrophy. ULTRASONICS SONOCHEMISTRY 2023; 101:106661. [PMID: 37924615 PMCID: PMC10641721 DOI: 10.1016/j.ultsonch.2023.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
We investigated whether the upper limb muscle stiffness quantified by the acoustic radiation force impulse shear wave elastography (ARFI/SWE) is a potential biomarker for age-related muscle alteration and functional decline in patients with Duchenne muscular dystrophy (DMD). 37 patients with DMD and 30 typically developing controls (TDC) were grouped by age (3-8, 9-11, and 12-18 years). ARFI/SWE measured the biceps and deltoid muscle's shear wave velocities (SWVs). Performance of Upper Limb Module (PUL 1.2 module) assessed muscle function in DMD patients. Mann Whitney test compared muscle SWVs between DMD and TDC, stratified by three age groups. We used analysis of variance with Bonferroni correction to compare muscle SWVs between DMD and TDC and correlated muscle SWVs with PUL results in the DMD group. Results showed that the SWVs of biceps differentiated DMD patients from TDC across age groups. Younger DMD patients (3-8 years) exhibited higher SWVs (p = 0.013), but older DMD patients (12-18 years) showed lower SWVS (p = 0.028) than same-aged TDC. DMD patients had decreasing biceps SWVs with age (p < 0.001), with no such age effect in TDC. The SWVs of deltoid and biceps positively correlated with PUL scores (r = 0.527 ∼ 0.897, P < 0.05) and negatively correlated with PUL timed measures (r = -0.425 ∼ -0.542, P < 0.05) in DMD patients. Our findings suggest that ARFI/SWE quantifying the SWVs in upper limb muscle could be a potential biomarker to differentiate DMD from TDC across ages and that DMD patients showed age-related muscle alteration and limb functional decline.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No.1, Chang-Te St., Taipei 10048, Taipei, Taiwan
| | - Jeng-Yi Shieh
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Dist, Tao-Yuan City 33302, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chun-Hao Lu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Dist, Tao-Yuan City 33302, Taiwan
| | - Yi-Hsuan Hung
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hsiao-Yuan Lee
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, No. 2, Sec. 1, Shengyi Rd., Zhubei City, Hsinchu County 302, Taiwan
| | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, Taiwan 10002, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan 10002, Taiwan.
| | - Susan Shur-Fen Gau
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No.1, Chang-Te St., Taipei 10048, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, and College of Medicine, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, No.1 Jen Ai road section 1, Taipei 100 Taiwan.
| |
Collapse
|
6
|
Hostin MA, Ogier AC, Michel CP, Le Fur Y, Guye M, Attarian S, Fortanier E, Bellemare ME, Bendahan D. The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches. J Magn Reson Imaging 2023; 58:1826-1835. [PMID: 37025028 DOI: 10.1002/jmri.28708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Deep learning methods have been shown to be useful for segmentation of lower limb muscle MRIs of healthy subjects but, have not been sufficiently evaluated on neuromuscular disease (NDM) patients. PURPOSE Evaluate the influence of fat infiltration on convolutional neural network (CNN) segmentation of MRIs from NMD patients. STUDY TYPE Retrospective study. SUBJECTS Data were collected from a hospital database of 67 patients with NMDs and 14 controls (age: 53 ± 17 years, sex: 48 M, 33 F). Ten individual muscles were segmented from the thigh and six from the calf (20 slices, 200 cm section). FIELD STRENGTH/SEQUENCE A 1.5 T. Sequences: 2D T1 -weighted fast spin echo. Fat fraction (FF): three-point Dixon 3D GRE, magnetization transfer ratio (MTR): 3D MT-prepared GRE, T2: 2D multispin-echo sequence. ASSESSMENT U-Net 2D, U-Net 3D, TransUNet, and HRNet were trained to segment thigh and leg muscles (101/11 and 95/11 training/validation images, 10-fold cross-validation). Automatic and manual segmentations were compared based on geometric criteria (Dice coefficient [DSC], outlier rate, absence rate) and reliability of measured MRI quantities (FF, MTR, T2, volume). STATISTICAL TESTS Bland-Altman plots were chosen to describe agreement between manual vs. automatic estimated FF, MTR, T2 and volume. Comparisons were made between muscle populations with an FF greater than 20% (G20+) and lower than 20% (G20-). RESULTS The CNNs achieved equivalent results, yet only HRNet recognized every muscle in the database, with a DSC of 0.91 ± 0.08, and measurement biases reaching -0.32% ± 0.92% for FF, 0.19 ± 0.77 for MTR, -0.55 ± 1.95 msec for T2, and - 0.38 ± 3.67 cm3 for volume. The performances of HRNet, between G20- and G20+ decreased significantly. DATA CONCLUSION HRNet was the most appropriate network, as it did not omit any muscle. The accuracy obtained shows that CNNs could provide fully automated methods for studying NMDs. However, the accuracy of the methods may be degraded on the most infiltrated muscles (>20%). EVIDENCE LEVEL 4. TECHNICAL EFFICACY Stage 1.
Collapse
Affiliation(s)
- Marc-Adrien Hostin
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- Aix Marseille University, CNRS, LIS, Marseille, France
| | - Augustin C Ogier
- Aix Marseille University, CNRS, LIS, Marseille, France
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Yann Le Fur
- Aix Marseille University, CNRS, CRMBM, Marseille, France
| | - Maxime Guye
- APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, Marseille, France
| | - Etienne Fortanier
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, Marseille, France
| | | | - David Bendahan
- Aix Marseille University, CNRS, CRMBM, Marseille, France
| |
Collapse
|
7
|
Hiyoshi T, Zhao F, Baba R, Hirakawa T, Kuboki R, Suzuki K, Tomimatsu Y, O'Donnell P, Han S, Zach N, Nakashima M. Electrical impedance myography detects dystrophin-related muscle changes in mdx mice. Skelet Muscle 2023; 13:19. [PMID: 37980539 PMCID: PMC10657153 DOI: 10.1186/s13395-023-00331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The lack of functional dystrophin protein in Duchenne muscular dystrophy (DMD) causes chronic skeletal muscle inflammation and degeneration. Therefore, the restoration of functional dystrophin levels is a fundamental approach for DMD therapy. Electrical impedance myography (EIM) is an emerging tool that provides noninvasive monitoring of muscle conditions and has been suggested as a treatment response biomarker in diverse indications. Although magnetic resonance imaging (MRI) of skeletal muscles has become a standard measurement in clinical trials for DMD, EIM offers distinct advantages, such as portability, user-friendliness, and reduced cost, allowing for remote monitoring of disease progression or response to therapy. To investigate the potential of EIM as a biomarker for DMD, we compared longitudinal EIM data with MRI/histopathological data from an X-linked muscular dystrophy (mdx) mouse model of DMD. In addition, we investigated whether EIM could detect dystrophin-related changes in muscles using antisense-mediated exon skipping in mdx mice. METHODS The MRI data for muscle T2, the magnetic resonance spectroscopy (MRS) data for fat fraction, and three EIM parameters with histopathology were longitudinally obtained from the hindlimb muscles of wild-type (WT) and mdx mice. In the EIM study, a cell-penetrating peptide (Pip9b2) conjugated antisense phosphorodiamidate morpholino oligomer (PPMO), designed to induce exon-skipping and restore functional dystrophin production, was administered intravenously to mdx mice. RESULTS MRI imaging in mdx mice showed higher T2 intensity at 6 weeks of age in hindlimb muscles compared to WT mice, which decreased at ≥ 9 weeks of age. In contrast, EIM reactance began to decline at 12 weeks of age, with peak reduction at 18 weeks of age in mdx mice. This decline was associated with myofiber atrophy and connective tissue infiltration in the skeletal muscles. Repeated dosing of PPMO (10 mg/kg, 4 times every 2 weeks) in mdx mice led to an increase in muscular dystrophin protein and reversed the decrease in EIM reactance. CONCLUSIONS These findings suggest that muscle T2 MRI is sensitive to the early inflammatory response associated with dystrophin deficiency, whereas EIM provides a valuable biomarker for the noninvasive monitoring of subsequent changes in skeletal muscle composition. Furthermore, EIM reactance has the potential to monitor dystrophin-deficient muscle abnormalities and their recovery in response to antisense-mediated exon skipping.
Collapse
Affiliation(s)
- Tetsuaki Hiyoshi
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Fuqiang Zhao
- Center of Excellence for Imaging, Preclinical and Translational Sciences, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Rina Baba
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Takeshi Hirakawa
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryosuke Kuboki
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kazunori Suzuki
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yoshiro Tomimatsu
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Patricio O'Donnell
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Steve Han
- Neuroscience Therapeutic Area Unit, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Neta Zach
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA, 02141, USA
| | - Masato Nakashima
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
8
|
Holodov M, Markus I, Solomon C, Shahar S, Blumenfeld-Katzir T, Gepner Y, Ben-Eliezer N. Probing muscle recovery following downhill running using precise mapping of MRI T 2 relaxation times. Magn Reson Med 2023; 90:1990-2000. [PMID: 37345717 DOI: 10.1002/mrm.29765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE Postexercise recovery rate is a vital component of designing personalized training protocols and rehabilitation plans. Tracking exercise-induced muscle damage and recovery requires sensitive tools that can probe the muscles' state and composition noninvasively. METHODS Twenty-four physically active males completed a running protocol consisting of a 60-min downhill run on a treadmill at -10% incline and 65% of maximal heart rate. Quantitative mapping of MRI T2 was performed using the echo-modulation-curve algorithm before exercise, and at two time points: 1 h and 48 h after exercise. RESULTS T2 values increased by 2%-4% following exercise in the primary mover muscles and exhibited further elevation of 1% after 48 h. For the antagonist muscles, T2 values increased only at the 48-h time point (2%-3%). Statistically significant decrease in the SD of T2 values was found following exercise for all tested muscles after 1 h (16%-21%), indicating a short-term decrease in the heterogeneity of the muscle tissue. CONCLUSION MRI T2 relaxation time constitutes a useful quantitative marker for microstructural muscle damage, enabling region-specific identification for short-term and long-term systemic processes, and sensitive assessment of muscle recovery following exercise-induced muscle damage. The variability in T2 changes across different muscle groups can be attributed to their different role during downhill running, with immediate T2 elevation occurring in primary movers, followed by delayed elevation in both primary and antagonist muscle groups, presumably due to secondary damage caused by systemic processes.
Collapse
Affiliation(s)
- Maria Holodov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Irit Markus
- Department of Epidemiology and Preventive Medicine, School of Public Health and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Chen Solomon
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shimon Shahar
- Center of AI and Data Science, Tel Aviv University, Tel Aviv, Israel
| | | | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, New York, USA
| |
Collapse
|
9
|
Suslov VM, Lieberman LN, Carlier PG, Ponomarenko GN, Ivanov DO, Rudenko DI, Suslova GA, Adulas EI. Efficacy and safety of hydrokinesitherapy in patients with dystrophinopathy. Front Neurol 2023; 14:1230770. [PMID: 37564736 PMCID: PMC10410449 DOI: 10.3389/fneur.2023.1230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common forms of hereditary muscular dystrophies in childhood and is characterized by steady progression and early disability. It is known that physical therapy can slow down the rate of progression of the disease. According to global recommendations, pool exercises, along with stretching, are preferable for children with DMD, as these types of activities have a balanced effect on skeletal muscles and allow simultaneous breathing exercises. The present study aimed to evaluate the effectiveness of regular pool exercises in patients with Duchenne muscular dystrophy who are capable of independent movement during 4 months of training. 28 patients with genetically confirmed Duchenne muscular dystrophy, who were aged 6.9 ± 0.2 years, were examined. A 6-min distance walking test and timed tests, namely, rising from the floor, 10-meter running, and stair climbing and descending, muscle strength of the upper and lower extremities were assessed on the baseline and during dynamic observation at 2 and 4 months. Hydrorehabilitation course lasted 4 months and was divided into two stages: preparatory and training (depend on individual functional heart reserve (IFHR)). Set of exercises included pool dynamic aerobic exercises. Quantitative muscle MRI of the pelvic girdle and thigh was performed six times: before training (further BT) and after training (further AT) during all course. According to the results of the study, a statistically significant improvement was identified in a 6-min walking test, with 462.7 ± 6.2 m on the baseline and 492.0 ± 6.4 m after 4 months (p < 0.001). The results from the timed functional tests were as follows: rising from the floor test, 4.5 ± 0.3 s on the baseline and 3.8 ± 0.2 s after 4 months (p < 0.001); 10 meter distance running test, 4.9 ± 0.1 s on the baseline and 4.3 ± 0.1 s after 4 months (p < 0.001); 4-stair climbing test, 3.7 ± 0.2 s on the baseline and 3.2 ± 0.2 s after 4 months (p < 0.001); and 4-stair descent test, 3.9 ± 0.1 s on the baseline and 3.2 ± 0.1 s after 4 months (p < 0.001). Skeletal muscle quantitative MRI was performed in the pelvis and the thighs in order to assess the impact of the procedures on the muscle structure. Muscle water T2, a biomarker of disease activity, did not show any change during the training period, suggesting the absence of deleterious effects and negative impact on disease activity. Thus, a set of dynamic aerobic exercises in water can be regarded as effective and safe for patients with DMD.
Collapse
Affiliation(s)
- V. M. Suslov
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - L. N. Lieberman
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - P. G. Carlier
- University Paris-Saclay, CEA, Frédéric Joliot Institute for Life Sciences, SHFJ, Orsay, France
| | - G. N. Ponomarenko
- Federal State Budgetary Institution Federal Scientific Center of the Rehabilitation of the Disabled Named After G. A.Albrecht of the Ministry of Labour and Social Protection of the Russian Federation, Saint Petersburg, Russia
| | - D. O. Ivanov
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - D. I. Rudenko
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - G. A. Suslova
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - E. I. Adulas
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| |
Collapse
|
10
|
Monte JR, Hooijmans MT, Froeling M, Oudeman J, Tol JL, Strijkers GJ, Nederveen AJ, Maas M. Diffusion tensor imaging and quantitative T2 mapping to monitor muscle recovery following hamstring injury. NMR IN BIOMEDICINE 2023; 36:e4902. [PMID: 36630472 DOI: 10.1002/nbm.4902] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/15/2023]
Abstract
MRI examinations are accurate for diagnosing sports-related acute hamstring injuries. However, sensitive imaging methods for assessing recovery of these injuries are lacking. Diffusion tensor imaging (DTI) and quantitative T2 (qT2) mapping have both shown promise for assessing recovery of muscle micro trauma and exercise effects. The purpose of this study was to explore the potential of DTI and qT2 mapping for monitoring the muscle recovery processes after acute hamstring injury. In this prospective study, athletes with an acute hamstring injury underwent a 3-T MRI examination of the injured and contralateral hamstrings including DTI and qT2 measurements at three time points: (1) within 1 week after sustaining the injury, (2) 2 weeks after time point 1, and (3) return to play (RTP). A linear mixed model was used for time-effect analysis and paired t-tests for the detection of differences between injured and uninjured muscles. Forty-one athletes (age 27.8 ± 7 years; two females and 39 males) were included. Mean RTP time was 50 (range 12-169) days. A significant time effect was found for mean diffusivity, radial diffusivity, and the second and third eigenvalues (p ≤ 0.001) in the injured muscles. Fractional anisotropy (p = 0.40), first eigenvalue (p = 0.02), and qT2 (p = 0.61) showed no significant time effect. All DTI indices, except for fractional anisotropy, were significantly elevated compared with control muscles right after the injury (p < 0.001). Values normalized during the recovery period, with no significant differences between control and injured muscles at RTP (p values ranged from 0.08 to 0.51). Mean qT2 relaxation times in injured muscles were not significantly elevated compared with control muscles at any time point (p > 0.04). In conclusion, DTI can be used to monitor recovery after an acute hamstring injury. Future work should explore the potential of DTI indices to predict RTP and recovery times in athletes after an acute strain injury.
Collapse
Affiliation(s)
- Jithsa R Monte
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Melissa T Hooijmans
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jos Oudeman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Johannes L Tol
- Department of Orthopaedic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam, the Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), AMC/VUmc IOC Research Center, Amsterdam, the Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Mario Maas
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Khattri RB, Batra A, Matheny M, Hart C, Henley-Beasley SC, Hammers D, Zeng H, White Z, Ryan TE, Barton E, Pascal B, Walter GA. Magnetic resonance quantification of skeletal muscle lipid infiltration in a humanized mouse model of Duchenne muscular dystrophy. NMR IN BIOMEDICINE 2023; 36:e4869. [PMID: 36331178 PMCID: PMC10308798 DOI: 10.1002/nbm.4869] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Rodent models of Duchenne muscular dystrophy (DMD) often do not recapitulate the severity of muscle wasting and resultant fibro-fatty infiltration observed in DMD patients. Having recently documented severe muscle wasting and fatty deposition in two preclinical models of muscular dystrophy (Dysferlin-null and mdx mice) through apolipoprotein E (ApoE) gene deletion without and with cholesterol-, triglyceride-rich Western diet supplementation, we sought to determine whether magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) could be used to detect, characterize, and compare lipid deposition in mdx-ApoE knockout with mdx mice in a diet-dependent manner. MRI revealed that both mdx and mdx-ApoE mice exhibited elevated proton relaxation time constants (T2 ) in their lower hindlimbs irrespective of diet, indicating both chronic muscle damage and fatty tissue deposition. The mdx-ApoE mice on a Western diet (mdx-ApoEW ) presented with greatest fatty tissue infiltration in the posterior compartment of the hindlimb compared with other groups, as detected by MRI/MRS. High-resolution magic angle spinning confirmed elevated lipid deposition in the posterior compartments of mdx-ApoEW mice in vivo and ex vivo, respectively. In conclusion, the mdx-ApoEW model recapitulates some of the extreme fatty tissue deposition observed clinically in DMD muscle but typically absent in mdx mice. This preclinical model will help facilitate the development of new imaging modalities directly relevant to the image contrast generated in DMD, and help to refine MR-based biomarkers and their relationship to tissue structure and disease progression.
Collapse
Affiliation(s)
- Ram B. Khattri
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Abhinandan Batra
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Michael Matheny
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Cora Hart
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | | | - David Hammers
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Huadong Zeng
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, FL, USA
| | - Zoe White
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Canada
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Center of Exercise Science, University of Florida, Gainesville, FL, United States
| | - Elisabeth Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Bernatchez Pascal
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Canada
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Schlaeger S, Weidlich D, Zoffl A, Becherucci EA, Kottmaier E, Montagnese F, Deschauer M, Schoser B, Zimmer C, Baum T, Karampinos DC, Kirschke JS. Beyond mean value analysis - a voxel-based analysis of the quantitative MR biomarker water T 2 in the presence of fatty infiltration in skeletal muscle tissue of patients with neuromuscular diseases. NMR IN BIOMEDICINE 2022; 35:e4805. [PMID: 35892264 DOI: 10.1002/nbm.4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The main pathologies in the muscles of patients with neuromuscular diseases (NMD) are fatty infiltration and edema. Recently, quantitative magnetic resonance (MR) imaging for determination of the MR biomarkers proton density fat fraction (PDFF) and water T2 (T2w ) has been advanced. Biophysical effects or pathology can have different effects on MR biomarkers. Thus, for heterogeneously affected muscles, the routinely performed mean or median value analyses of MR biomarkers are questionable. Our work presents a voxel-based histogram analysis of PDFF and T2w images to point out potential quantification errors. In 12 patients with NMD, chemical-shift encoding-based water-fat imaging for PDFF and T2 mapping with spectral adiabatic inversion recovery (SPAIR) for T2w determination was performed. Segmentation of nine thigh muscles was performed bilaterally (n = 216). PDFF and T2 maps were coregistered. A voxel-based comparison of PDFF and T2w showed a decreased T2w with increasing PDFF. Mean T2w and mean T2w without fatty voxels (PDFF < 10%) show good agreement, whereas standard deviation (σ) T2w and σ T2w without fatty voxels show increasing difference with increasing values of σ. Thereby two subgroups can be observed, referring to muscles in which the exclusion of fatty voxels has a negligible influence versus muscles in which a strong dependency of the T2w value distribution on the exclusion of fatty voxels is present. Because of the two opposite effects that influence T2w in a voxel, namely, (i) a pathophysiologically increased water mobility leading to T2w elevation, and (ii) a dependency of T2w on the PDFF leading to decreased T2w , the T2w distribution within a muscle might be heterogenous and the routine mean or median analysis can lead to a misinterpretation of the muscle health. It was concluded that muscle T2w mean values can wrongly suggest healthy muscle tissue. A deeper analysis of the underlying value distribution is necessary. Therefore, a quantitative analysis of T2w histograms is a potential alternative.
Collapse
Affiliation(s)
- Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Agnes Zoffl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Edoardo Aitala Becherucci
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth Kottmaier
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Montagnese
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany
| | - Marcus Deschauer
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
13
|
Sherlock SP, Palmer J, Wagner KR, Abdel-Hamid HZ, Bertini E, Tian C, Mah JK, Kostera-Pruszczyk A, Muntoni F, Guglieri M, Brandsema JF, Mercuri E, Butterfield RJ, McDonald CM, Charnas L, Marraffino S. Quantitative magnetic resonance imaging measures as biomarkers of disease progression in boys with Duchenne muscular dystrophy: a phase 2 trial of domagrozumab. J Neurol 2022; 269:4421-4435. [PMID: 35396602 PMCID: PMC9294028 DOI: 10.1007/s00415-022-11084-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/14/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive, neuromuscular disorder caused by mutations in the DMD gene that results in a lack of functional dystrophin protein. Herein, we report the use of quantitative magnetic resonance imaging (MRI) measures as biomarkers in the context of a multicenter phase 2, randomized, placebo-controlled clinical trial evaluating the myostatin inhibitor domagrozumab in ambulatory boys with DMD (n = 120 aged 6 to < 16 years). MRI scans of the thigh to measure muscle volume, muscle volume index (MVI), fat fraction, and T2 relaxation time were obtained at baseline and at weeks 17, 33, 49, and 97 as per protocol. These quantitative MRI measurements appeared to be sensitive and objective biomarkers for evaluating disease progression, with significant changes observed in muscle volume, MVI, and T2 mapping measures over time. To further explore the utility of quantitative MRI measures as biomarkers to inform longer term functional changes in this cohort, a regression analysis was performed and demonstrated that muscle volume, MVI, T2 mapping measures, and fat fraction assessment were significantly correlated with longer term changes in four-stair climb times and North Star Ambulatory Assessment functional scores. Finally, less favorable baseline measures of MVI, fat fraction of the muscle bundle, and fat fraction of lean muscle were significant risk factors for loss of ambulation over a 2-year monitoring period. These analyses suggest that MRI can be a valuable tool for use in clinical trials and may help inform future functional changes in DMD.Trial registration: ClinicalTrials.gov identifier, NCT02310763; registered December 2014.
Collapse
Affiliation(s)
| | | | - Kathryn R Wagner
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hoda Z Abdel-Hamid
- Division of Child Neurology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Enrico Bertini
- Unit of Neuromuscular Disease, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cuixia Tian
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jean K Mah
- Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | | | - Eugenio Mercuri
- Pediatric Neurology, Catholic University, Rome, Italy
- Centro Nemo, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | | | | | | | | |
Collapse
|
14
|
Veeger TTJ, van de Velde NM, Keene KR, Niks EH, Hooijmans MT, Webb AG, de Groot JH, Kan HE. Baseline fat fraction is a strong predictor of disease progression in Becker muscular dystrophy. NMR IN BIOMEDICINE 2022; 35:e4691. [PMID: 35032073 PMCID: PMC9286612 DOI: 10.1002/nbm.4691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In Becker muscular dystrophy (BMD), muscle weakness progresses relatively slowly, with a highly variable rate among patients. This complicates clinical trials, as clinically relevant changes are difficult to capture within the typical duration of a trial. Therefore, predictors for disease progression are needed. We assessed if temporal increase of fat fraction (FF) in BMD follows a sigmoidal trajectory and whether fat fraction at baseline (FFbase) could therefore predict FF increase after 2 years (ΔFF). Thereafter, for two different MR-based parameters, we tested the additional predictive value to FFbase. We used 3-T Dixon data from the upper and lower leg, and multiecho spin-echo MRI and 7-T 31 P MRS datasets from the lower leg, acquired in 24 BMD patients (age: 41.4 [SD 12.8] years). We assessed the pattern of increase in FF using mixed-effects modelling. Subsequently, we tested if indicators of muscle damage like standard deviation in water T2 (stdT2 ) and the phosphodiester (PDE) over ATP ratio at baseline had additional value to FFbase for predicting ∆FF. The association between FFbase and ΔFF was described by the derivative of a sigmoid function and resulted in a peak ΔFF around 0.45 FFbase (fourth-order polynomial term: t = 3.7, p < .001). StdT2 and PDE/ATP were not significantly associated with ∆FF if FFbase was included in the model. The relationship between FFbase and ∆FF suggests a sigmoidal trajectory of the increase in FF over time in BMD, similar to that described for Duchenne muscular dystrophy. Our results can be used to identify muscles (or patients) that are in the fast progressing stage of the disease, thereby facilitating the conduct of clinical trials.
Collapse
Affiliation(s)
- Thom T. J. Veeger
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Nienke M. van de Velde
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Kevin R. Keene
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Erik H. Niks
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Melissa T. Hooijmans
- Department of Radiology & Nuclear MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Andrew G. Webb
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Jurriaan H. de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Hermien E. Kan
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| |
Collapse
|
15
|
Albayda J, Demonceau G, Carlier PG. Muscle imaging in myositis: MRI, US, and PET. Best Pract Res Clin Rheumatol 2022; 36:101765. [PMID: 35760742 DOI: 10.1016/j.berh.2022.101765] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Imaging is an important tool in the evaluation of idiopathic inflammatory myopathies. It plays a role in diagnosis, assessment of disease activity and follow-up, and as a non-invasive biomarker. Among the different modalities, nuclear magnetic resonance imaging (MRI), ultrasound (US), and positron emission tomography (PET) may have the most clinical utility in myositis. MRI is currently the best modality to evaluate skeletal muscle and provides excellent characterization of muscle edema and fat replacement through the use of T1-weighted and T2-weighted fat suppressed/STIR sequences. Although MRI can be read qualitatively for the presence of abnormalities, a more quantitative approach using Dixon sequences and the generation of water T2 parametric maps would be preferable for follow-up. Newer protocols such as diffusion-weighted imaging, functional imaging measures, and spectroscopy may be of interest to provide further insights into myositis. Despite the advantages of MRI, image acquisition is relatively time-consuming, expensive, and not accessible to all patients. The use of US to evaluate skeletal muscle in myositis is gaining interest, especially in chronic disease, where fat replacement and fibrosis are detected readily by this modality. Although easily deployed at the bedside, it is heavily dependent on operator experience to recognize disease states. Further, systematic characterization of muscle edema by US is still needed. PET provides valuable information on muscle function at a cellular level. Fluorodeoxyglucose (FDG-PET) has been the most common application in myositis to detect pathologic uptake indicative of inflammation. The use of neurodegenerative markers is now also being utilized for inclusion body myositis. These different modalities may prove to be complementary methods for myositis evaluation.
Collapse
Affiliation(s)
- Jemima Albayda
- Division of Rheumatology, Johns Hopkins University, Baltimore, USA.
| | | | - Pierre G Carlier
- Université Paris-Saclay, CEA, DRF, Service Hospitalier Frederic Joliot, Orsay, France
| |
Collapse
|
16
|
Rebecca JW, Alison MB, Ryan JW, Claudia RS, Donovan JL, Ann TH, Kirsten LZ, Sean CF, William DR, Dah-Jyuu W, Erika LF, Gihan IT, Michael JD, William TT, Glenn AW, Krista V. Development of Contractures in DMD in Relation to MRI-Determined Muscle Quality and Ambulatory Function. J Neuromuscul Dis 2022; 9:289-302. [PMID: 35124659 DOI: 10.3233/jnd-210731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Joint contractures are common in boys and men with Duchenne muscular dystrophy (DMD), and management of contractures is an important part of care. The optimal methods to prevent and treat contractures are controversial, and the natural history of contracture development is understudied in glucocorticoid treated individuals at joints beyond the ankle. OBJECTIVE To describe the development of contractures over time in a large cohort of individuals with DMD in relation to ambulatory ability, functional performance, and muscle quality measured using magnetic resonance imaging (MRI) and spectroscopy (MRS). METHODS In this longitudinal study, range of motion (ROM) was measured annually at the hip, knee, and ankle, and at the elbow, forearm, and wrist at a subset of visits. Ambulatory function (10 meter walk/run and 6 minute walk test) and MR-determined muscle quality (transverse relaxation time (T2) and fat fraction) were measured at each visit. RESULTS In 178 boys with DMD, contracture prevalence and severity increased with age. Among ambulatory participants, more severe contractures (defined as greater loss of ROM) were significantly associated with worse ambulatory function, and across all participants, more severe contractures significantly associated with higher MRI T2 or MRS FF (ρ: 0.40-0.61 in the lower extremity; 0.20-0.47 in the upper extremity). Agonist/antagonist differences in MRI T2 were not strong predictors of ROM. CONCLUSIONS Contracture severity increases with disease progression (increasing age and muscle involvement and decreasing functional ability), but is only moderately predicted by muscle fatty infiltration and MRI T2, suggesting that other changes in the muscle, tendon, or joint contribute meaningfully to contracture formation in DMD.
Collapse
Affiliation(s)
| | | | - J Wortman Ryan
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - T Harrington Ann
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Arcadia University, Glennside, PA, USA
| | - L Zilke Kirsten
- Shriners Hospitals for Children -Portland, OR, USA.,Oregon Health and Science University, Portland, OR, USA
| | | | | | - Wang Dah-Jyuu
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kaslow JA, Sokolow AG, Donnelly T, Buchowski MS, Damon BM, Markham LW, Burnette WB, Soslow J. Leveraging Cardiac Magnetic Resonance Imaging to Assess Skeletal Muscle Progression in Duchenne Muscular Dystrophy. Neuromuscul Disord 2022; 32:390-398. [PMID: 35300894 PMCID: PMC9117482 DOI: 10.1016/j.nmd.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by muscle deterioration and progressive weakness. As a result, patients with DMD have significant cardiopulmonary morbidity and mortality that worsens with age and loss of ambulation. Since most validated muscle assessments require ambulation, new functional measures of DMD progression are needed. Despite several evaluation methods available for monitoring disease progression, the relationship between these measures is unknown. We sought to assess the correlation between imaging metrics obtained from cardiac magnetic resonance imaging (CMR) and functional assessments including quantitative muscle testing (QMT), spirometry, and accelerometry. Forty-nine patients with DMD were enrolled and underwent CMR, accelerometry and QMT at baseline, 1-year and 2-year clinic visits with temporally associated pulmonary function testing obtained from the medical record. Imaging of the upper extremity musculature (triceps and biceps) demonstrated the most robust correlations with accelerometry (p<0.03), QMT (p<0.02) and spirometry (p<0.01). T1-mapping of serratus anterior muscle showed a similar, but slightly weaker relationship with accelerometry and QMT. T2-mapping of serratus anterior demonstrated weak indirect correlation with aspects of accelerometry. These images are either routinely obtained in standard CMR or can be added to a protocol and may allow for a more comprehensive assessment of a patient's disease progression.
Collapse
|
18
|
Nair KS, Lott DJ, Forbes SC, Barnard AM, Willcocks RJ, Senesac CR, Daniels MJ, Harrington AT, Tennekoon GI, Zilke K, Finanger EL, Finkel RS, Rooney WD, Walter GA, Vandenborne K. Step Activity Monitoring in Boys with Duchenne Muscular Dystrophy and its Correlation with Magnetic Resonance Measures and Functional Performance. J Neuromuscul Dis 2022; 9:423-436. [PMID: 35466946 PMCID: PMC9257666 DOI: 10.3233/jnd-210746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Muscles of boys with Duchenne muscular dystrophy (DMD) are progressively replaced by fatty fibrous tissues, and weakness leads to loss of ambulation (LoA). Step activity (SA) monitoring is a quantitative measure of real-world ambulatory function. The relationship between quality of muscle health and SA is unknown in DMD. OBJECTIVE To determine SA in steroid treated boys with DMD across various age groups, and to evaluate the association of SA with quality of muscle health and ambulatory function. METHODS Quality of muscle health was measured by magnetic resonance (MR) imaging transverse magnetization relaxation time constant (MRI-T2) and MR spectroscopy fat fraction (MRS-FF). SA was assessed via accelerometry, and functional abilities were assessed through clinical walking tests. Correlations between SA, MR, and functional measures were determined. A threshold value of SA was determined to predict the future LoA. RESULTS The greatest reduction in SA was observed in the 9- < 11years age group. SA correlated with all functional and MR measures.10m walk/run test had the highest correlation with SA. An increase in muscle MRI-T2 and MRS-FF was associated with a decline in SA. Two years prior to LoA, SA in boys with DMD was 32% lower than age matched boys with DMD who maintained ambulation for more than two-year period. SA monitoring can predict subsequent LoA in Duchenne, as a daily step count of 3200 at baseline was associated with LoA over the next two-years. CONCLUSION SA monitoring is a feasible and accessible tool to measure functional capacity in the real-world environment.
Collapse
Affiliation(s)
- Kavya S. Nair
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Donovan J. Lott
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Sean C. Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Alison M. Barnard
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Rebecca J. Willcocks
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Claudia R. Senesac
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Michael J. Daniels
- Department of Statistics, University of Florida, Gainesville, Florida, USA
| | - Ann T. Harrington
- Center for Rehabilitation, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gihan I. Tennekoon
- Department of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kirsten Zilke
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Erika L. Finanger
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Richard S. Finkel
- Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William D. Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
19
|
Brogna C, Cristiano L, Verdolotti T, Norcia G, Ficociello L, Ruiz R, Coratti G, Fanelli L, Forcina N, Petracca G, Chieppa F, Tartaglione T, Colosimo C, Pane M, Mercuri E. Longitudinal Motor Functional Outcomes and Magnetic Resonance Imaging Patterns of Muscle Involvement in Upper Limbs in Duchenne Muscular Dystrophy. Medicina (B Aires) 2021; 57:medicina57111267. [PMID: 34833484 PMCID: PMC8624281 DOI: 10.3390/medicina57111267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives: The aim of this study was to evaluate longitudinal changes using both upper limb muscle Magnetic Resonance Imaging (MRI) at shoulder, arm and forearm levels and Performance of upper limb (PUL) in ambulant and non-ambulant Duchenne Muscular Dystrophy (DMD) patients. We also wished to define whether baseline muscle MRI could help to predict functional changes after one year. Materials and Methods: Twenty-seven patients had both baseline and 12month muscle MRI and PUL assessments one year later. Results: Ten were ambulant (age range 5–16 years), and 17 non ambulant (age range 10–30 years). Increased abnormalities equal or more than 1.5 point on muscle MRI at follow up were found on all domains: at shoulder level 12/27 patients (44%), at arm level 4/27 (15%) and at forearm level 6/27 (22%). Lower follow up PUL score were found in 8/27 patients (30%) at shoulder level, in 9/27 patients (33%) at mid-level whereas no functional changes were found at distal level. There was no constant association between baseline MRI scores and follow up PUL scores at arm and forearm levels but at shoulder level patients with moderate impairment on the baseline MRI scores between 16 and 34 had the highest risk of decreased function on PUL over a year. Conclusions: Our results confirmed that the integrated use of functional scales and imaging can help to monitor functional and MRI changes over time.
Collapse
Affiliation(s)
- Claudia Brogna
- Pediatric Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy;
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
| | - Lara Cristiano
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Tommaso Verdolotti
- Institute of Radiology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (T.V.); (L.F.); (C.C.)
| | - Giulia Norcia
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
| | - Luana Ficociello
- Institute of Radiology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (T.V.); (L.F.); (C.C.)
| | - Roberta Ruiz
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Giorgia Coratti
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Lavinia Fanelli
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
| | - Nicola Forcina
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
| | - Giorgia Petracca
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Fabrizia Chieppa
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Tommaso Tartaglione
- Department of Radiology, Istituto Dermatologico Italiano, IRCCS, 00167 Rome, Italy;
| | - Cesare Colosimo
- Institute of Radiology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (T.V.); (L.F.); (C.C.)
- Institute of Radiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marika Pane
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
| | - Eugenio Mercuri
- Pediatric Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy;
- Nemo Clinical Centre, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.N.); (G.C.); (L.F.); (N.F.); (M.P.)
- Pediatric Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.R.); (G.P.); (F.C.)
- Correspondence: ; Tel.: +39-06-30155340; Fax: +39-06-30154363
| |
Collapse
|
20
|
Duong T, Canbek J, Fernandez-Fernandez A, Henricson E, Birkmeier M, Siener C, Rocha CT, McDonald C, Gordish-Dressman H. Knee Strength and Ankle Range of Motion Impacts on Timed Function Tests in Duchenne Muscular Dystrophy: In the Era of Glucocorticoids. J Neuromuscul Dis 2021; 9:147-159. [PMID: 34719507 DOI: 10.3233/jnd-210724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne Muscular Dystrophy (DMD) is a neuromuscular disorder that presents in childhood and is characterized by slowly progressive proximal weakness and lower extremity contractures that limit ambulatory ability [1, 2]. Contractures develop in the ankles, knees, and hips due to muscle imbalances, fibrotic changes, loss of strength, and static positioning [2, 5]. Currently, standards of care guidelines emphasize the importance of maintaining good musculoskeletal alignment through stretching, bracing, and glucocorticoid (GC) therapy to preserve strength and function. METHODS This is a retrospective analysis of prospectively collected data through the CINRG Duchenne Natural history study (DNHS). The objectives of this analysis are to understand the progression of ankle contractures for individuals with DMD and to investigate the relationship between progressive lower limb contractures, knee strength, and Timed Function Tests.A collection of TFTs including supine to stand (STS), 10 meter walk test (10MWT), and timed stair climbing (4SC) have been used to monitor disease progression and are predictive of loss of ambulation in these patients [4]. Multiple factors contribute to loss of ambulation, including progressive loss of strength and contracture development that leads to changing biomechanical demands for ambulation. A better understanding of the changes in strength and range of motion (ROM) that contribute to loss of function is important in a more individualized rehabilitation management plan. In this longitudinal study, we measured strength using quantitative muscle testing (QMT) with the CINRG Quantitative Measurement System (CQMS)), ROM was measuresed with a goniometer and TFTs were measured using a standard stopwatch and methodology. RESULTS We enrolled 440 participants; mean baseline age was 8.9 (2.1, 28.0) years with 1321 observations used for analysis. GC use was stratified based on duration on drug with 18.7%at < 6 months or naïve; 4.3%<1 year; 58.0%1 < 10 years; and 19.3%between 10-25 years of GC use. Ankle ROM was better for those on GC compared to GC naive but did not significantly influence long-term progression rates. QMT, ROM, age and GCs contribute to speed of TFTs. Knee extension (KE) strength and Dorsiflexion (DF) ROM are significant predictors of speed for all TFTs (p < 0.001). Of the variables used in this analysis, KE strength is the primary predictor of walking speed, estimating that every pound increase in KE results in a 0.042 m/s improvement in 10MWT, and a smaller similar increase of 0.009 m/s with every degree of ankle DF ROM. CONCLUSION GC use provides an improvement in strength and ROM but does not affect rate of change. Knee strength has a greater influence on speed of TFTs than DF ROM, although both are statistically significant predictors of speed. Results show that retaining knee strength [1, 2], along with joint flexibility, may be important factors in the ability to perform walking, climbing and supine to stand activities.
Collapse
Affiliation(s)
- Tina Duong
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Rehabilitation, Stanford Healthcare, Stanford, CA, USA
| | - Jennifer Canbek
- Physical Therapy Department, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | | - Erik Henricson
- University of California, Davis, Department of Neurology, Sacramento, CA USA
| | - Marisa Birkmeier
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine Siener
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Carolina Tesi Rocha
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Craig McDonald
- University of California, Davis, Department of Neurology, Sacramento, CA USA
| | | | | |
Collapse
|
21
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
22
|
O'Reilly T, Webb AG. In vivo T 1 and T 2 relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT. Magn Reson Med 2021; 87:884-895. [PMID: 34520068 PMCID: PMC9292835 DOI: 10.1002/mrm.29009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE Low-field (B0 < 0.1 T) MRI has generated much interest as a means of increased accessibility via reduced cost and improved portability compared to conventional clinical systems (B0 ≥ 1.5 Tesla). Here we measure MR relaxation times at 50 mT and compare results with commonly used models based on both in vivo and ex vivo measurements. METHODS Using 3D turbo spin echo readouts, T1 and T2 maps of the human brain and lower leg were acquired on a custom-built 50 mT MRI scanner using inversion-recovery and multi-echo-based sequences, respectively. Image segmentation was performed based on a histogram analysis of the relaxation times. RESULTS The average T1 times of gray matter, white matter, and cerebrospinal fluid (CSF) were 327 ± 10 ms, 275 ± 5 ms, and 3695 ± 287 ms, respectively. Corresponding values of T2 were 102 ± 6 ms, 102 ± 6 ms, and 1584 ± 124 ms. T1 times in the calf muscle were measured to be 171 ± 11 ms and were 130 ± 5 ms in subcutaneous and bone marrow lipid. Corresponding T2 times were 39 ± 2 ms in muscle and 90 ± 13 ms in lipid. CONCLUSIONS For tissues except for CSF, the measured T1 times are much shorter than reported at higher fields and generally lie within the range of different models in the literature. As expected, T2 times are similar to those seen at typical clinical field strengths. Analysis of the relaxation maps indicates that segmentation of white and gray matter based purely on T1 or T2 will be quite challenging at low field given the relatively small difference in relaxation times.
Collapse
Affiliation(s)
- Thomas O'Reilly
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew G Webb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
23
|
Dang UJ, Ziemba M, Clemens PR, Hathout Y, Conklin LS, Hoffman EP. Serum biomarkers associated with baseline clinical severity in young steroid-naïve Duchenne muscular dystrophy boys. Hum Mol Genet 2021; 29:2481-2495. [PMID: 32592467 PMCID: PMC7471506 DOI: 10.1093/hmg/ddaa132] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin in muscle, and while all patients share the primary gene and biochemical defect, there is considerable patient–patient variability in clinical symptoms. We sought to develop multivariate models of serum protein biomarkers that explained observed variation, using functional outcome measures as proxies for severity. Serum samples from 39 steroid-naïve DMD boys 4 to <7 years enrolled into a clinical trial of vamorolone were studied (NCT02760264). Four assessments of gross motor function were carried out for each participant over a 6-week interval, and their mean was used as response for biomarker models. Weighted correlation network analysis was used for unsupervised clustering of 1305 proteins quantified using SOMAscan® aptamer profiling to define highly representative and connected proteins. Multivariate models of biomarkers were obtained for time to stand performance (strength phenotype; 17 proteins) and 6 min walk performance (endurance phenotype; 17 proteins) including some shared proteins. Identified proteins were tested with associations of mRNA expression with histological severity of muscle from dystrophinopathy patients (n = 28) and normal controls (n = 6). Strong associations predictive of both clinical and histological severity were found for ERBB4 (reductions in both blood and muscle with increasing severity), SOD1 (reductions in muscle and increases in blood with increasing severity) and CNTF (decreased levels in blood and muscle with increasing severity). We show that performance of DMD boys was effectively modeled with serum proteins, proximal strength associated with growth and remodeling pathways and muscle endurance centered on TGFβ and fibrosis pathways in muscle.
Collapse
Affiliation(s)
- Utkarsh J Dang
- Department of Health Outcomes and Administrative Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Michael Ziemba
- Department of Biomedical Engineering, Watson School of Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Paula R Clemens
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Veteran Affairs Medical Center, Pittsburgh, PA 15213, USA
| | - Yetrib Hathout
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | | | | | - Eric P Hoffman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, NY 13902, USA.,ReveraGen BioPharma, Rockville, MD 20850, USA
| |
Collapse
|
24
|
Batra A, Lott DJ, Willcocks R, Forbes SC, Triplett W, Dastgir J, Yun P, Reghan Foley A, Bönnemann CG, Vandenborne K, Walter GA. Lower Extremity Muscle Involvement in the Intermediate and Bethlem Myopathy Forms of COL6-Related Dystrophy and Duchenne Muscular Dystrophy: A Cross-Sectional Study. J Neuromuscul Dis 2021; 7:407-417. [PMID: 32538860 DOI: 10.3233/jnd-190457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Collagen VI-related dystrophies (COL6-RDs) and Duchenne muscular dystrophy (DMD) cause progressive muscle weakness and disability. COL6-RDs are caused by mutations in the COL6 genes (COL6A1, COL6A2 and COL6A3) encoding the extracellular matrix protein collagen VI, and DMD is caused by mutations in the DMD gene encoding the cytoplasmic protein dystrophin. Both COL6-RDs and DMD are characterized by infiltration of the muscles by fatty and fibrotic tissue. This study examined the effect of disease pathology on skeletal muscles in lower extremity muscles of COL6-RDs using timed functional tests, strength measures and qualitative/ quantitative magnetic resonance imaging/spectroscopy measures (MRI/MRS) in comparison to unaffected (control) individuals. Patients with COL6-RD were also compared to age and gender matched patients with DMD.Patients with COL6-RD presented with a typical pattern of fatty infiltration of the muscle giving rise to an apparent halo effect around the muscle, while patients with DMD had evidence of fatty infiltration throughout the muscle areas imaged. Quantitatively, fat fraction, and transverse relaxation time (T2) were elevated in both COL6-RD and DMD patients compared to unaffected (control) individuals. Patients with COL6-RD had widespread muscle atrophy, likely contributing to weakness. In contrast, patients with DMD revealed force deficits even in muscle groups with increased contractile areas.
Collapse
Affiliation(s)
- Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Rebecca Willcocks
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - William Triplett
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Jahannaz Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Pomi Yun
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
van de Velde NM, Hooijmans MT, Sardjoe Mishre ASD, Keene KR, Koeks Z, Veeger TTJ, Alleman I, van Zwet EW, Beenakker JWM, Verschuuren JJGM, Kan HE, Niks EH. Selection Approach to Identify the Optimal Biomarker Using Quantitative Muscle MRI and Functional Assessments in Becker Muscular Dystrophy. Neurology 2021; 97:e513-e522. [PMID: 34162720 PMCID: PMC8356376 DOI: 10.1212/wnl.0000000000012233] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To identify the best quantitative fat–water MRI biomarker for disease progression of leg muscles in Becker muscular dystrophy (BMD) by applying a stepwise approach based on standardized response mean (SRM) over 24 months, correlations with baseline ambulatory tests, and reproducibility. Methods Dixon fat–water imaging was performed at baseline (n = 24) and 24 months (n = 20). Fat fractions (FF) were calculated for 3 center slices and the whole muscles for 19 muscles and 6 muscle groups. Contractile cross-sectional area (cCSA) was obtained from the center slice. Functional assessments included knee extension and flexion force and 3 ambulatory tests (North Star Ambulatory Assessment [NSAA], 10-meter run, 6-minute walking test). MRI measures were selected using SRM (≥0.8) and correlation with all ambulatory tests (ρ ≤ −0.8). Measures were evaluated based on intraclass correlation coefficient (ICC) and SD of the difference. Sample sizes were calculated assuming 50% reduction in disease progression over 24 months in a clinical trial with 1:1 randomization. Results Median whole muscle FF increased between 0.2% and 2.6% without consistent cCSA changes. High SRMs and strong functional correlations were found for 8 FF but no cCSA measures. All measures showed excellent ICC (≥0.999) and similar SD of the interrater difference. Whole thigh 3 center slices FF was the best biomarker (SRM 1.04, correlations ρ ≤ −0.81, ICC 1.00, SD 0.23%, sample size 59) based on low SD and acquisition and analysis time. Conclusion In BMD, median FF of all muscles increased over 24 months. Whole thigh 3 center slices FF reduced the sample size by approximately 40% compared to NSAA.
Collapse
Affiliation(s)
- Nienke M van de Velde
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Melissa T Hooijmans
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Aashley S D Sardjoe Mishre
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Kevin R Keene
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Zaïda Koeks
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Thom T J Veeger
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Iris Alleman
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Erik W van Zwet
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Jan-Willem M Beenakker
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Jan J G M Verschuuren
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Hermien E Kan
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Erik H Niks
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands.
| |
Collapse
|
26
|
Sherlock SP, Zhang Y, Binks M, Marraffino S. Quantitative muscle MRI biomarkers in Duchenne muscular dystrophy: cross-sectional correlations with age and functional tests. Biomark Med 2021; 15:761-773. [PMID: 34155911 PMCID: PMC8253163 DOI: 10.2217/bmm-2020-0801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
Aim: Using baseline data from a clinical trial of domagrozumab in Duchenne muscular dystrophy, we evaluated the correlation between functional measures and quantitative MRI assessments of thigh muscle. Patients & methods: Analysis included timed functional tests, knee extension/strength and North Star Ambulatory Assessment. Patients (n = 120) underwent examinations of one thigh, with MRI sequences to enable measurements of muscle volume (MV), MV index, mean T2 relaxation time via T2-mapping and fat fraction. Results: MV was moderately correlated with strength assessments. MV index, fat fraction and T2-mapping measures had moderate correlations (r ∼ 0.5) to all functional tests, North Star Ambulatory Assessment and age. Conclusion: The moderate correlation between functional tests, age and baseline MRI measures supports MRI as a biomarker in Duchenne muscular dystrophy clinical trials. Trial registration: ClinicalTrials.gov, NCT02310763; registered 4 November 2014.
Collapse
Affiliation(s)
| | - Yao Zhang
- Pfizer Inc, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
27
|
Finkel RS, Finanger E, Vandenborne K, Sweeney HL, Tennekoon G, Shieh PB, Willcocks R, Walter G, Rooney WD, Forbes SC, Triplett WT, Yum SW, Mancini M, MacDougall J, Fretzen A, Bista P, Nichols A, Donovan JM. Disease-modifying effects of edasalonexent, an NF-κB inhibitor, in young boys with Duchenne muscular dystrophy: Results of the MoveDMD phase 2 and open label extension trial. Neuromuscul Disord 2021; 31:385-396. [PMID: 33678513 DOI: 10.1016/j.nmd.2021.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.
Collapse
Affiliation(s)
- Richard S Finkel
- St. Jude Children's Research Hospital, Memphis, TN and Nemours Children's Hospital, Orlando, FL, United States.
| | - Erika Finanger
- Oregon Health & Science University, Portland, OR, United States
| | | | - H Lee Sweeney
- University of Florida Health, Gainesville, FL, United States
| | - Gihan Tennekoon
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Perry B Shieh
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Glenn Walter
- University of Florida Health, Gainesville, FL, United States
| | | | - Sean C Forbes
- University of Florida Health, Gainesville, FL, United States
| | | | - Sabrina W Yum
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Mancini
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | | | | - Pradeep Bista
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | - Andrew Nichols
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | |
Collapse
|
28
|
Güttsches AK, Rehmann R, Schreiner A, Rohm M, Forsting J, Froeling M, Tegenthoff M, Vorgerd M, Schlaffke L. Quantitative Muscle-MRI Correlates with Histopathology in Skeletal Muscle Biopsies. J Neuromuscul Dis 2021; 8:669-678. [PMID: 33814461 DOI: 10.3233/jnd-210641] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Skeletal muscle biopsy is one of the gold standards in the diagnostic workup of muscle disorders. By histopathologic analysis, characteristic features like inflammatory cellular infiltrations, fat and collagen replacement of muscle tissue or structural defects of the myofibers can be detected. In the past years, novel quantitative MRI (qMRI) techniques have been developed to quantify tissue parameters, thus providing a non-invasive diagnostic tool in several myopathies. OBJECTIVE This proof-of-principle study was performed to validate the qMRI-techniques to skeletal muscle biopsy results. METHODS Ten patients who underwent skeletal muscle biopsy for diagnostic purposes were examined by qMRI. Fat fraction, water T2-time and diffusion parameters were measured in the muscle from which the biopsy was taken. The proportion of fat tissue, the severity of degenerative and inflammatory parameters and the amount of type 1- and type 2- muscle fibers were determined in all biopsy samples. The qMRI-data were then correlated to the histopathological findings. RESULTS The amount of fat tissue in skeletal muscle biopsy correlated significantly with the fat fraction derived from the Dixon sequence. The water T2-time, a parameter for tissue edema, correlated with the amount of vacuolar changes of myofibers and endomysial macrophages in the histopathologic analysis. No significant correlations were found for diffusion parameters. CONCLUSION In this proof-of-principle study, qMRI techniques were related to characteristic histopathologic features in neuromuscular disorders. The study provides the basis for further development of qMRI methods in the follow-up of patients with neuromuscular disorders, especially in the context of emerging treatment strategies.
Collapse
Affiliation(s)
- Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Martin Tegenthoff
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
29
|
Alic L, Griffin JF, Eresen A, Kornegay JN, Ji JX. Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: A systematic mapping review. Muscle Nerve 2021; 64:8-22. [PMID: 33269474 PMCID: PMC8247996 DOI: 10.1002/mus.27133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
There is a great demand for accurate non‐invasive measures to better define the natural history of disease progression or treatment outcome in Duchenne muscular dystrophy (DMD) and to facilitate the inclusion of a large range of participants in DMD clinical trials. This review aims to investigate which MRI sequences and analysis methods have been used and to identify future needs. Medline, Embase, Scopus, Web of Science, Inspec, and Compendex databases were searched up to 2 November 2019, using keywords “magnetic resonance imaging” and “Duchenne muscular dystrophy.” The review showed the trend of using T1w and T2w MRI images for semi‐qualitative inspection of structural alterations of DMD muscle using a diversity of grading scales, with increasing use of T2map, Dixon, and MR spectroscopy (MRS). High‐field (>3T) MRI dominated the studies with animal models. The quantitative MRI techniques have allowed a more precise estimation of local or generalized disease severity. Longitudinal studies assessing the effect of an intervention have also become more prominent, in both clinical and animal model subjects. Quality assessment of the included longitudinal studies was performed using the Newcastle‐Ottawa Quality Assessment Scale adapted to comprise bias in selection, comparability, exposure, and outcome. Additional large clinical trials are needed to consolidate research using MRI as a biomarker in DMD and to validate findings against established gold standards. This future work should use a multiparametric and quantitative MRI acquisition protocol, assess the repeatability of measurements, and correlate findings to histologic parameters.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Electrical & Computer Engineering, Texas A&M University, Doha, Qatar.,Magnetic Detection and Imaging group, Technical Medical Centre, University of Twente, The Netherlands
| | - John F Griffin
- College of Vet. Med. & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Joe N Kornegay
- College of Vet. Med. & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jim X Ji
- Department of Electrical & Computer Engineering, Texas A&M University, Doha, Qatar.,Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
30
|
Hooijmans MT, Froeling M, Koeks Z, Verschuuren JJ, Webb A, Niks EH, Kan HE. Multi-parametric MR in Becker muscular dystrophy patients. NMR IN BIOMEDICINE 2020; 33:e4385. [PMID: 32754921 PMCID: PMC7687231 DOI: 10.1002/nbm.4385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 05/14/2023]
Abstract
Quantitative MRI and MRS of muscle are increasingly being used to measure individual pathophysiological processes in Becker muscular dystrophy (BMD). In particular, muscle fat fraction was shown to be highly associated with functional tests in BMD. However, the muscle strength per unit of contractile cross-sectional area is lower in patients with BMD compared with healthy controls. This suggests that the quality of the non-fat-replaced (NFR) muscle tissue is lower than in healthy controls. Consequently, a measure that reflects changes in muscle tissue itself is needed. Here, we explore the potential of water T2 relaxation times, diffusion parameters and phosphorus metabolic indices as early disease markers in patients with BMD. For this purpose, we examined these measures in fat-replaced (FR) and NFR lower leg muscles in patients with BMD and compared these values with those in healthy controls. Quantitative proton MRI (three-point Dixon, multi-spin-echo and diffusion-weighted spin-echo echo planar imaging) and 2D chemical shift imaging 31 P MRS data were acquired in 24 patients with BMD (age 18.8-66.2 years) and 13 healthy controls (age 21.3-63.6 years). Muscle fat fractions, phosphorus metabolic indices, and averages and standard deviations (SDs) of the water T2 relaxation times and diffusion tensor imaging (DTI) parameters were assessed in six individual leg muscles. Phosphodiester levels were increased in the NFR and FR tibialis anterior, FR peroneus and FR gastrocnemius lateralis muscles. No clear pattern was visible for the other metabolic indices. Increased T2 SD was found in the majority of FR muscles compared with NFR and healthy control muscles. No differences in average water T2 relaxation times or DTI indices were found between groups. Overall, our results indicate that primarily muscles that are further along in the disease process showed increases in T2 heterogeneity and changes in some metabolic indices. No clear differences were found for the DTI indices between groups.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- C.J. Gorter Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Biomedical Engineering & PhysicsAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Martijn Froeling
- Department of RadiologyUtrecht University Medical CenterUtrechtThe Netherlands
| | - Zaida Koeks
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jan J.G.M. Verschuuren
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Andrew Webb
- C.J. Gorter Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik H. Niks
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Hermien E. Kan
- C.J. Gorter Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| |
Collapse
|
31
|
Hu X, Pickle NT, Grabowski AM, Silverman AK, Blemker SS. Muscle Eccentric Contractions Increase in Downhill and High-Grade Uphill Walking. Front Bioeng Biotechnol 2020; 8:573666. [PMID: 33178672 PMCID: PMC7591807 DOI: 10.3389/fbioe.2020.573666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/21/2020] [Indexed: 01/26/2023] Open
Abstract
In Duchenne muscular dystrophy (DMD), one of the most severe and frequent genetic diseases in humans, dystrophic muscles are prone to damage caused by mechanical stresses during eccentric contractions. Eccentric contraction during walking on level ground likely contributes to the progression of degeneration in lower limb muscles. However, little is known about how the amount of muscle eccentric contractions is affected by uphill/downhill sloped walking, which is often encountered in patients’ daily lives and poses different biomechanical demands than level walking. By recreating the dynamic musculoskeletal simulations of downhill (−9°, −6°, and −3°), uphill (+3°, +6°, and +9°) and level walking (0°) from a published study of healthy participants, negative muscle mechanical work, as a measure of eccentric contraction, of 35 lower limb muscles was quantified and compared. Our results indicated that downhill walking overall induced more (32% at −9°, 19% at −6°, and 13% at −3°) eccentric contractions in lower limb muscles compared to level walking. In contrast, uphill walking led to eccentric contractions similar to level walking at low grades (+3° and +6°), but 17% more eccentric contraction at high grades (+9°). The changes of muscle eccentric contraction were largely predicted by the changes in both joint negative work and muscle coactivation in sloped walking. As muscle eccentric contractions play a critical role in the disease progression in DMD, this study provides an important baseline for future studies to safely improve rehabilitation strategies and exercise management for patients with DMD and other similar conditions.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Nathaniel T Pickle
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, United States
| | - Alena M Grabowski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States.,Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Denver, CO, United States
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, United States
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States.,Department of Orthopedic Surgery, University of Virginia, Charlottesville, VA, United States.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
32
|
Dahlqvist JR, Widholm P, Leinhard OD, Vissing J. MRI in Neuromuscular Diseases: An Emerging Diagnostic Tool and Biomarker for Prognosis and Efficacy. Ann Neurol 2020; 88:669-681. [PMID: 32495452 DOI: 10.1002/ana.25804] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
There is an unmet need to identify biomarkers sensitive to change in rare, slowly progressive neuromuscular diseases. Quantitative magnetic resonance imaging (MRI) of muscle may offer this opportunity, as it is noninvasive and can be carried out almost independent of patient cooperation and disease severity. Muscle fat content correlates with muscle function in neuromuscular diseases, and changes in fat content precede changes in function, which suggests that muscle MRI is a strong biomarker candidate to predict prognosis and treatment efficacy. In this paper, we review the evidence suggesting that muscle MRI may be an important biomarker for diagnosis and to monitor change in disease severity. ANN NEUROL 2020;88:669-681.
Collapse
Affiliation(s)
- Julia R Dahlqvist
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Per Widholm
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
33
|
Jacques MF, Onambele-Pearson GL, Reeves ND, Stebbings GK, Dawson EA, Stockley RC, Edwards B, Morse CI. 12-Month changes of muscle strength, body composition and physical activity in adults with dystrophinopathies. Disabil Rehabil 2020; 44:1847-1854. [PMID: 32853037 DOI: 10.1080/09638288.2020.1808087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE Muscular dystrophy (MD) is an umbrella term for muscle wasting conditions, for which longitudinal changes in function and body composition are well established in children with Duchenne (DMD), however, changes in adults with DMD and Beckers (BMD), respectively, remain poorly reported. This study aims to assess 12-month changes in lower-limb strength, muscle size, body composition and physical activity in adults with Muscular Dystrophy (MD). METHODS Adult males with Duchenne MD (DMD; N = 15) and Beckers MD (BMD; N = 12) were assessed at baseline and 12-months for body composition (Body fat and lean body mass (LBM)), Isometric maximal voluntary contraction (Knee-Extension (KEMVC) and Plantar-Flexion (PFMVC)) and physical activity (tri-axial accelerometry). RESULTS 12-Month change in strength was found as -19% (PFMVC) and -14% (KEMVC) in DMD. 12-Month change in strength in BMD, although non-significant, was explained by physical activity (R2=0.532-0.585). Changes in LBM (DMD) and body fat (BMD) were both masked by non-significant changes in body mass. DISCUSSION 12-Month changes in adults with DMD appear consistent with paediatric populations. Physical activity appears important for muscle function maintenance. Specific monitoring of body composition, and potential co-morbidities, within adults with MD is highlighted.Implications for rehabilitationQuantitative muscle strength assessment shows progressive muscle weakness in adults with Duchenne Muscular Dystrophy is comparable to paediatric reports (-14 to -19%).Physical activity should be encouraged in adults with Beckers Muscular Dystrophy, anything appears better than nothing.Body composition, rather than body mass, should be monitored closely to identify any increase in body fat.
Collapse
Affiliation(s)
- Matthew F Jacques
- Faculty of Science and Engineering, School of Healthcare Science, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - Gladys L Onambele-Pearson
- Faculty of Science and Engineering, School of Healthcare Science, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - Neil D Reeves
- Faculty of Science and Engineering, School of Healthcare Science, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - Georgina K Stebbings
- Faculty of Science and Engineering, School of Healthcare Science, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ellen A Dawson
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Rachel C Stockley
- School of Nursing, University of Central Lancashire, Preston, United Kingdom
| | - Bryn Edwards
- The Neuromuscular Centre, Winsford, Cheshire, United Kingdom
| | - Christopher I Morse
- Faculty of Science and Engineering, School of Healthcare Science, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
34
|
Senesac CR, Barnard AM, Lott DJ, Nair KS, Harrington AT, Willcocks RJ, Zilke KL, Rooney WD, Walter GA, Vandenborne K. Magnetic Resonance Imaging Studies in Duchenne Muscular Dystrophy: Linking Findings to the Physical Therapy Clinic. Phys Ther 2020; 100:2035-2048. [PMID: 32737968 PMCID: PMC7596892 DOI: 10.1093/ptj/pzaa140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle degenerative disorder that manifests in early childhood and results in progressive muscle weakness. Physical therapists have long been an important component of the multidisciplinary team caring for people with DMD, providing expertise in areas of disease assessment, contracture management, assistive device prescription, and exercise prescription. Over the last decade, magnetic resonance imaging of muscles in people with DMD has led to an improved understanding of the muscle pathology underlying the clinical manifestations of DMD. Findings from magnetic resonance imaging (MRI) studies in DMD, paired with the clinical expertise of physical therapists, can help guide research that leads to improved physical therapist care for this unique patient population. The 2 main goals of this perspective article are to (1) summarize muscle pathology and disease progression findings from qualitative and quantitative muscle MRI studies in DMD and (2) link MRI findings of muscle pathology to the clinical manifestations observed by physical therapists with discussion of any potential implications of MRI findings on physical therapy management.
Collapse
Affiliation(s)
| | | | | | - Kavya S Nair
- Department of Physical Therapy, University of Florida
| | - Ann T Harrington
- Center for Rehabilitation, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania
| | | | - Kirsten L Zilke
- Oregon Health & Science University, Shriners Hospitals for Children, Portland, Oregon
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida
| | | |
Collapse
|
35
|
Dahlqvist JR, Poulsen NS, Østergaard ST, Fornander F, de Stricker Borch J, Danielsen ER, Thomsen C, Vissing J. Evaluation of inflammatory lesions over 2 years in facioscapulohumeral muscular dystrophy. Neurology 2020; 95:e1211-e1221. [PMID: 32611642 DOI: 10.1212/wnl.0000000000010155] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/05/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We followed up patients with facioscapulohumeral muscular dystrophy (FSHD) with sequential examinations over 2 years to investigate whether inflammatory lesions always precede fat replacement, if inflammation can be resolved without muscle degeneration, and if inflammatory lesions in muscle are always followed by fat replacement. METHODS In this longitudinal study of 10 sequential MRI assessments over 2.5 years, we included 10 patients with FSHD. We used MRI with short TI inversion recovery to identify regions of interest (ROIs) with hyperintensities indicating muscle inflammation. Muscle T2 relaxation time mapping was used as a quantitative marker of muscle inflammation. Dixon sequences quantified muscle fat replacement. Ten healthy controls were examined with a magnetic resonance scan once for determination of normal values of T2 relaxation time. RESULTS We identified 68 ROIs with T2 elevation in the patients with FSHD. New ROIs with T2 elevation arising during the study had muscle fat content of 6.4% to 33.0% (n = 8) and 47.0% to 78.0% lesions that resolved (n = 6). ROIs with T2 elevation had a higher increase in muscle fat content from visits 1 to 10 (7.9 ± 7.9%) compared to ROIs with normal muscle T2 relaxation times (1.7 ± 2.6%; p < 0.0001). Severe T2 elevations were always followed by an accelerated replacement of muscle by fat. CONCLUSIONS Our results suggest that muscle inflammation starts in mildly affected muscles in FSHD, is related to a faster muscle degradation, and continues until the muscles are completely fat replaced. CLINICALTRIALSGOV IDENTIFIER NCT02159612.
Collapse
Affiliation(s)
- Julia R Dahlqvist
- From the Copenhagen Neuromuscular Center (J.R.D., N.S.P., S.T.Ø, F.F., J.d.S.B., J.V.), Section 3342, Department of Neurology, and Department of Radiology (C.T.), Rigshospitalet, Copenhagen University; and Department of Radiology (E.R.D., C.T.), Zealand University Hospital, Roskilde, Denmark.
| | - Nanna S Poulsen
- From the Copenhagen Neuromuscular Center (J.R.D., N.S.P., S.T.Ø, F.F., J.d.S.B., J.V.), Section 3342, Department of Neurology, and Department of Radiology (C.T.), Rigshospitalet, Copenhagen University; and Department of Radiology (E.R.D., C.T.), Zealand University Hospital, Roskilde, Denmark
| | - Sofie T Østergaard
- From the Copenhagen Neuromuscular Center (J.R.D., N.S.P., S.T.Ø, F.F., J.d.S.B., J.V.), Section 3342, Department of Neurology, and Department of Radiology (C.T.), Rigshospitalet, Copenhagen University; and Department of Radiology (E.R.D., C.T.), Zealand University Hospital, Roskilde, Denmark
| | - Freja Fornander
- From the Copenhagen Neuromuscular Center (J.R.D., N.S.P., S.T.Ø, F.F., J.d.S.B., J.V.), Section 3342, Department of Neurology, and Department of Radiology (C.T.), Rigshospitalet, Copenhagen University; and Department of Radiology (E.R.D., C.T.), Zealand University Hospital, Roskilde, Denmark
| | - Josefine de Stricker Borch
- From the Copenhagen Neuromuscular Center (J.R.D., N.S.P., S.T.Ø, F.F., J.d.S.B., J.V.), Section 3342, Department of Neurology, and Department of Radiology (C.T.), Rigshospitalet, Copenhagen University; and Department of Radiology (E.R.D., C.T.), Zealand University Hospital, Roskilde, Denmark
| | - Else R Danielsen
- From the Copenhagen Neuromuscular Center (J.R.D., N.S.P., S.T.Ø, F.F., J.d.S.B., J.V.), Section 3342, Department of Neurology, and Department of Radiology (C.T.), Rigshospitalet, Copenhagen University; and Department of Radiology (E.R.D., C.T.), Zealand University Hospital, Roskilde, Denmark
| | - Carsten Thomsen
- From the Copenhagen Neuromuscular Center (J.R.D., N.S.P., S.T.Ø, F.F., J.d.S.B., J.V.), Section 3342, Department of Neurology, and Department of Radiology (C.T.), Rigshospitalet, Copenhagen University; and Department of Radiology (E.R.D., C.T.), Zealand University Hospital, Roskilde, Denmark
| | - John Vissing
- From the Copenhagen Neuromuscular Center (J.R.D., N.S.P., S.T.Ø, F.F., J.d.S.B., J.V.), Section 3342, Department of Neurology, and Department of Radiology (C.T.), Rigshospitalet, Copenhagen University; and Department of Radiology (E.R.D., C.T.), Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
36
|
Keene KR, Beenakker JWM, Hooijmans MT, Naarding KJ, Niks EH, Otto LAM, van der Pol WL, Tannemaat MR, Kan HE, Froeling M. T 2 relaxation-time mapping in healthy and diseased skeletal muscle using extended phase graph algorithms. Magn Reson Med 2020; 84:2656-2670. [PMID: 32306450 PMCID: PMC7496817 DOI: 10.1002/mrm.28290] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Multi-echo spin-echo (MSE) transverse relaxometry mapping using multi-component models is used to study disease activity in neuromuscular disease by assessing the T2 of the myocytic component (T2water ). Current extended phase graph algorithms are not optimized for fat fractions above 50% and the effects of inaccuracies in the T2fat calibration remain unexplored. Hence, we aimed to improve the performance of extended phase graph fitting methods over a large range of fat fractions, by including the slice-selection flip angle profile, a through-plane chemical-shift displacement correction, and optimized calibration of T2fat . METHODS Simulation experiments were used to study the influence of the slice flip-angle profile with chemical-shift and T2fat estimations. Next, in vivo data from four neuromuscular disease cohorts were studied for different T2fat calibration methods and T2water estimations. RESULTS Excluding slice flip-angle profiles or chemical-shift displacement resulted in a bias in T2water up to 10 ms. Furthermore, a wrongly calibrated T2fat caused a bias of up to 4 ms in T2water . For the in vivo data, one-component calibration led to a lower T2fat compared with a two-component method, and T2water decreased with increasing fat fractions. CONCLUSION In vivo data showed a decline in T2water for increasing fat fractions, which has important implications for clinical studies, especially in multicenter settings. We recommend using an extended phase graph-based model for fitting T2water from MSE sequences with two-component T2fat calibration. Moreover, we recommend including the slice flip-angle profile in the model with correction for through-plane chemical-shift displacements.
Collapse
Affiliation(s)
- Kevin R Keene
- C.J. Gorter center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan-Willem M Beenakker
- C.J. Gorter center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Karin J Naarding
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center Netherlands, the Netherlands
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center Netherlands, the Netherlands
| | - Louise A M Otto
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - W Ludo van der Pol
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hermien E Kan
- C.J. Gorter center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center Netherlands, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
37
|
Barnard AM, Willcocks RJ, Triplett WT, Forbes SC, Daniels MJ, Chakraborty S, Lott DJ, Senesac CR, Finanger EL, Harrington AT, Tennekoon G, Arora H, Wang DJ, Sweeney HL, Rooney WD, Walter GA, Vandenborne K. MR biomarkers predict clinical function in Duchenne muscular dystrophy. Neurology 2020; 94:e897-e909. [PMID: 32024675 PMCID: PMC7238941 DOI: 10.1212/wnl.0000000000009012] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the potential of lower extremity magnetic resonance (MR) biomarkers to serve as endpoints in clinical trials of therapeutics for Duchenne muscular dystrophy (DMD) by characterizing the longitudinal progression of MR biomarkers over 48 months and assessing their relationship to changes in ambulatory clinical function. METHODS One hundred sixty participants with DMD were enrolled in this longitudinal, natural history study and underwent MR data acquisition of the lower extremity muscles to determine muscle fat fraction (FF) and MRI T2 biomarkers of disease progression. In addition, 4 tests of ambulatory function were performed. Participants returned for follow-up data collection at 12, 24, 36, and 48 months. RESULTS Longitudinal analysis of the MR biomarkers revealed that vastus lateralis FF, vastus lateralis MRI T2, and biceps femoris long head MRI T2 biomarkers were the fastest progressing biomarkers over time in this primarily ambulatory cohort. Biomarker values tended to demonstrate a nonlinear, sigmoidal trajectory over time. The lower extremity biomarkers predicted functional performance 12 and 24 months later, and the magnitude of change in an MR biomarker over time was related to the magnitude of change in function. Vastus lateralis FF, soleus FF, vastus lateralis MRI T2, and biceps femoris long head MRI T2 were the strongest predictors of future loss of function, including loss of ambulation. CONCLUSIONS This study supports the strong relationship between lower extremity MR biomarkers and measures of clinical function, as well as the ability of MR biomarkers, particularly those from proximal muscles, to predict future ambulatory function and important clinical milestones. CLINICALTRIALSGOV IDENTIFIER NCT01484678.
Collapse
Affiliation(s)
- Alison M Barnard
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Rebecca J Willcocks
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - William T Triplett
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Sean C Forbes
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Michael J Daniels
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Saptarshi Chakraborty
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Donovan J Lott
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Claudia R Senesac
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Erika L Finanger
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Ann T Harrington
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Gihan Tennekoon
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Harneet Arora
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Dah-Jyuu Wang
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - H Lee Sweeney
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - William D Rooney
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Glenn A Walter
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Krista Vandenborne
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA.
| |
Collapse
|
38
|
Ansari B, Salort-Campana E, Ogier A, Le Troter PhD A, De Sainte Marie B, Guye M, Delmont E, Grapperon AM, Verschueren A, Bendahan D, Attarian S. Quantitative muscle MRI study of patients with sporadic inclusion body myositis. Muscle Nerve 2020; 61:496-503. [PMID: 31953869 DOI: 10.1002/mus.26813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Fat infiltration in individual muscles of sporadic inclusion body myositis (sIBM) patients has rarely been assessed. METHODS Sixteen sIBM patients were assessed using MRI of the thighs and lower legs (LL). The severity of fat infiltration, proximal-to-distal and side asymmetries, and the correlations with clinical and functional parameters were investigated. RESULTS All the patients had fat-infiltrated muscles, and thighs were more severely affected than LL. A proximal-to-distal gradient of fat infiltration was mainly observed for adductors, quadriceps, sartorius, and medial gastrocnemius muscles. A strong negative correlation was observed between the whole muscle fat fraction in the thighs and LL and the Inclusion Body Myositis Functional Rating Scale and Medical Research Council scores for the lower limbs. CONCLUSIONS Fat infiltration in individual muscles of sIBM patients is heterogeneous in terms of proximal-to-distal gradient and severity was correlated with clinical scores. These results should be considered for both natural history investigation and clinical trials.
Collapse
Affiliation(s)
- Behnaz Ansari
- Centre de référence PACA Réunion Rhône Alpes, La Timone University Hospital, Aix-Marseille University, Marseille.,Aix-Marseille University, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS, Marseille, France.,Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emmanuelle Salort-Campana
- Centre de référence PACA Réunion Rhône Alpes, La Timone University Hospital, Aix-Marseille University, Marseille.,INSERM, GMGF, Aix Marseille University, Marseille, France.,FILNEMUS
| | - Augustin Ogier
- Aix-Marseille University, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS, Marseille, France
| | - Arnaud Le Troter PhD
- Aix-Marseille University, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS, Marseille, France
| | - Benjamin De Sainte Marie
- Centre de référence PACA Réunion Rhône Alpes, La Timone University Hospital, Aix-Marseille University, Marseille
| | - Maxime Guye
- Aix-Marseille University, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS, Marseille, France
| | - Emilien Delmont
- Centre de référence PACA Réunion Rhône Alpes, La Timone University Hospital, Aix-Marseille University, Marseille.,FILNEMUS
| | - Aude-Marie Grapperon
- Centre de référence PACA Réunion Rhône Alpes, La Timone University Hospital, Aix-Marseille University, Marseille.,FILNEMUS
| | - Annie Verschueren
- Centre de référence PACA Réunion Rhône Alpes, La Timone University Hospital, Aix-Marseille University, Marseille.,FILNEMUS
| | - David Bendahan
- Aix-Marseille University, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS, Marseille, France
| | - Shahram Attarian
- Centre de référence PACA Réunion Rhône Alpes, La Timone University Hospital, Aix-Marseille University, Marseille.,INSERM, GMGF, Aix Marseille University, Marseille, France.,FILNEMUS
| |
Collapse
|
39
|
An J, Xie Z, Jia F, Wang Z, Yuan Y, Zhang J, Fang J. Quantitative coordination evaluation for screening children with Duchenne muscular dystrophy. CHAOS (WOODBURY, N.Y.) 2020; 30:023116. [PMID: 32113230 DOI: 10.1063/1.5126116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
As the potential for a treatment of Duchenne muscular dystrophy (DMD) grows, the need for methods for the early diagnosis of DMD becomes more and more important. Clinical experiences suggest that children with DMD will show some lack of motor ability in the early stage when compared with children at the same age, especially in balance and coordination abilities. Is it possible to quantify the coordination differences between DMD and typically developing (TD) children to achieve the goal of screening for DMD diseases? In this study, we introduced a Local Manifold Structure Mapping approach in phase space and extracted a novel index, relative coupling coefficient (RCC), from gait pattern signals, which were acquired by wearable accelerometers to evaluate the coordination of children with DMD during a walking task. Furthermore, we compared the RCC of 100 children with DMD and 100 TD children in four different age groups and verified the feasibility and reliability of the proposed indices to distinguish children with TD from DMD. T-test results show that, for all age groups, children of the same age with DMD and TD show significant differences in RCC (p < 0.001). Moreover, RCC comprehensively reflects that the coordination ability of DMD patients under walking tasks gradually decreases with age, which is consistent with clinical experience. As a functional biomarker extracted in the phase space of the gait data, the proposed coupling degree index RCC could sensitively distinguish between DMD and TD children at the same age and provide alternative insights and potentially valuable tools for the screening of DMD.
Collapse
Affiliation(s)
- Jian An
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Fan Jia
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jue Zhang
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Fang
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Timpani CA, Goodman CA, Stathis CG, White JD, Mamchaoui K, Butler-Browne G, Gueven N, Hayes A, Rybalka E. Adenylosuccinic acid therapy ameliorates murine Duchenne Muscular Dystrophy. Sci Rep 2020; 10:1125. [PMID: 31980663 PMCID: PMC6981178 DOI: 10.1038/s41598-020-57610-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Arising from the ablation of the cytoskeletal protein dystrophin, Duchenne Muscular Dystrophy (DMD) is a debilitating and fatal skeletal muscle wasting disease underpinned by metabolic insufficiency. The inability to facilitate adequate energy production may impede calcium (Ca2+) buffering within, and the regenerative capacity of, dystrophic muscle. Therefore, increasing the metabogenic potential could represent an effective treatment avenue. The aim of our study was to determine the efficacy of adenylosuccinic acid (ASA), a purine nucleotide cycle metabolite, to stimulate metabolism and buffer skeletal muscle damage in the mdx mouse model of DMD. Dystrophin-positive control (C57BL/10) and dystrophin-deficient mdx mice were treated with ASA (3000 µg.mL−1) in drinking water. Following the 8-week treatment period, metabolism, mitochondrial density, viability and superoxide (O2−) production, as well as skeletal muscle histopathology, were assessed. ASA treatment significantly improved the histopathological features of murine DMD by reducing damage area, the number of centronucleated fibres, lipid accumulation, connective tissue infiltration and Ca2+ content of mdx tibialis anterior. These effects were independent of upregulated utrophin expression in the tibialis anterior. ASA treatment also increased mitochondrial viability in mdx flexor digitorum brevis fibres and concomitantly reduced O2− production, an effect that was also observed in cultured immortalised human DMD myoblasts. Our data indicates that ASA has a protective effect on mdx skeletal muscles.
Collapse
Affiliation(s)
- Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia
| | - Craig A Goodman
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia
| | - Christos G Stathis
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Jason D White
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Kamel Mamchaoui
- Institut de Myologie, Sorbonne University, INSERM UMRS974, Paris, France
| | | | - Nuri Gueven
- Pharmacy, School of Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia.,Department of Medicine-Western Health, The University of Melbourne, St Albans, Victoria, 3021, Australia
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia. .,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia.
| |
Collapse
|
41
|
Finanger E, Vandenborne K, Finkel RS, Lee Sweeney H, Tennekoon G, Yum S, Mancini M, Bista P, Nichols A, Liu H, Fretzen A, Donovan JM. Phase 1 Study of Edasalonexent (CAT-1004), an Oral NF-κB Inhibitor, in Pediatric Patients with Duchenne Muscular Dystrophy. J Neuromuscul Dis 2020; 6:43-54. [PMID: 30452422 PMCID: PMC6398836 DOI: 10.3233/jnd-180341] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Edasalonexent is an orally administered small molecule designed to inhibit NF-κB, which is activated from infancy in Duchenne muscular dystrophy and is central to causing muscle damage and preventing muscle regeneration. Objective: Evaluate the safety, tolerability, pharmacokinetics and exploratory pharmacodynamics of three doses of edasalonexent in ambulatory males ≥4 to <8 years of age with genetically confirmed Duchenne muscular dystrophy. Methods: This was a 1-week, open-label, multiple-dose study with 3 sequential ascending doses (33, 67 and 100 mg/kg/day) of edasalonexent administered under different dietary conditions to 17 males with a mean age of 5.5 years. Results: All doses of edasalonexent were well tolerated, with no serious adverse events, no drug discontinuations and no dose reductions. The majority of adverse events were mild, and the most common adverse events were gastrointestinal (primarily diarrhea). Edasalonexent was rapidly absorbed with peak levels observed 2–6 hours after dosing and exposures appeared to increase nearly proportionally to dose for the 2 lower and all 3 doses under low-fat and high-fat meal conditions, respectively. Only minor plasma accumulation of edasalonexent was observed with 7 days of dosing. After treatment with edasalonexent for 7 days, levels of NF-κB-regulated genes and serum proteins were decreased. Conclusions: This first report of edasalonexent oral administration for one week in male pediatric patients with Duchenne muscular dystrophy showed that treatment was well tolerated and inhibited NF-kB pathways.
Collapse
Affiliation(s)
- Erika Finanger
- Oregon Health Sciences University Pediatrics, Portland, OR, USA
| | | | - Richard S Finkel
- Nemours Children's Hospital, Division of Pediatric Neurology, Orlando, FL, USA
| | - H Lee Sweeney
- University of Florida Health Myology Institute, Gainesville, FL, USA
| | - Gihan Tennekoon
- Children's Hospital of Philadelphia Pediatric Neurology, Philadelphia, PA, USA
| | - Sabrina Yum
- Children's Hospital of Philadelphia Pediatric Neurology, Philadelphia, PA, USA
| | | | | | | | - Hanlan Liu
- Catabasis Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
42
|
Chrzanowski SM, Darras BT, Rutkove SB. The Value of Imaging and Composition-Based Biomarkers in Duchenne Muscular Dystrophy Clinical Trials. Neurotherapeutics 2020; 17:142-152. [PMID: 31879850 PMCID: PMC7007477 DOI: 10.1007/s13311-019-00825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the drug development pipeline for Duchenne muscular dystrophy (DMD) rapidly advances, clinical trial outcomes need to be optimized. Effective assessment of disease burden, natural history progression, and response to therapy in clinical trials for Duchenne muscular dystrophy are critical factors for clinical trial success. By choosing optimal biomarkers to better assess therapeutic efficacy, study costs and sample size requirements can be reduced. Currently, functional measures continue to serve as the primary outcome for the majority of DMD clinical trials. Quantitative measures of muscle health, including magnetic resonance imaging and spectroscopy, electrical impedance myography, and ultrasound, sensitively identify diseased muscle, disease progression, and response to a therapeutic intervention. Furthermore, such non-invasive techniques have the potential to identify disease pathology prior to onset of clinical symptoms. Despite robust supportive evidence, non-invasive quantitative techniques are still not frequently utilized in clinical trials for Duchenne muscular dystrophy. Non-invasive quantitative techniques have demonstrated the ability to quantify disease progression and potential response to therapeutic intervention, and should be used as a supplement to current standard functional measures. Such methods have the potential to significantly accelerate the development and approval of therapies for DMD.
Collapse
Affiliation(s)
- Stephen M Chrzanowski
- Department of Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
43
|
Ropars J, Gravot F, Ben Salem D, Rousseau F, Brochard S, Pons C. Muscle MRI: A biomarker of disease severity in Duchenne muscular dystrophy? A systematic review. Neurology 2019; 94:117-133. [PMID: 31892637 DOI: 10.1212/wnl.0000000000008811] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To assess the evidence of a relationship between muscle MRI and disease severity in Duchenne muscular dystrophy (DMD). METHODS We conducted a systematic review of studies that analyzed correlations between MRI measurements and motor function in patients with DMD. PubMed, Cochrane, Scopus, and Web of Science were searched using relevant keywords and inclusion/exclusion criteria (January 1, 1990-January 31, 2019). We evaluated article quality using the Joanna Briggs Institute scale. Information regarding the samples included, muscles evaluated, MRI protocols and motor function tests used was collected from each article. Correlations between MRI measurements and motor function were reported exhaustively. RESULTS Seventeen of 1,629 studies identified were included. Most patients included were ambulant with a mean age of 8.9 years. Most studies evaluated lower limb muscles. Moderate to excellent correlations were found between MRI measurements and motor function. The strongest correlations were found for quantitative MRI measurements such as fat fraction or mean T2. Correlations were stronger for lower leg muscles such as soleus. One longitudinal study reported that changes in soleus mean T2 were highly correlated with changes in motor function. CONCLUSION The findings of this systematic review showed that MRI measurements can be used as biomarkers of disease severity in ambulant patients with DMD. Guidelines are proposed to help clinicians choose the most appropriate MRI measurements and muscles to evaluate. Studies exploring upper limb muscles, other stages of the disease, and sensitivity of measurements to change are needed.
Collapse
Affiliation(s)
- Juliette Ropars
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France.
| | - France Gravot
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Douraied Ben Salem
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - François Rousseau
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Sylvain Brochard
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Christelle Pons
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| |
Collapse
|
44
|
Muntoni F, Domingos J, Manzur AY, Mayhew A, Guglieri M, Sajeev G, Signorovitch J, Ward SJ. Categorising trajectories and individual item changes of the North Star Ambulatory Assessment in patients with Duchenne muscular dystrophy. PLoS One 2019; 14:e0221097. [PMID: 31479456 PMCID: PMC6719875 DOI: 10.1371/journal.pone.0221097] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/30/2019] [Indexed: 01/16/2023] Open
Abstract
Functional variability among boys with Duchenne muscular dystrophy (DMD) is well recognised and complicates interpretation of clinical studies. We hypothesised that boys with DMD could be clustered into groups sharing similar trajectories of ambulatory function over time, as measured by the North Star Ambulatory Assessment (NSAA) total score. We also explored associations with other variables such as age, functional abilities, and genotype. Using the NorthStar Clinical Network database, 395 patients with >1 NSAA assessment were identified. We utilised latent class trajectory analysis of longitudinal NSAA scores, which produced evidence for at least four clusters of boys sharing similar trajectories versus age in decreasing order of clinical severity: 25% of the boys were in cluster 1 (NSAA falling to ≤ 5 at age ~10y), 35% were in cluster 2 (NSAA ≤ 5 ~12y), 21% in were cluster 3 (NSAA≤ 5 ~14y), and 19% in cluster 4 (NSAA > 5 up to 15y). Mean ages at diagnosis of DMD were similar across clusters (4.2, 3.9, 4.3, and 4.8y, respectively). However, at the first NSAA assessment, a significant (p<0.05) association was observed between earlier declining clusters and younger age, worse NSAA, slower rise from supine, slower 10 metre walk/run times, and younger age of steroid initiation. In order to assess the probability of observing complete loss of function for individual NSAA items, we examined the proportion of patients who shifted from a score of 1 or 2 at baseline to a score of 0. We also assessed the probability of gain of function using the inverse assessment and stratified the probability of deterioration, improvement-or static behavior-by age ranges and using baseline functional status. Using this tool, our study provides a comprehensive assessment of the NSAA in a large population of patients with DMD and, for the first time, describes discrete clusters of disease progression; this will be invaluable for future DMD clinical trial design and interpretation of findings.
Collapse
Affiliation(s)
- Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- * E-mail:
| | - Joana Domingos
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom
| | - Adnan Y. Manzur
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom
| | - Anna Mayhew
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle, United Kingdom
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle, United Kingdom
| | | | - Gautam Sajeev
- Collaborative Trajectory Analysis Project, Cambridge, Massachusetts, United States of America
- Analysis Group Inc., Boston, Massachusetts, United States of America
| | - James Signorovitch
- Collaborative Trajectory Analysis Project, Cambridge, Massachusetts, United States of America
- Analysis Group Inc., Boston, Massachusetts, United States of America
| | - Susan J. Ward
- Collaborative Trajectory Analysis Project, Cambridge, Massachusetts, United States of America
| |
Collapse
|
45
|
Schlaffke L, Rehmann R, Rohm M, Otto LAM, de Luca A, Burakiewicz J, Baligand C, Monte J, den Harder C, Hooijmans MT, Nederveen A, Schlaeger S, Weidlich D, Karampinos DC, Stouge A, Vaeggemose M, D'Angelo MG, Arrigoni F, Kan HE, Froeling M. Multi-center evaluation of stability and reproducibility of quantitative MRI measures in healthy calf muscles. NMR IN BIOMEDICINE 2019; 32:e4119. [PMID: 31313867 DOI: 10.1002/nbm.4119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 05/18/2023]
Abstract
The purpose of this study was to evaluate temporal stability, multi-center reproducibility and the influence of covariates on a multimodal MR protocol for quantitative muscle imaging and to facilitate its use as a standardized protocol for evaluation of pathology in skeletal muscle. Quantitative T2, quantitative diffusion and four-point Dixon acquisitions of the calf muscles of both legs were repeated within one hour. Sixty-five healthy volunteers (31 females) were included in one of eight 3-T MR systems. Five traveling subjects were examined in six MR scanners. Average values over all slices of water-T2 relaxation time, proton density fat fraction (PDFF) and diffusion metrics were determined for seven muscles. Temporal stability was tested with repeated measured ANOVA and two-way random intraclass correlation coefficient (ICC). Multi-center reproducibility of traveling volunteers was assessed by a two-way mixed ICC. The factors age, body mass index, gender and muscle were tested for covariance. ICCs of temporal stability were between 0.963 and 0.999 for all parameters. Water-T2 relaxation decreased significantly (P < 10-3 ) within one hour by ~ 1 ms. Multi-center reproducibility showed ICCs within 0.879-0.917 with the lowest ICC for mean diffusivity. Different muscles showed the highest covariance, explaining 20-40% of variance for observed parameters. Standardized acquisition and processing of quantitative muscle MRI data resulted in high comparability among centers. The imaging protocol exhibited high temporal stability over one hour except for water T2 relaxation times. These results show that data pooling is feasible and enables assembling data from patients with neuromuscular diseases, paving the way towards larger studies of rare muscle disorders.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Louise A M Otto
- Brain Centre Rudolf Magnus, Department of Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alberto de Luca
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jedrzej Burakiewicz
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Celine Baligand
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jithsa Monte
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Chiel den Harder
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Melissa T Hooijmans
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Anders Stouge
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Hermien E Kan
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
46
|
Eresen A, Hafsa NE, Alic L, Birch SM, Griffin JF, Kornegay JN, Ji JX. Muscle percentage index as a marker of disease severity in golden retriever muscular dystrophy. Muscle Nerve 2019; 60:621-628. [PMID: 31397906 DOI: 10.1002/mus.26657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Golden retriever muscular dystrophy (GRMD) is a spontaneous X-linked canine model of Duchenne muscular dystrophy that resembles the human condition. Muscle percentage index (MPI) is proposed as an imaging biomarker of disease severity in GRMD. METHODS To assess MPI, we used MRI data acquired from nine GRMD samples using a 4.7 T small-bore scanner. A machine learning approach was used with eight raw quantitative mapping of MRI data images (T1m, T2m, two Dixon maps, and four diffusion tensor imaging maps), three types of texture descriptors (local binary pattern, gray-level co-occurrence matrix, gray-level run-length matrix), and a gradient descriptor (histogram of oriented gradients). RESULTS The confusion matrix, averaged over all samples, showed 93.5% of muscle pixels classified correctly. The classification, optimized in a leave-one-out cross-validation, provided an average accuracy of 80% with a discrepancy in overestimation for young (8%) and old (20%) dogs. DISCUSSION MPI could be useful for quantifying GRMD severity, but careful interpretation is needed for severe cases.
Collapse
Affiliation(s)
- Aydin Eresen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Noor E Hafsa
- Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar
| | - Lejla Alic
- Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar.,Magnetic Detection & Imaging Group, Faculty of Science & Technology, University of Twente, Enschede, The Netherlands
| | - Sharla M Birch
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - John F Griffin
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Joe N Kornegay
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jim X Ji
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas.,Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar
| |
Collapse
|
47
|
Two-Year Longitudinal Changes in Lower Limb Strength and Its Relation to Loss in Function in a Large Cohort of Patients With Duchenne Muscular Dystrophy. Am J Phys Med Rehabil 2019; 97:734-740. [PMID: 29734234 DOI: 10.1097/phm.0000000000000957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The main objective of this study was to examine the effect of disease on strength in two functionally important lower limb muscles for a period of 2 yrs in children with Duchene muscular dystrophy. DESIGN Seventy-seven Duchene muscular dystrophy children participated in this study. Plantar flexors, knee extensors, strength, and performance on timed tests (6-min walk, 4-stairs, 10-m walk, supine-up) were assessed yearly for 2 yrs. Multivariate normal regression was used to assess changes in strength over time in the Duchene muscular dystrophy group. Spearman correlations were computed to examine relationship between strength and function. RESULTS Normalized plantar flexor and knee extensor strength showed a significant decrease (P < 0.05) over 2 yrs, with larger declines in knee extensor. At baseline, knee extensor strongly correlated with performance on timed tests. However, plantar flexor strength was found to be a stronger predictor of loss in ambulatory function. Modest correlations (r = 0.19-0.34) were found between the decline in strength and functional performance over 2 yrs. CONCLUSIONS This study describes the loss of lower limb strength in a large cohort of Duchene muscular dystrophy children for 2 yrs. The findings support that lower limb strength alone cannot account for the decline in performance on functional tests, and the role of other contributing factors, such as compensatory strategies, should be considered.
Collapse
|
48
|
Wang LH, Friedman SD, Shaw D, Snider L, Wong CJ, Budech CB, Poliachik SL, Gove NE, Lewis LM, Campbell AE, Lemmers RJFL, Maarel SM, Tapscott SJ, Tawil RN. MRI-informed muscle biopsies correlate MRI with pathology and DUX4 target gene expression in FSHD. Hum Mol Genet 2019; 28:476-486. [PMID: 30312408 DOI: 10.1093/hmg/ddy364] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/09/2018] [Indexed: 02/01/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common, dominantly inherited disease caused by the epigenetic de-repression of the DUX4 gene, a transcription factor normally repressed in skeletal muscle. As targeted therapies are now possible in FSHD, a better understanding of the relationship between DUX4 activity, muscle pathology and muscle magnetic resonance imaging (MRI) changes is crucial both to understand disease mechanisms and for the design of future clinical trials. Here, we performed MRIs of the lower extremities in 36 individuals with FSHD, followed by needle muscle biopsies in safely accessible muscles. We examined the correlation between MRI characteristics, muscle pathology and expression of DUX4 target genes. Results show that the presence of elevated MRI short tau inversion recovery signal has substantial predictive value in identifying muscles with active disease as determined by histopathology and DUX4 target gene expression. In addition, DUX4 target gene expression was detected only in FSHD-affected muscles and not in control muscles. These results support the use of MRI to identify FSHD muscles most likely to have active disease and higher levels of DUX4 target gene expression and might be useful in early phase therapeutic trials to demonstrate target engagement in therapies aiming to suppress DUX4 expression.
Collapse
Affiliation(s)
- Leo H Wang
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Seth D Friedman
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Dennis Shaw
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA.,Department of Radiology, University of Washington, Seattle, WA, USA
| | - Lauren Snider
- Human Biology Division, Fred Hutchinson Research Center, Seattle, WA, USA
| | - Chao-Jen Wong
- Human Biology Division, Fred Hutchinson Research Center, Seattle, WA, USA
| | - Chris B Budech
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | | | - Nancy E Gove
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Leann M Lewis
- Neuromuscular Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Amy E Campbell
- Human Biology Division, Fred Hutchinson Research Center, Seattle, WA, USA
| | - Richard J F L Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Silvère M Maarel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Research Center, Seattle, WA, USA
| | - Rabi N Tawil
- Neuromuscular Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
49
|
Leung DG. Advancements in magnetic resonance imaging-based biomarkers for muscular dystrophy. Muscle Nerve 2019; 60:347-360. [PMID: 31026060 DOI: 10.1002/mus.26497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Recent years have seen steady progress in the identification of genetic muscle diseases as well as efforts to develop treatment for these diseases. Consequently, sensitive and objective new methods are required to identify and monitor muscle pathology. Magnetic resonance imaging offers multiple potential biomarkers of disease severity in the muscular dystrophies. This Review uses a pathology-based approach to examine the ways in which MRI and spectroscopy have been used to study muscular dystrophies. Methods that have been used to quantitate intramuscular fat, edema, fiber orientation, metabolism, fibrosis, and vascular perfusion are examined, and this Review describes how MRI can help diagnose these conditions and improve upon existing muscle biomarkers by detecting small increments of disease-related change. Important challenges in the implementation of imaging biomarkers, such as standardization of protocols and validating imaging measurements with respect to clinical outcomes, are also described.
Collapse
Affiliation(s)
- Doris G Leung
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, 716 North Broadway, Room 411, Baltimore, Maryland, 21205.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Lee-McMullen B, Chrzanowski SM, Vohra R, Forbes S, Vandenborne K, Edison AS, Walter GA. Age-dependent changes in metabolite profile and lipid saturation in dystrophic mice. NMR IN BIOMEDICINE 2019; 32:e4075. [PMID: 30848538 PMCID: PMC6777843 DOI: 10.1002/nbm.4075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 11/20/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal X-linked genetic disorder. In DMD, the absence of the dystrophin protein causes decreased sarcolemmal integrity resulting in progressive replacement of muscle with fibrofatty tissue. The effects of lacking dystrophin on muscle and systemic metabolism are still unclear. Therefore, to determine the impact of the absence of dystrophin on metabolism, we investigated the metabolic and lipid profile at two different, well-defined stages of muscle damage and stabilization in mdx mice. We measured NMR-detectable metabolite and lipid profiles in the serum and muscles of mdx mice at 6 and 24 weeks of age. Metabolites were determined in muscle in vivo using 1 H MRI/MRS, in isolated muscles using 1 H-HR-MAS NMR, and in serum using high resolution 1 H/13 C NMR. Dystrophic mice were found to have a unique lipid saturation profile compared with control mice, revealing an age-related metabolic change. In the 6-week-old mdx mice, serum lipids were increased and the degree of lipid saturation changed between 6 and 24 weeks. The serum taurine-creatine ratio increased over the life span of mdx, but not in control mice. Furthermore, the saturation index of lipids increased in the serum but decreased in the tissue over time. Finally, we demonstrated associations between MRI-T2 , a strong indicator of inflammation/edema, with tissue and serum lipid profiles. These results indicate the complex temporal changes of metabolites in the tissue and serum during repetitive bouts of muscle damage and regeneration that occur in dystrophic muscle.
Collapse
Affiliation(s)
- Brittany Lee-McMullen
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
- Department of Biochemistry and Molecular Biology, Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, USA
| | | | - Ravneet Vohra
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Sean Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Arthur S. Edison
- Department of Biochemistry and Molecular Biology, Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, USA
- Current address: Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
- Department of Biochemistry and Molecular Biology, Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|