1
|
Dabaj I, Ducatez F, Marret S, Bekri S, Tebani A. Neuromuscular disorders in the omics era. Clin Chim Acta 2024; 553:117691. [PMID: 38081447 DOI: 10.1016/j.cca.2023.117691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023]
Abstract
Neuromuscular disorders encompass a spectrum of conditions characterized by primary lesions within the peripheral nervous system, which include the anterior horn cell, peripheral nerve, neuromuscular junction, and muscle. In pediatrics, most of these disorders are linked to genetic causes. Despite the considerable progress, the diagnosis of these disorders remains a challenging due to wide clinical presentation, disease heterogeneity and rarity. It is noteworthy that certain neuromuscular disorders, once deemed untreatable, can now be effectively managed through novel therapies. Biomarkers emerge as indispensable tools, serving as objective measures that not only refine diagnostic accuracy but also provide guidance for therapeutic decision-making and the ongoing monitoring of long-term outcomes. Herein a comprehensive review of biomarkers in neuromuscular disorders is provided. We highlight the role of omics-based technologies that further characterize neuromuscular pathophysiology as well as identify potential therapeutic targets to guide treatment strategies.
Collapse
Affiliation(s)
- Ivana Dabaj
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France.
| | - Franklin Ducatez
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, F-76000 Rouen, France
| | - Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, F-76000 Rouen, France
| |
Collapse
|
2
|
Angelini CI, Ansevin C, Siciliano G. The role of sleep in neuromuscular disorders. Front Neurol 2023; 14:1195302. [PMID: 37456652 PMCID: PMC10339827 DOI: 10.3389/fneur.2023.1195302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Sleep represents a major frontier both in clinical myology and as a new possibility for delivering treatment to neuromuscular patients since various neuromuscular cases present a variable degree of disordered sleep and such conditions should be diagnosed and prevented, i.e., sleep apnea and hypoxemia. These sleep disorders are present in dystrophinopathies and in various types of limb-girdle muscular dystrophies (LGMD). Excessive daytime sleepiness (EDS) is found in patients affected by spastic paraparesis or cerebellar ataxia but is rather common in both myotonic dystrophy type 1 and 2, and the correction of sleep disorders is therefore important to improve their daily quality of life (QoL) and consequent daily functioning. Other types of sleep dysfunction such as insomnia, a reduction in rapid eye movement (REM) sleep, loss of normal REM, or sleep-disordered breathing are found in other disorders including myasthenia, ataxias, spastic paraparesis, Charcot-Marie-Tooth disease, and neurogenic disorders, including polyneuropathies, and need appropriate treatment. Research done on this topic aims to incorporate a variety of nuances in metabolic disorders such as those in late-onset Pompe disease and are such as those in late-onset Pompe disease who are susceptible to enzyme replacement therapy (ERT). The overarching goal is to explore both the diagnosis and methodology of sleep-related problems in both genetic and acquired neuromuscular disorders. We also review the type of available treatment opportunities utilized to improve neuromuscular patients' QoL.
Collapse
Affiliation(s)
| | - Carl Ansevin
- Department of Neurosciences, Sleep Center of the Ohio Neurologic Institute, Youngstown, OH, United States
| | | |
Collapse
|
3
|
Lee YS, Lee YS. nc886, an RNA Polymerase III-Transcribed Noncoding RNA Whose Expression Is Dynamic and Regulated by Intriguing Mechanisms. Int J Mol Sci 2023; 24:ijms24108533. [PMID: 37239877 DOI: 10.3390/ijms24108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
nc886 is a medium-sized non-coding RNA that is transcribed by RNA polymerase III (Pol III) and plays diverse roles in tumorigenesis, innate immunity, and other cellular processes. Although Pol III-transcribed ncRNAs were previously thought to be expressed constitutively, this concept is evolving, and nc886 is the most notable example. The transcription of nc886 in a cell, as well as in human individuals, is controlled by multiple mechanisms, including its promoter CpG DNA methylation and transcription factor activity. Additionally, the RNA instability of nc886 contributes to its highly variable steady-state expression levels in a given situation. This comprehensive review discusses nc886's variable expression in physiological and pathological conditions and critically examines the regulatory factors that determine its expression levels.
Collapse
Affiliation(s)
- Yeon-Su Lee
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
4
|
Nguyen CDL, Jimenez-Moreno AC, Merker M, Bowers CJ, Nikolenko N, Hentschel A, Müntefering T, Isham A, Ruck T, Vorgerd M, Dobelmann V, Gourdon G, Schara-Schmidt U, Gangfuss A, Schröder C, Sickmann A, Gross C, Gorman G, Stenzel W, Kollipara L, Hathazi D, Spendiff S, Gagnon C, Preusse C, Duchesne E, Lochmüller H, Roos A. Periostin as a blood biomarker of muscle cell fibrosis, cardiomyopathy and disease severity in myotonic dystrophy type 1. J Neurol 2023; 270:3138-3158. [PMID: 36892629 DOI: 10.1007/s00415-023-11633-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND AND PURPOSE Myotonic dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy and is caused by an repeat expansion [r(CUG)exp] located in the 3' untranslated region of the DMPK gene. Symptoms include skeletal and cardiac muscle dysfunction and fibrosis. In DM1, there is a lack of established biomarkers in routine clinical practice. Thus, we aimed to identify a blood biomarker with relevance for DM1-pathophysiology and clinical presentation. METHODS We collected fibroblasts from 11, skeletal muscles from 27, and blood samples from 158 DM1 patients. Moreover, serum, cardiac, and skeletal muscle samples from DMSXL mice were included. We employed proteomics, immunostaining, qPCR and ELISA. Periostin level were correlated with CMRI-data available for some patients. RESULTS Our studies identified Periostin, a modulator of fibrosis, as a novel biomarker candidate for DM1: proteomic profiling of human fibroblasts and murine skeletal muscles showed significant dysregulation of Periostin. Immunostaining on skeletal and cardiac muscles from DM1 patients and DMSXL mice showed an extracellular increase of Periostin, indicating fibrosis. qPCR studies indicated increased POSTN expression in fibroblasts and muscle. Quantification of Periostin in blood samples from DMSXL mice and two large validation cohorts of DM1 patients showed decreased levels in animals and diseased individuals correlating with repeat expansion and disease severity and presence of cardiac symptoms identified by MRI. Analyses of longitudinal blood samples revealed no correlation with disease progression. CONCLUSIONS Periostin might serve as a novel stratification biomarker for DM1 correlating with disease severity, presence of cardiac malfunction and fibrosis.
Collapse
Affiliation(s)
- Chi D L Nguyen
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | | | - Monika Merker
- Department of Neurology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | | | | | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Thomas Müntefering
- Department of Neurology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Angus Isham
- Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Tobias Ruck
- Department of Neurology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789, Bochum, Germany
| | - Vera Dobelmann
- Department of Neurology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Genevieve Gourdon
- Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Laboratory CTGDM, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Ulrike Schara-Schmidt
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
| | - Andrea Gangfuss
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany
| | - Charlotte Schröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Claudia Gross
- Institute of Clinical Genetics and Tumor Genetics Bonn, Maximilianstraße 28D, 53111, Bonn, Germany
| | - Grainne Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Cynthia Gagnon
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.,School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elise Duchesne
- Department of Health Sciences, Université du Québec à Chicoutimi, Québec, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.,Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Andreas Roos
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789, Bochum, Germany. .,Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147, Essen, Germany. .,Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
5
|
miR-193b-3p Promotes Proliferation of Goat Skeletal Muscle Satellite Cells through Activating IGF2BP1. Int J Mol Sci 2022; 23:ijms232415760. [PMID: 36555418 PMCID: PMC9779864 DOI: 10.3390/ijms232415760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
As a well-known cancer-related miRNA, miR-193b-3p is enriched in skeletal muscle and dysregulated in muscle disease. However, the mechanism underpinning this has not been addressed so far. Here, we probed the impact of miR-193b-3p on myogenesis by mainly using goat tissues and skeletal muscle satellite cells (MuSCs), compared with mouse C2C12 myoblasts. miR-193b-3p is highly expressed in goat skeletal muscles, and ectopic miR-193b-3p promotes MuSCs proliferation and differentiation. Moreover, insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is the most activated insulin signaling gene when there is overexpression of miR-193b-3p; the miRNA recognition element (MRE) within the IGF1BP1 3' untranslated region (UTR) is indispensable for its activation. Consistently, expression patterns and functions of IGF2BP1 were similar to those of miR-193b-3p in tissues and MuSCs. In comparison, ectopic miR-193b-3p failed to induce PAX7 expression and myoblast proliferation when there was IGF2BP1 knockdown. Furthermore, miR-193b-3p destabilized IGF2BP1 mRNA, but unexpectedly promoted levels of IGF2BP1 heteronuclear RNA (hnRNA), dramatically. Moreover, miR-193b-3p could induce its neighboring genes. However, miR-193b-3p inversely regulated IGF2BP1 and myoblast proliferation in the mouse C2C12 myoblast. These data unveil that goat miR-193b-3p promotes myoblast proliferation via activating IGF2BP1 by binding to its 3' UTR. Our novel findings highlight the positive regulation between miRNA and its target genes in muscle development, which further extends the repertoire of miRNA functions.
Collapse
|
6
|
Chwalenia K, Oieni J, Zemła J, Lekka M, Ahlskog N, Coenen-Stass AM, McClorey G, Wood MJ, Lomonosova Y, Roberts TC. Exon skipping induces uniform dystrophin rescue with dose-dependent restoration of serum miRNA biomarkers and muscle biophysical properties. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:955-968. [PMID: 36159597 PMCID: PMC9464767 DOI: 10.1016/j.omtn.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
Therapies that restore dystrophin expression are presumed to correct Duchenne muscular dystrophy (DMD), with antisense-mediated exon skipping being the leading approach. Here we aimed to determine whether exon skipping using a peptide-phosphorodiamidate morpholino oligonucleotide (PPMO) conjugate results in dose-dependent restoration of uniform dystrophin localization, together with correction of putative DMD serum and muscle biomarkers. Dystrophin-deficient mdx mice were treated with a PPMO (Pip9b2-PMO) designed to induce Dmd exon 23 skipping at single, ascending intravenous doses (3, 6, or 12 mg/kg) and sacrificed 2 weeks later. Dose-dependent exon skipping and dystrophin protein restoration were observed, with dystrophin uniformly distributed at the sarcolemma of corrected myofibers at all doses. Serum microRNA biomarkers (i.e., miR-1a-3p, miR-133a-3p, miR-206-3p, miR-483-3p) and creatinine kinase levels were restored toward wild-type levels after treatment in a dose-dependent manner. All biomarkers were strongly anti-correlated with both exon skipping level and dystrophin expression. Dystrophin rescue was also strongly positively correlated with muscle stiffness (i.e., Young's modulus) as determined by atomic force microscopy (AFM) nanoindentation assay. These data demonstrate that PPMO-mediated exon skipping generates myofibers with uniform dystrophin expression and that both serum microRNA biomarkers and muscle AFM have potential utility as pharmacodynamic biomarkers of dystrophin restoration therapy in DMD.
Collapse
Affiliation(s)
- Katarzyna Chwalenia
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
| | - Jacopo Oieni
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Nina Ahlskog
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
| | - Anna M.L. Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Graham McClorey
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Matthew J.A. Wood
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, South Parks Road, Oxford OX1 3QX, UK
| | - Yulia Lomonosova
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, South Parks Road, Oxford OX1 3QX, UK
| | - Thomas C. Roberts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
7
|
Meng Q, Zhang J, Zhong J, Zeng D, Lan D. Novel miRNA Biomarkers for Patients With Duchenne Muscular Dystrophy. Front Neurol 2022; 13:921785. [PMID: 35873767 PMCID: PMC9298557 DOI: 10.3389/fneur.2022.921785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Creatine kinase (CK) as a biomarker has long been expected to be replaced by other fluid biomarkers for Duchenne muscular dystrophy (DMD) because it is independent of disease severity. Growing evidence has demonstrated that muscle-specific microRNAs, known as myomiRs, can act as biomarkers for monitoring muscle pathology and disease severity of DMD patients. To gain insights into the relationship between serum myomiRs and clinical assessment, we measured serum levels of miR-1, miR-133a, miR-133b, miR-206, miR-208a, miR-208b, and miR-499 in 48 DMD patients by using real-time quantitative reverse transcription polymerase chain reaction. These were then compared with age, muscle strength, muscle functions, CK levels, cardiac manifestations, and mutation types (deletions, duplications, and small mutations). When compared to 53 controls, the expression levels of myomiRs were all significantly elevated (p < 0.05). The receiver operating characteristic curves of all seven myomiRs reflected marked differences between DMD patients and healthy controls (p < 0.05). We also showed that serum levels of myomiRs were positively correlated with lower limb distal muscle strength in patients of all age groups. The levels of miR-499, miR-208b, miR-133a, and miR-133b had significant negative correlations with the time to be upright from the supine position (Gowers' time) and the time taken to climb four stairs in DMD patients older than 7 years. Serum levels of miR-1, miR-133a, miR-133b, and miR-499 in patients with cardiac involvement were remarkably higher than those in non-cardiac-involved patients. There was no significant difference in levels of myomiRs between the different mutation groups. Our results indicated that serum myomiRs could be considered as novel biomarkers for monitoring pathology/pathophysiology of DMD patients. In particular, miR-499, miR-208b, miR-133a, and miR-133b might have the ability to reflect the extent of muscle impairment.
Collapse
Affiliation(s)
- Qi Meng
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiapeng Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingzi Zhong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Zeng
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Lee YS. Are We Studying Non-Coding RNAs Correctly? Lessons from nc886. Int J Mol Sci 2022; 23:ijms23084251. [PMID: 35457068 PMCID: PMC9027504 DOI: 10.3390/ijms23084251] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNAs (ncRNAs), such as microRNAs or long ncRNAs, have brought about a new paradigm in the regulation of gene expression. Sequencing technologies have detected transcripts with tremendous sensitivity and throughput and revealed that the majority of them lack protein-coding potential. Myriad articles have investigated numerous ncRNAs and many of them claim that ncRNAs play gene-regulatory roles. However, it is questionable whether all these articles draw conclusions through cautious gain- and loss-of function experiments whose design was reasonably based on an ncRNA's correct identity and features. In this review, these issues are discussed with a regulatory ncRNA, nc886, as an example case to represent cautions and guidelines when studying ncRNAs.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
9
|
Kakouri AC, Koutalianos D, Koutsoulidou A, Oulas A, Tomazou M, Nikolenko N, Turner C, Roos A, Lusakowska A, Janiszewska K, Papadimas GK, Papadopoulos C, Kararizou E, Papanicolaou EZ, Gorman G, Lochmüller H, Spyrou GM, Phylactou LA. Circulating small RNA signatures differentiate accurately the subtypes of muscular dystrophies: small-RNA next-generation sequencing analytics and functional insights. RNA Biol 2022; 19:507-518. [PMID: 35388741 PMCID: PMC8993092 DOI: 10.1080/15476286.2022.2058817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscular dystrophies are a group of rare and severe inherited disorders mainly affecting the muscle tissue. Duchene Muscular Dystrophy, Myotonic Dystrophy types 1 and 2, Limb Girdle Muscular Dystrophy and Facioscapulohumeral Muscular Dystrophy are some of the members of this family of disorders. In addition to the current diagnostic tools, there is an increasing interest for the development of novel non-invasive biomarkers for the diagnosis and monitoring of these diseases. miRNAs are small RNA molecules characterized by high stability in blood thus making them ideal biomarker candidates for various diseases. In this study, we present the first genome-wide next-generation small RNA sequencing in serum samples of five different types of muscular dystrophy patients and healthy individuals. We identified many small RNAs including miRNAs, lncRNAs, tRNAs, snoRNAs and snRNAs, that differentially discriminate the muscular dystrophy patients from the healthy individuals. Further analysis of the identified miRNAs showed that some miRNAs can distinguish the muscular dystrophy patients from controls and other miRNAs are specific to the type of muscular dystrophy. Bioinformatics analysis of the target genes for the most significant miRNAs and the biological role of these genes revealed different pathways that the dysregulated miRNAs are involved in each type of muscular dystrophy investigated. In conclusion, this study shows unique signatures of small RNAs circulating in five types of muscular dystrophy patients and provides a useful resource for future studies for the development of miRNA biomarkers in muscular dystrophies and for their involvement in the pathogenesis of the disorders.
Collapse
Affiliation(s)
- Andrea C Kakouri
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Demetris Koutalianos
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anastasis Oulas
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Chris Turner
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany.,Division of Neurology, Department of Medicine, Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - George K Papadimas
- Department of Neurology, Eginitio hospital, Medical School of Athens, Athens, Greece
| | | | - Evangelia Kararizou
- Department of Neurology, Eginitio hospital, Medical School of Athens, Athens, Greece
| | | | - Grainne Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, University of Newcastle, Newcastle, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Centro Nacional de AnálisisGenómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (Bist), Barcelona, Spain
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
10
|
Serum miRNAs as biomarkers for the rare types of muscular dystrophy. Neuromuscul Disord 2022; 32:332-346. [DOI: 10.1016/j.nmd.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022]
|
11
|
Cellular Senescence and Aging in Myotonic Dystrophy. Int J Mol Sci 2022; 23:ijms23042339. [PMID: 35216455 PMCID: PMC8877951 DOI: 10.3390/ijms23042339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy (DM) is a dominantly inherited multisystemic disorder affecting various organs, such as skeletal muscle, heart, the nervous system, and the eye. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by expanded CTG and CCTG repeats, respectively. In both forms, the mutant transcripts containing expanded repeats aggregate as nuclear foci and sequester several RNA-binding proteins, resulting in alternative splicing dysregulation. Although certain alternative splicing events are linked to the clinical DM phenotypes, the molecular mechanisms underlying multiple DM symptoms remain unclear. Interestingly, multi-systemic DM manifestations, including muscle weakness, cognitive impairment, cataract, and frontal baldness, resemble premature aging. Furthermore, cellular senescence, a critical contributor to aging, is suggested to play a key role in DM cellular pathophysiology. In particular, several senescence inducers including telomere shortening, mitochondrial dysfunction, and oxidative stress and senescence biomarkers such as cell cycle inhibitors, senescence-associated secretory phenotype, chromatin reorganization, and microRNA have been implicated in DM pathogenesis. In this review, we focus on the clinical similarities between DM and aging, and summarize the involvement of cellular senescence in DM and the potential application of anti-aging DM therapies.
Collapse
|
12
|
Soltanzadeh P. Myotonic Dystrophies: A Genetic Overview. Genes (Basel) 2022; 13:367. [PMID: 35205411 PMCID: PMC8872148 DOI: 10.3390/genes13020367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophies (DM) are the most common muscular dystrophies in adults, which can affect other non-skeletal muscle organs such as the heart, brain and gastrointestinal system. There are two genetically distinct types of myotonic dystrophy: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2), both dominantly inherited with significant overlap in clinical manifestations. DM1 results from CTG repeat expansions in the 3'-untranslated region (3'UTR) of the DMPK (dystrophia myotonica protein kinase) gene on chromosome 19, while DM2 is caused by CCTG repeat expansions in intron 1 of the CNBP (cellular nucleic acid-binding protein) gene on chromosome 3. Recent advances in genetics and molecular biology, especially in the field of RNA biology, have allowed better understanding of the potential pathomechanisms involved in DM. In this review article, core clinical features and genetics of DM are presented followed by a discussion on the current postulated pathomechanisms and therapeutic approaches used in DM, including the ones currently in human clinical trial phase.
Collapse
Affiliation(s)
- Payam Soltanzadeh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Koutalianos D, Koutsoulidou A, Mytidou C, Kakouri AC, Oulas A, Tomazou M, Kyriakides TC, Prokopi M, Kapnisis K, Nikolenko N, Turner C, Lusakowska A, Janiszewska K, Papadimas GK, Papadopoulos C, Kararizou E, Spyrou GM, Gourdon G, Zamba Papanicolaou E, Gorman G, Anayiotos A, Lochmüller H, Phylactou LA. miR-223-3p and miR-24-3p as novel serum-based biomarkers for myotonic dystrophy type 1. Mol Ther Methods Clin Dev 2021; 23:169-183. [PMID: 34703840 PMCID: PMC8517008 DOI: 10.1016/j.omtm.2021.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy, primarily characterized by muscle wasting and weakness. Many biomarkers already exist in the rapidly developing biomarker research field that aim to improve patients' care. Limited work, however, has been performed on rare diseases, including DM1. We have previously shown that specific microRNAs (miRNAs) can be used as potential biomarkers for DM1 progression. In this report, we aimed to identify novel serum-based biomarkers for DM1 through high-throughput next-generation sequencing. A number of miRNAs were identified that are able to distinguish DM1 patients from healthy individuals. Two miRNAs were selected, and their association with the disease was validated in a larger panel of patients. Further investigation of miR-223-3p, miR-24-3p, and the four previously identified miRNAs, miR-1-3p, miR-133a-3p, miR-133b-3p, and miR-206-3p, showed elevated levels in a DM1 mouse model for all six miRNAs circulating in the serum compared to healthy controls. Importantly, the levels of miR-223-3p, but not the other five miRNAs, were found to be significantly downregulated in five skeletal muscles and heart tissues of DM1 mice compared to controls. This result provides significant evidence for its involvement in disease manifestation.
Collapse
Affiliation(s)
- Demetris Koutalianos
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Chrystalla Mytidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Andrea C. Kakouri
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Anastasis Oulas
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Marios Tomazou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Tassos C. Kyriakides
- Yale Center for Analytical Sciences, Yale School of Public Health, 300 George Street, Suite 555, New Haven, CT 06520, USA
| | - Marianna Prokopi
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Str., 3041 Limassol, Cyprus
- Theramir Ltd, 13 Georgiou Karaiskaki Str., 3032 Limassol, Cyprus
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Str., 3041 Limassol, Cyprus
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Chris Turner
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Janiszewska
- Department of Neurology, Central Hospital of Medical University of Warsaw, Warsaw, Poland
| | - George K. Papadimas
- Department of Neurology, Eginitio Hospital, Medical School of Athens, 74 Vasilissis Sofias, 11528 Athens, Greece
| | - Constantinos Papadopoulos
- Department of Neurology, Eginitio Hospital, Medical School of Athens, 74 Vasilissis Sofias, 11528 Athens, Greece
| | - Evangelia Kararizou
- Department of Neurology, Eginitio Hospital, Medical School of Athens, 74 Vasilissis Sofias, 11528 Athens, Greece
| | - George M. Spyrou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Geneviève Gourdon
- Inserm, Sorbonne University, Institute of Myology, Center of Research in Myology, Paris, France
| | - Eleni Zamba Papanicolaou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Neurology Clinic D, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Grainne Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, University of Newcastle, Newcastle, UK
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Str., 3041 Limassol, Cyprus
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Centre–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Children’s Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
14
|
Visconti VV, Centofanti F, Fittipaldi S, Macrì E, Novelli G, Botta A. Epigenetics of Myotonic Dystrophies: A Minireview. Int J Mol Sci 2021; 22:ijms222212594. [PMID: 34830473 PMCID: PMC8623789 DOI: 10.3390/ijms222212594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Myotonic dystrophy type 1 and 2 (DM1 and DM2) are two multisystemic autosomal dominant disorders with clinical and genetic similarities. The prevailing paradigm for DMs is that they are mediated by an in trans toxic RNA mechanism, triggered by untranslated CTG and CCTG repeat expansions in the DMPK and CNBP genes for DM1 and DM2, respectively. Nevertheless, increasing evidences suggest that epigenetics can also play a role in the pathogenesis of both diseases. In this review, we discuss the available information on epigenetic mechanisms that could contribute to the DMs outcome and progression. Changes in DNA cytosine methylation, chromatin remodeling and expression of regulatory noncoding RNAs are described, with the intent of depicting an epigenetic signature of DMs. Epigenetic biomarkers have a strong potential for clinical application since they could be used as targets for therapeutic interventions avoiding changes in DNA sequences. Moreover, understanding their clinical significance may serve as a diagnostic indicator in genetic counselling in order to improve genotype–phenotype correlations in DM patients.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Federica Centofanti
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Elisa Macrì
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
- IRCCS (Institute for Treatment and Research) Neuromed, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (F.C.); (S.F.); (E.M.); (G.N.)
- Correspondence: ; Tel.: +39-6-7259-6078
| |
Collapse
|
15
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
16
|
miRNome profiling in Duchenne muscular dystrophy; identification of asymptomatic and manifesting female carriers. Biosci Rep 2021; 41:229711. [PMID: 34472584 PMCID: PMC8450315 DOI: 10.1042/bsr20211325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder that occurs due to inactivating mutations in DMD gene, leading to muscular dystrophy. Prediction of pathological complications of DMD and the identification of female carriers are important research points that aim to reduce disease burden. Herein, we describe a case of a late DMD patient and his immediate female family members, who all carry same DMD mutation and exhibited varied degrees of symptoms. In our study, we sequenced the whole miRNome in leukocytes and plasma of the family members and results were validated using real-time PCR. Our results highlighted the role of miR-409-3p, miR-424-5p, miR-144-3p as microRNAs that show correlation with the extent of severity of muscular weakness and can be used for detection of asymptomatic carriers. Cellular and circulating levels of miR-494-3p had shown significant increase in symptomatic carriers, which may indicate significant roles played by this miRNA in the onset of muscular weakness. Interestingly, circulating levels of miR-206 and miR-410-3p were significantly increased only in the severely symptomatic carrier. In conclusion, our study highlighted several miRNA species, which could be used in predicting the onset of muscle and/or neurological complications in DMD carriers.
Collapse
|
17
|
Koscianska E, Kozlowska E, Fiszer A. Regulatory Potential of Competing Endogenous RNAs in Myotonic Dystrophies. Int J Mol Sci 2021; 22:6089. [PMID: 34200099 PMCID: PMC8201210 DOI: 10.3390/ijms22116089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been reported to be implicated in cell fate determination and various human diseases. All ncRNA molecules are emerging as key regulators of diverse cellular processes; however, little is known about the regulatory interaction among these various classes of RNAs. It has been proposed that the large-scale regulatory network across the whole transcriptome is mediated by competing endogenous RNA (ceRNA) activity attributed to both protein-coding and ncRNAs. ceRNAs are considered to be natural sponges of miRNAs that can influence the expression and availability of multiple miRNAs and, consequently, the global mRNA and protein levels. In this review, we summarize the current understanding of the role of ncRNAs in two neuromuscular diseases, myotonic dystrophy type 1 and 2 (DM1 and DM2), and the involvement of expanded CUG and CCUG repeat-containing transcripts in miRNA-mediated RNA crosstalk. More specifically, we discuss the possibility that long repeat tracts present in mutant transcripts can be potent miRNA sponges and may affect ceRNA crosstalk in these diseases. Moreover, we highlight practical information related to innovative disease modelling and studying RNA regulatory networks in cells. Extending knowledge of gene regulation by ncRNAs, and of complex regulatory ceRNA networks in DM1 and DM2, will help to address many questions pertinent to pathogenesis and treatment of these disorders; it may also help to better understand general rules of gene expression and to discover new rules of gene control.
Collapse
Affiliation(s)
- Edyta Koscianska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (E.K.); (A.F.)
| | | | | |
Collapse
|
18
|
The Biomarker Potential of miRNAs in Myotonic Dystrophy Type I. J Clin Med 2020; 9:jcm9123939. [PMID: 33291833 PMCID: PMC7762003 DOI: 10.3390/jcm9123939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are mostly known for their gene regulation properties, but they also play an important role in intercellular signaling. This means that they can be found in bodily fluids, giving them excellent biomarker potential. Myotonic Dystrophy type I (DM1) is the most frequent autosomal dominant muscle dystrophy in adults, with an estimated prevalence of 1:8000. DM1 symptoms include muscle weakness, myotonia, respiratory failure, cardiac conduction defects, cataracts, and endocrine disturbances. Patients display heterogeneity in both age of onset and disease manifestation. No treatment or cure currently exists for DM1, which shows the necessity for a biomarker that can predict disease progression, providing the opportunity to implement preventative measures before symptoms arise. In the past two decades, extensive research has been conducted in the miRNA expression profiles of DM1 patients and their biomarker potential. Here we review the current state of the field with a tissue-specific focus, given the multi-systemic nature of DM1 and the intracellular signaling role of miRNAs.
Collapse
|
19
|
Heier CR, Zhang A, Nguyen NY, Tully CB, Panigrahi A, Gordish-Dressman H, Pandey SN, Guglieri M, Ryan MM, Clemens PR, Thangarajh M, Webster R, Smith EC, Connolly AM, McDonald CM, Karachunski P, Tulinius M, Harper A, Mah JK, Fiorillo AA, Chen YW. Multi-Omics Identifies Circulating miRNA and Protein Biomarkers for Facioscapulohumeral Dystrophy. J Pers Med 2020; 10:jpm10040236. [PMID: 33228131 PMCID: PMC7711540 DOI: 10.3390/jpm10040236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
The development of therapeutics for muscle diseases such as facioscapulohumeral dystrophy (FSHD) is impeded by a lack of objective, minimally invasive biomarkers. Here we identify circulating miRNAs and proteins that are dysregulated in early-onset FSHD patients to develop blood-based molecular biomarkers. Plasma samples from clinically characterized individuals with early-onset FSHD provide a discovery group and are compared to healthy control volunteers. Low-density quantitative polymerase chain reaction (PCR)-based arrays identify 19 candidate miRNAs, while mass spectrometry proteomic analysis identifies 13 candidate proteins. Bioinformatic analysis of chromatin immunoprecipitation (ChIP)-seq data shows that the FSHD-dysregulated DUX4 transcription factor binds to regulatory regions of several candidate miRNAs. This panel of miRNAs also shows ChIP signatures consistent with regulation by additional transcription factors which are up-regulated in FSHD (FOS, EGR1, MYC, and YY1). Validation studies in a separate group of patients with FSHD show consistent up-regulation of miR-100, miR-103, miR-146b, miR-29b, miR-34a, miR-454, miR-505, and miR-576. An increase in the expression of S100A8 protein, an inflammatory regulatory factor and subunit of calprotectin, is validated by Enzyme-Linked Immunosorbent Assay (ELISA). Bioinformatic analyses of proteomics and miRNA data further support a model of calprotectin and toll-like receptor 4 (TLR4) pathway dysregulation in FSHD. Moving forward, this panel of miRNAs, along with S100A8 and calprotectin, merit further investigation as monitoring and pharmacodynamic biomarkers for FSHD.
Collapse
Affiliation(s)
- Christopher R. Heier
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Correspondence: (C.R.H.); (Y.-W.C.)
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Nhu Y Nguyen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Aswini Panigrahi
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Heather Gordish-Dressman
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Sachchida Nand Pandey
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | | | - Monique M. Ryan
- The Royal Children’s Hospital, Melbourne University, Parkville, Victoria 3052, Australia;
| | - Paula R. Clemens
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Mathula Thangarajh
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA;
| | | | - Edward C. Smith
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27705, USA;
| | - Anne M. Connolly
- Nationwide Children’s Hospital, The Ohio State University, Columbus, OH 43205, USA;
| | - Craig M. McDonald
- Department of Physical Medicine and Rehabilitation, University of California at Davis Medical Center, Sacramento, CA 95817, USA;
| | - Peter Karachunski
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Mar Tulinius
- Department of Pediatrics, Gothenburg University, Queen Silvia Children’s Hospital, 41685 Göteborg, Sweden;
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Jean K. Mah
- Deparment of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, T2N T3B, Calgary, AB 6A81N4, Canada;
| | - Alyson A. Fiorillo
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
- Correspondence: (C.R.H.); (Y.-W.C.)
| | | |
Collapse
|
20
|
Shen X, Xu F, Li M, Wu S, Zhang J, Wang A, Xu L, Liu Y, Zhu G. miR-322/-503 rescues myoblast defects in myotonic dystrophy type 1 cell model by targeting CUG repeats. Cell Death Dis 2020; 11:891. [PMID: 33093470 PMCID: PMC7582138 DOI: 10.1038/s41419-020-03112-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common type of adult muscular dystrophy caused by the expanded triple-nucleotides (CUG) repeats. Myoblast in DM1 displayed many defects, including defective myoblast differentiation, ribonuclear foci, and aberrant alternative splicing. Despite many were revealed to function in DM1, microRNAs that regulated DM1 via directly targeting the expanded CUG repeats were rarely reported. Here we discovered that miR-322/-503 rescued myoblast defects in DM1 cell model by targeting the expanded CUG repeats. First, we studied the function of miR-322/-503 in normal C2C12 myoblast cells. Downregulation of miR-322/-503 significantly hindered the myoblast differentiation, while miR-322/-503 overexpression promoted the process. Next, we examined the role of miR-322/-503 in the DM1 C2C12 cell model. miR-322/-503 was downregulated in the differentiation of DM1 C2C12 cells. When we introduced ectopic miR-322/-503 expression into DM1 C2C12 cells, myoblast defects were almost fully rescued, marked by significant improvements of myoblast differentiation and repressions of ribonuclear foci formation and aberrant alternative splicing. Then we investigated the downstream mechanism of miR-322/-503 in DM1. Agreeing with our previous work, Celf1 was proven to be miR-322/-503′s target. Celf1 knockdown partially reproduced miR-322/-503′s function in rescuing DM1 C2C12 differentiation but was unable to repress ribonuclear foci, suggesting other targets of miR-322/-503 existed in the DM1 C2C12 cells. As the seed regions of miR-322 and miR-503 were complementary to the CUG repeats, we hypothesized that the CUG repeats were the target of miR-322/-503. Through expression tests, reporter assays, and colocalization staining, miR-322/-503 was proved to directly and specifically target the expanded CUG repeats in the DM1 cell model rather than the shorter ones in normal cells. Those results implied a potential therapeutic function of miR-322/-503 on DM1, which needed further investigations in the future.
Collapse
Affiliation(s)
- Xiaopeng Shen
- School of Life Sciences, Anhui Normal University, Wuhu, China. .,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China.
| | - Feng Xu
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Meng Li
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Shen Wu
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Jingyi Zhang
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Ao Wang
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Lei Xu
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, China
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Guoping Zhu
- School of Life Sciences, Anhui Normal University, Wuhu, China. .,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China.
| |
Collapse
|
21
|
An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes (Basel) 2020; 11:genes11091109. [PMID: 32971903 PMCID: PMC7564762 DOI: 10.3390/genes11091109] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type I (DM1) is the most common form of adult muscular dystrophy, caused by expansion of a CTG triplet repeat in the 3′ untranslated region (3′UTR) of the myotonic dystrophy protein kinase (DMPK) gene. The pathological CTG repeats result in protein trapping by expanded transcripts, a decreased DMPK translation and the disruption of the chromatin structure, affecting neighboring genes expression. The muscleblind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) are two families of tissue-specific regulators of developmentally programmed alternative splicing that act as antagonist regulators of several pre-mRNA targets, including troponin 2 (TNNT2), insulin receptor (INSR), chloride channel 1 (CLCN1) and MBNL2. Sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology, inducing a spliceopathy that leads to a developmental remodelling of the transcriptome due to an adult-to-foetal splicing switch, which results in the loss of cell function and viability. Moreover, recent studies indicate that additional pathogenic mechanisms may also contribute to disease pathology, including a misregulation of cellular mRNA translation, localization and stability. This review focuses on the cause and effects of MBNL and CELF1 deregulation in DM1, describing the molecular mechanisms underlying alternative splicing misregulation for a deeper understanding of DM1 complexity. To contribute to this analysis, we have prepared a comprehensive list of transcript alterations involved in DM1 pathogenesis, as well as other deregulated mRNA processing pathways implications.
Collapse
|
22
|
Koutsoulidou A, Phylactou LA. Circulating Biomarkers in Muscular Dystrophies: Disease and Therapy Monitoring. Mol Ther Methods Clin Dev 2020; 18:230-239. [PMID: 32637452 PMCID: PMC7327849 DOI: 10.1016/j.omtm.2020.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Muscular dystrophies are a group of inherited disorders that primarily affect the muscle tissues. Across the muscular dystrophies, symptoms commonly compromise the quality of life in all areas of functioning. It is well noted that muscular dystrophies need reliable and measurable biomarkers that will monitor the progress of the disease and evaluate the potential therapeutic approaches. In this review, we analyze the current findings regarding the development of blood-based circulating biomarkers for different types of muscular dystrophies. We emphasize those muscular dystrophies that gained particular interest for the development of biomarkers, including Duchenne muscular dystrophy, Becker muscular dystrophy, myotonic dystrophy types 1 and 2, Ullrich congenital muscular dystrophy, congenital muscular dystrophy type 1A, Facioscapulohumeral muscular dystrophy, and limb-girdle muscular dystrophy types 2A, 2B, 2C, and 2D, recently renamed as limb-girdle muscular dystrophy R1 calpain3-related, R2 dysferlin-related, R5 γ-sarcoglycan-related, and R3 α-sarcoglycan-related. This review highlights the up-to-date progress in the development of biomarkers at the level of proteins, lipids, and metabolites, as well as microRNAs (miRNAs) that currently are the main potential biomarker candidates in muscular dystrophies.
Collapse
Affiliation(s)
- Andrie Koutsoulidou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, PO Box 23462, 1683 Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, PO Box 23462, 1683 Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, PO Box 23462, 1683 Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, PO Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
23
|
Forcina L, Cosentino M, Musarò A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells 2020; 9:E1297. [PMID: 32456017 PMCID: PMC7290814 DOI: 10.3390/cells9051297] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a massive body of knowledge which has been produced related to the mechanisms guiding muscle regeneration, great interest still moves the scientific community toward the study of different aspects of skeletal muscle homeostasis, plasticity, and regeneration. Indeed, the lack of effective therapies for several physiopathologic conditions suggests that a comprehensive knowledge of the different aspects of cellular behavior and molecular pathways, regulating each regenerative stage, has to be still devised. Hence, it is important to perform even more focused studies, taking the advantage of robust markers, reliable techniques, and reproducible protocols. Here, we provide an overview about the general aspects of muscle regeneration and discuss the different approaches to study the interrelated and time-dependent phases of muscle healing.
Collapse
Affiliation(s)
| | | | - Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy; (L.F.); (M.C.)
| |
Collapse
|
24
|
MyomiRNAs and myostatin as physical rehabilitation biomarkers for myotonic dystrophy. Neurol Sci 2020; 41:2953-2960. [PMID: 32350671 DOI: 10.1007/s10072-020-04409-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
Abstract
MiR-1 and myostatin are markers for muscle growth and regeneration. Myostatin has a key role in the regulation of muscle mass. Myotonic dystrophy type 1(DM1) patients have a disease-specific serum miRNA profile characterized by upregulation of miR-1, miR-206, miR-133a, and miR-133b (myomiRNAs).This study aims to evaluate the possible utility of myomiRs and myostatin as biomarkers of rehabilitation efficacy in DM1, supporting clinical outcomes that are often variable and related to the patient's clinical condition.In 9 genetically proven DM1 patients, we collected biological samples before (T0) and after (T1) exercise rehabilitation training as biological measurement. We measured serum myomiRNAs by qRT-PCR and myostatin by ELISA test. The clinical outcomes measures that we utilized during a 3-6 week rehabilitation controlled aerobic exercise period were the 6-min walking test (6MWT) that increased significantly of 53.5 m (p < 0.0004) and the 10-m walk test (10MWT) that decreased of 1.38 s.We observed, after physical rehabilitation, a significant downregulation of myomiRNAs and myostatin that occurred in parallel with the improvement of clinical functional outcome measures assessed as endurance and gait speed, respectively.The modulation of biomarkers may reflect muscle regeneration and increase muscle mass after aerobic exercise. miRNAs and myostatin might be considered as circulating biomarkers of DM1 rehabilitation. The efficacy of physical rehabilitation in counteracting molecular pathways responsible for muscle atrophy and disease progression and the role of these biomarkers in DM1 and other neuromuscular diseases warrant further investigation.
Collapse
|
25
|
Guo JY, Wang YK, Lv B, Jin H. miR-454 performs tumor-promoting effects in oral squamous cell carcinoma via reducing NR3C2. J Oral Pathol Med 2020; 49:286-293. [PMID: 32170966 DOI: 10.1111/jop.13015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Aberrant miRNAs expression regulates the occurrence and progression of a variety of cancers, including oral squamous cell carcinoma (OSCC). This study aims to illustrate the potential effects of miR-454/nuclear receptor subfamily 3 group C member 2 (NR3C2) on the biological behaviors of OSCC cells. METHODS GEO database was applied to detect and analyze the expression of miR-545 and NR3C2 in OSCC tissues. Two OSCC cell lines including CAL27 and Tca-83 were utilized to determine the function of miR-454/NR3C2 on OSCC cells biological behaviors. miR-454 and NR3C2 expressions were regulated by miR-454 mimic/inhibitor and pcDNA3.1-NR3C2/si-NR3C2, respectively. Cells biological behaviors were evaluated by cell proliferation, colony formation, and transwell assays. RESULTS The data collected from GEO database indicated that miR-454 expression was upregulated in OSCC tissues; however, the expression of NR3C2 assumed a downward trend. In vitro experiments, the expression trend of miR-454 in OSCC cell lines was consistent with that of the trend in tissues, and the OSCC cells growth and movement abilities significantly decreased after miR-454 depletion. Through co-transfection experiments, we explored that the abilities of OSCC cell proliferation, colony formation, invasion, and migration obviously reduced after miR-454 depletion, but these phenomena were mitigated to some extent after NR3C2 silencing. CONCLUSION The study illustrates that miR-454 acts as an active regulator to facilitate OSCC cells growth, colony formation, invasion, and migration by targeting NR3C2, which may afford a novel perspective and possibility for the targeted treatment of OSCC.
Collapse
Affiliation(s)
- Jing-Yu Guo
- Department of Stomatology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yu-Kun Wang
- Department of Stomatology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Bo Lv
- Eye 3 Division of Red Flag Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Hong Jin
- College of Stomatology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
26
|
Salim RF, Sobeih AA, Abd El Kareem HM. Evaluation of the clinical value of circulating miR-101, miR-187 and miR-21 in neonatal sepsis diagnosis and prognosis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00052-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Abstract
Background
Neonatal sepsis is considered as a complicated syndrome, which requires urgent intervention to avoid the unfavorable outcome. Thus, biomarkers that can either distinguish sepsis early or predict sepsis outcome are of critical need. Therefore, the aim of the current study was to investigate the clinical value of miR-187, miR-101, and miR-21 on neonatal sepsis diagnosis and prediction of prognosis. Fifty neonates with sepsis, 30 neonates with SIRS, and 20 healthy neonates were selected. Relative expression levels of the selected miRNAs were quantified by qRT-PCR. Serum CRP and PCT were analyzed.
Results
miR-101 and miR-187 expression levels were elevated in septic neonates compared with SIRS neonates and normal controls. The AUC of miR-101, miR-187, and PCT to predict sepsis diagnosis were 0.908, 789, and 0.856, respectively. miR-21 expression levels in non-survivors were significantly higher than in survivors. The AUC of miR-21, a score of neonatal acute physiology (SNAP-II), and PCT to detect the predictive mortality value were 0.793, 0.781, and 0.635, respectively. Survival analysis revealed that high miR-21 expression levels were related to low survival rates. miR-21 and SNAP II were independent risk factors for sepsis mortality, and the AUC of the two combined variables’ predictive probabilities was 0.926 and yielded a specificity of 91.2% and a sensitivity of 81.3%, which was higher than that of either miR-21 or SNAP II.
Conclusion
miR-101 might function as a hopeful diagnostic biomarker for neonatal sepsis. Additionally, miR-21 gained attention to be a valuable predictor for sepsis prognosis especially if combined with SNAP II.
Collapse
|
27
|
Fort RS, Garat B, Sotelo-Silveira JR, Duhagon MA. vtRNA2-1/nc886 Produces a Small RNA That Contributes to Its Tumor Suppression Action through the microRNA Pathway in Prostate Cancer. Noncoding RNA 2020; 6:E7. [PMID: 32093270 PMCID: PMC7151618 DOI: 10.3390/ncrna6010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
vtRNA2-1 is a vault RNA initially classified as microRNA precursor hsa-mir-886 and recently proposed as "nc886", a new type of non-coding RNA involved in cancer progression acting as an oncogene and tumor suppressor gene in different tissues. We have shown that vtRNA2-1/nc886 is epigenetically repressed in neoplastic cells, increasing cell proliferation and invasion in prostate tissue. Here we investigate the ability of vtRNA2-1/nc886 to produce small-RNAs and their biological effect in prostate cells. The interrogation of public small-RNA transcriptomes of prostate and other tissues uncovered two small RNAs, snc886-3p and snc886-5p, derived from vtRNA2-1/nc886 (previously hsa-miR-886-3p and hsa-miR-886-5p). Re-analysis of PAR-CLIP and knockout of microRNA biogenesis enzymes data showed that these small RNAs are products of DICER, independent of DROSHA, and associate with Argonaute proteins, satisfying microRNA attributes. In addition, the overexpression of snc886-3p provokes the downregulation of mRNAs bearing sequences complementary to its "seed" in their 3'-UTRs. Microarray and in vitro functional assays in DU145, LNCaP and PC3 cell lines revealed that snc886-3p reduced cell cycle progression and increases apoptosis, like its precursor vtRNA2-1/nc886. Finally, we found a list of direct candidate targets genes of snc886-3p upregulated and associated with disease condition and progression in PRAD-TCGA data. Overall, our findings suggest that vtRNA2-1/nc886 and its processed product snc886-3p are synthesized in prostate cells, exerting a tumor suppressor action.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - José Roberto Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
28
|
López Castel A, Overby SJ, Artero R. MicroRNA-Based Therapeutic Perspectives in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20225600. [PMID: 31717488 PMCID: PMC6888406 DOI: 10.3390/ijms20225600] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Myotonic dystrophy involves two types of chronically debilitating rare neuromuscular diseases: type 1 (DM1) and type 2 (DM2). Both share similarities in molecular cause, clinical signs, and symptoms with DM2 patients usually displaying milder phenotypes. It is well documented that key clinical symptoms in DM are associated with a strong mis-regulation of RNA metabolism observed in patient’s cells. This mis-regulation is triggered by two leading DM-linked events: the sequestration of Muscleblind-like proteins (MBNL) and the mis-regulation of the CUGBP RNA-Binding Protein Elav-Like Family Member 1 (CELF1) that cause significant alterations to their important functions in RNA processing. It has been suggested that DM1 may be treatable through endogenous modulation of the expression of MBNL and CELF1 proteins. In this study, we analyzed the recent identification of the involvement of microRNA (miRNA) molecules in DM and focus on the modulation of these miRNAs to therapeutically restore normal MBNL or CELF1 function. We also discuss additional prospective miRNA targets, the use of miRNAs as disease biomarkers, and additional promising miRNA-based and miRNA-targeting drug development strategies. This review provides a unifying overview of the dispersed data on miRNA available in the context of DM.
Collapse
Affiliation(s)
- Arturo López Castel
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| | - Sarah Joann Overby
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| |
Collapse
|
29
|
MicroRNA-330-3p promotes brain metastasis and epithelial-mesenchymal transition via GRIA3 in non-small cell lung cancer. Aging (Albany NY) 2019; 11:6734-6761. [PMID: 31498117 PMCID: PMC6756898 DOI: 10.18632/aging.102201] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Brain metastasis (BM) is associated with poor prognosis in patients with non-small cell lung cancer (NSCLC). We sought to identify microRNAs (miRNAs) that could serve as biomarkers to differentiate NSCLC patients with and without BM. Logistic regression was conducted with 122 NSCLC patients (60 without BM, 62 with BM) to assess the association between miRNAs and BM. We confirmed several risk factors for BM and revealed that serum miR-330-3p levels are higher in NSCLC patients with BM than that without BM. Overexpression of miR-330-3p promoted proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of NSCLC cells in vitro and NSCLC tumorigenesis in vivo. Knocking down miR-330-3p suppressed this metastatic phenotype. We identified putative miR-330-3p target genes by comparing mRNA microarray analysis data from A549 cells after miR-330-3p knockdown with candidate miR-330-3p target genes predicted by public bioinformatic tools and luciferase reporter assays. We found that GRIA3 is a target of miR-330-3p and that miR-330-3p stimulates EMT progress by mediating GRIA3-TGF-β1 interaction. Our results provide novel insight into the role of miR-330-3p in NSCLC metastasis, and suggest miR-330-3p may be a useful biomarker for identifying NSCLC with metastatic potential.
Collapse
|
30
|
Non-Coding RNA Regulates the Myogenesis of Skeletal Muscle Satellite Cells, Injury Repair and Diseases. Cells 2019; 8:cells8090988. [PMID: 31461973 PMCID: PMC6769629 DOI: 10.3390/cells8090988] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle myogenesis and injury-induced muscle regeneration contribute to muscle formation and maintenance. As myogenic stem cells, skeletal muscle satellite cells have the ability to proliferate, differentiate and self-renew, and are involved in muscle formation and muscle injury repair. Accumulating evidence suggests that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are widely involved in the regulation of gene expression during skeletal muscle myogenesis, and their abnormal expression is associated with a variety of muscle diseases. From the perspective of the molecular mechanism and mode of action of ncRNAs in myogenesis, this review aims to summarize the role of ncRNAs in skeletal muscle satellite cells’ myogenic differentiation and in muscle disease, and systematically analyze the mechanism of ncRNAs in skeletal muscle development. This work will systematically summarize the role of ncRNAs in myogenesis and provide reference targets for the treatment of various muscle diseases, such as muscle dystrophy, atrophy and aberrant hypertrophy.
Collapse
|
31
|
Carrasco‐Rozas A, Fernández‐Simón E, Lleixà MC, Belmonte I, Pedrosa-Hernandez I, Montiel-Morillo E, Nuñez‐Peralta C, Llauger Rossello J, Segovia S, De Luna N, Suarez‐Calvet X, Illa I, Díaz‐Manera J, Gallardo E. Identification of serum microRNAs as potential biomarkers in Pompe disease. Ann Clin Transl Neurol 2019; 6:1214-1224. [PMID: 31353854 PMCID: PMC6649638 DOI: 10.1002/acn3.50800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To analyze the microRNA profile in serum of patients with Adult Onset Pompe disease (AOPD). METHODS We analyzed the expression of 185 microRNAs in serum of 15 AOPD patients and five controls using microRNA PCR Panels. The expression levels of microRNAs that were deregulated were further studied in 35 AOPD patients and 10 controls using Real-Time PCR. Additionally, the skeletal muscle expression of microRNAs which showed significant increase levels in serum samples was also studied. Correlations between microRNA serum levels and muscle function test, spirometry, and quantitative muscle MRI were performed (these data correspond to the study NCT01914536 at ClinicalTrials.gov). RESULTS We identified 14 microRNAs that showed different expression levels in serum samples of AOPD patients compared to controls. We validated these results in a larger cohort of patients and we found increased levels of three microRNAs, the so called dystromirs: miR-1-3p, miR-133a-3p, and miR-206. These microRNAs are involved in muscle regeneration and the expression of these was increased in patients' muscle biopsies. Significant correlations between microRNA levels and muscle function test were found. INTERPRETATION Serum expression levels of dystromirs may represent additional biomarkers for the follow-up of AOPD patients.
Collapse
Affiliation(s)
- Ana Carrasco‐Rozas
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Esther Fernández‐Simón
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Maria Cinta Lleixà
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Izaskun Belmonte
- Rehabilitation and Physiotherapy DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Irene Pedrosa-Hernandez
- Rehabilitation and Physiotherapy DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Elena Montiel-Morillo
- Rehabilitation and Physiotherapy DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Claudia Nuñez‐Peralta
- Radiology DepartmentHospital de la Santa Creu I Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Jaume Llauger Rossello
- Radiology DepartmentHospital de la Santa Creu I Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Sonia Segovia
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades RarasValenciaSpain
| | - Noemí De Luna
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades RarasValenciaSpain
| | - Xavier Suarez‐Calvet
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades RarasValenciaSpain
| | - Isabel Illa
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades RarasValenciaSpain
| | - Jordi Díaz‐Manera
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades RarasValenciaSpain
| | - Eduard Gallardo
- Neuromuscular Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant Pau, Universitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades RarasValenciaSpain
| |
Collapse
|
32
|
Voellenkle C, Perfetti A, Carrara M, Fuschi P, Renna LV, Longo M, Sain SB, Cardani R, Valaperta R, Silvestri G, Legnini I, Bozzoni I, Furling D, Gaetano C, Falcone G, Meola G, Martelli F. Dysregulation of Circular RNAs in Myotonic Dystrophy Type 1. Int J Mol Sci 2019; 20:ijms20081938. [PMID: 31010208 PMCID: PMC6515344 DOI: 10.3390/ijms20081938] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Circular RNAs (circRNAs) constitute a recently re-discovered class of non-coding RNAs functioning as sponges for miRNAs and proteins, affecting RNA splicing and regulating transcription. CircRNAs are generated by “back-splicing”, which is the linking covalently of 3′- and 5′-ends of exons. Thus, circRNA levels might be deregulated in conditions associated with altered RNA-splicing. Significantly, growing evidence indicates their role in human diseases. Specifically, myotonic dystrophy type 1 (DM1) is a multisystemic disorder caused by expanded CTG repeats in the DMPK gene which results in abnormal mRNA-splicing. In this investigation, circRNAs expressed in DM1 skeletal muscles were identified by analyzing RNA-sequencing data-sets followed by qPCR validation. In muscle biopsies, out of nine tested, four transcripts showed an increased circular fraction: CDYL, HIPK3, RTN4_03, and ZNF609. Their circular fraction values correlated with skeletal muscle strength and with splicing biomarkers of disease severity, and displayed higher values in more severely affected patients. Moreover, Receiver-Operating-Characteristics curves of these four circRNAs discriminated DM1 patients from controls. The identified circRNAs were also detectable in peripheral-blood-mononuclear-cells (PBMCs) and the plasma of DM1 patients, but they were not regulated significantly. Finally, increased circular fractions of RTN4_03 and ZNF609 were also observed in differentiated myogenic cell lines derived from DM1 patients. In conclusion, this pilot study identified circRNA dysregulation in DM1 patients.
Collapse
Affiliation(s)
- Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Alessandra Perfetti
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Matteo Carrara
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Paola Fuschi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Marialucia Longo
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Simona Baghai Sain
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Rea Valaperta
- Research Laboratories, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Gabriella Silvestri
- Department of Geriatrics, Orthopaedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Fondazione Policlinico Gemelli, 00168 Rome, Italy.
| | - Ivano Legnini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Irene Bozzoni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
| | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France.
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy.
| | - Germana Falcone
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, 00015 Rome, Italy.
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| |
Collapse
|
33
|
Siracusa J, Koulmann N, Banzet S. Circulating myomiRs: a new class of biomarkers to monitor skeletal muscle in physiology and medicine. J Cachexia Sarcopenia Muscle 2018; 9:20-27. [PMID: 29193905 PMCID: PMC5803618 DOI: 10.1002/jcsm.12227] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/13/2017] [Accepted: 07/05/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that target mRNAs and are consequently involved in the post-transcriptional regulation of gene expression. Some miRNAs are ubiquitously expressed in tissue, while others are tissue-specific or tissue-enriched. miRNAs can be released by cells and are found in various biofluids, including serum and plasma. Thus, measuring miRNAs in the circulation may provide information on the originating tissue or cells. MyomiRs are described as striated muscle-specific or muscle-enriched miRNAs. Their circulating levels can be measured and have been proposed to be new biomarkers of physiological and pathological muscle processes. The aims of this review are to summarize the current knowledge of circulating myomiRs, to identify the types of information they can provide about skeletal muscle, and to determine how to apply that information in the fields of research and medicine.
Collapse
Affiliation(s)
- Julien Siracusa
- Institut de Recherche Biomédicale des Armées, 1 place Valérie André, BP73, 91220, Brétigny sur Orge, France
| | - Nathalie Koulmann
- Institut de Recherche Biomédicale des Armées, 1 place Valérie André, BP73, 91220, Brétigny sur Orge, France.,Ecole du Val de Grâce, 1 place Alphonse Laveran, 75005, Paris, France
| | - Sébastien Banzet
- Ecole du Val de Grâce, 1 place Alphonse Laveran, 75005, Paris, France.,Institut de Recherche Biomédicale des Armées, 1 Rue Lieutenant Raoul Batany, 92140, Clamart, France.,INSERM UMRS1197, 1 Rue Lieutenant Raoul Batany, 92140, Clamart, France
| |
Collapse
|
34
|
Koutsoulidou A, Photiades M, Kyriakides TC, Georgiou K, Prokopi M, Kapnisis K, Lusakowska A, Nearchou M, Christou Y, Papadimas GK, Anayiotos A, Kyriakou K, Kararizou E, Zamba Papanicolaou E, Phylactou LA. Identification of exosomal muscle-specific miRNAs in serum of myotonic dystrophy patients relating to muscle disease progress. Hum Mol Genet 2018. [PMID: 28637233 DOI: 10.1093/hmg/ddx212] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy, which is characterised by progressive muscle wasting and the discovery of reliable blood-based biomarkers could be useful for the disease progress monitoring. There have been some reports showing that the presence of specific miRNAs in blood correlates with DM1. In one of these, our group identified four muscle-specific miRNAs, miR-1, miR-133a, miR-133b and miR-206, which correlated with the progression of muscle wasting observed in DM1 patients. The levels of the four muscle-specific miRNAs were elevated in the serum of DM1 patients compared to healthy participants and were also elevated in the serum of progressive muscle wasting DM1 patients compared to disease-stable DM1 patients. The aim of this work was to characterise the ontology of these four muscle-specific miRNAs in the blood circulation of DM1 patients. Here we show that the four muscle-specific miRNAs are encapsulated within exosomes isolated from DM1 patients. Our results show for the first time, the presence of miRNAs encapsulated within exosomes in blood circulation of DM1 patients. More interestingly, the levels of the four exosomal muscle-specific miRNAs are associated with the progression of muscle wasting in DM1 patients. We propose that exosomal muscle-specific miRNAs may be useful molecular biomarkers for monitoring the progress of muscle wasting in DM1 patients. There has been a growing interest regarding the clinical applications of exosomes and their role in prognosis and therapy of various diseases and the above results contribute towards this way.
Collapse
Affiliation(s)
- Andrie Koutsoulidou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Marinos Photiades
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Tassos C Kyriakides
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Kristia Georgiou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Marianna Prokopi
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,Theramir Ltd, Limassol, Cyprus
| | | | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Marianna Nearchou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Yiolanda Christou
- Neurology Clinic D, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - George K Papadimas
- Department of Neurology, Eginitio Hospital, Medical School of Athens, Athens, Greece
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Kyriakos Kyriakou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Evangelia Kararizou
- Department of Neurology, Eginitio Hospital, Medical School of Athens, Athens, Greece
| | | | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| |
Collapse
|
35
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
36
|
Li Y, Meng X, Li G, Zhou Q, Xiao J. Noncoding RNAs in Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:249-266. [PMID: 30390255 DOI: 10.1007/978-981-13-1435-3_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Denervation, disuse, fasting, and various diseases could induce skeletal muscle atrophy, which results in the decline of life quality and increase of the mortality risk for patients. Noncoding RNAs (ncRNAs) are implicated important in regulating gene expression. Thus, ncRNAs, especially microRNAs and long noncoding RNAs (lncRNAs), have gained widespread attention as crucial players in numerous physiological and pathological processes, including skeletal muscle atrophy. In this review, we comprehensively described the potential of circulating microRNAs as biomarkers, summarized the profiling of microRNAs and lncRNAs in atrophying muscles, as well as discussed the effects and underlying mechanisms of microRNA machinery proteins, microRNAs, and lncRNAs in skeletal muscle atrophy. Considering the large quantity and variety of ncRNAs, the understanding of ncRNAs in muscle atrophy is still very limited. Future studies are needed to elucidate the possibility of ncRNAs as diagnosis biomarkers and therapeutic targets in muscle atrophy.
Collapse
Affiliation(s)
- Yongqin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
37
|
Cirnigliaro M, Barbagallo C, Gulisano M, Domini CN, Barone R, Barbagallo D, Ragusa M, Di Pietro C, Rizzo R, Purrello M. Expression and Regulatory Network Analysis of miR-140-3p, a New Potential Serum Biomarker for Autism Spectrum Disorder. Front Mol Neurosci 2017; 10:250. [PMID: 28848387 PMCID: PMC5554380 DOI: 10.3389/fnmol.2017.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Given its prevalence and social impact, Autism Spectrum Disorder (ASD) is drawing much interest. Molecular basis of ASD is heterogeneous and only partially known. Many factors, including disorders comorbid with ASD, like TS (Tourette Syndrome), complicate ASD behavior-based diagnosis and make it vulnerable to bias. To further investigate ASD etiology and to identify potential biomarkers to support its precise diagnosis, we used TaqMan Low Density Array technology to profile serum miRNAs from ASD, TS, and TS+ASD patients, and unaffected controls (NCs). Through validation assays in 30 ASD, 24 TS, and 25 TS+ASD patients and 25 NCs, we demonstrated that miR-140-3p is upregulated in ASD vs.: NC, TS, and TS+ASD (Tukey's test, p-values = 0.03, = 0.01, < 0.0001, respectively). ΔCt values for miR-140-3p and YGTSS (Yale Global Tic Severity Scale) scores are positively correlated (Spearman r = 0.33; Benjamini-Hochberg p = 0.008) and show a linear relationship (p = 0.002). Network functional analysis showed that nodes controlled by miR-140-3p, especially CD38 and NRIP1 which are its validated targets, are involved in processes convergingly dysregulated in ASD, such as synaptic plasticity, immune response, and chromatin binding. Biomarker analysis proved that serum miR-140-3p can discriminate among: (1) ASD and NC (Area under the ROC curve, AUC: 0.70; sensitivity: 63.33%; specificity: 68%); (2) ASD and TS (AUC: 0.72; sensitivity: 66.66%; specificity: 70.83%); (3) ASD and TS+ASD (AUC: 0.78; sensitivity: 73.33%; specificity: 76%). Characterization of miR-140-3p network would contribute to further clarify ASD etiology. Serum miR-140-3p could represent a potential non-invasive biomarker for ASD, easy to test through liquid biopsy.
Collapse
Affiliation(s)
- Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Mariangela Gulisano
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Carla N Domini
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Rita Barone
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy.,Associazione Oasi Maria SS. Onlus (IRCCS), Institute for Research on Mental Retardation and Brain AgingTroina, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Renata Rizzo
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| |
Collapse
|
38
|
Pegoraro V, Merico A, Angelini C. Micro-RNAs in ALS muscle: Differences in gender, age at onset and disease duration. J Neurol Sci 2017; 380:58-63. [PMID: 28870590 PMCID: PMC5598142 DOI: 10.1016/j.jns.2017.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/25/2022]
Abstract
Few studies have explored the role of microRNAs (or miRNAs) in Amyotrophic Lateral Sclerosis (ALS) muscle, possibly because of the difficulty in obtaining samples and because this is a rare disease. We measured the expression levels of muscle-specific miRNAs (miRNA-1, miRNA-206, miRNA-133a, miRNA-133b, miRNA-27a) and inflammatory/angiogenic miRNAs (miRNA-155, miRNA-146a, miRNA-221, miRNA-149*) in the muscles of 13 ALS patients and controls. To highlight differences, patients were subdivided according to their gender, age at onset of symptoms, and disease duration. A significant over-expression of all miRNAs was observed in ALS patients versus controls, in male patients versus females, in patients with early onset versus patients with late onset, and in patients with long disease duration versus patients with short duration. A differential expression of miRNAs according to gender could be explained by the hormonal regulation which determines the body muscle mass. The course of the disease might reflect differential degree of muscle atrophy and signaling at miRNA levels. An evident role is also played by inflammatory/angiogenetic factors as shown by the observed miRNA changes. MyomiRNAs (especially miRNA-206) are up-regulated in ALS muscle than in controls. Inflammatory miRNA-(especially miRNA-221) is up-regulated in ALS than in controls. There is gender difference in expression of myo-miRNAs and inflammatory miRNAs. MiRNAs levels differ according to age at onset and disease duration.
Collapse
Affiliation(s)
| | - Antonio Merico
- Fondazione San Camillo Hospital IRCCS, Lido Venice, Italy
| | | |
Collapse
|
39
|
CombiROC: an interactive web tool for selecting accurate marker combinations of omics data. Sci Rep 2017; 7:45477. [PMID: 28358118 PMCID: PMC5371980 DOI: 10.1038/srep45477] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022] Open
Abstract
Diagnostic accuracy can be improved considerably by combining multiple markers, whose performance in identifying diseased subjects is usually assessed via receiver operating characteristic (ROC) curves. The selection of multimarker signatures is a complicated process that requires integration of data signatures with sophisticated statistical methods. We developed a user-friendly tool, called CombiROC, to help researchers accurately determine optimal markers combinations from diverse omics methods. With CombiROC data from different domains, such as proteomics and transcriptomics, can be analyzed using sensitivity/specificity filters: the number of candidate marker panels rising from combinatorial analysis is easily optimized bypassing limitations imposed by the nature of different experimental approaches. Leaving to the user full control on initial selection stringency, CombiROC computes sensitivity and specificity for all markers combinations, performances of best combinations and ROC curves for automatic comparisons, all visualized in a graphic interface. CombiROC was designed without hard-coded thresholds, allowing a custom fit to each specific data: this dramatically reduces the computational burden and lowers the false negative rates given by fixed thresholds. The application was validated with published data, confirming the marker combination already originally described or even finding new ones. CombiROC is a novel tool for the scientific community freely available at http://CombiROC.eu.
Collapse
|
40
|
Meola G, Cardani R. Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurol Sci 2017; 38:535-546. [PMID: 28078562 DOI: 10.1007/s10072-016-2805-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. To date, two distinct forms caused by similar mutations in two different genes have been identified: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2). Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of function has been suggested to cause the complex phenotype in DM1 and DM2. However, despite clinical and genetic similarities, DM1 and DM2 may be considered as distinct disorders. This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Piazza E. Malan, 1, San Donato Mil., 20097, Milan, Italy. .,Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
41
|
Llano-Diez M, Ortez CI, Gay JA, Álvarez-Cabado L, Jou C, Medina J, Nascimento A, Jimenez-Mallebrera C. Digital PCR quantification of miR-30c and miR-181a as serum biomarkers for Duchenne muscular dystrophy. Neuromuscul Disord 2017; 27:15-23. [DOI: 10.1016/j.nmd.2016.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
42
|
miR-454 functions as an oncogene by inhibiting CHD5 in hepatocellular carcinoma. Oncotarget 2016; 6:39225-34. [PMID: 26287602 PMCID: PMC4770768 DOI: 10.18632/oncotarget.4407] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/17/2015] [Indexed: 01/04/2023] Open
Abstract
Previous studies showed that miR-454 acted as an oncogene or tumor suppressor in cancer. However, its function in HCC remains unknown. In this study, we found that miR-454 expression was upregulated in HCC cell lines and tissues. Knockdown of miR-454 inhibited HCC cell proliferation and invasion and epithelial mesenchymal transition (EMT), whereas overexpression of miR-454 promoted HCC cell proliferation and invasion and EMT. Furthermore, we identified the CHD5 as a direct target of miR-454. CHD5 was downregulated in HCC tissues and cell lines and the expression level of CHD5 was inversely correlated with the expression of miR-454 in HCC tissues. In addition, knockdown of miR-454 inhibited the growth of HepG2-engrafted tumors in vivo. Taken together, these results indicated that miR-454 functioned as an oncogene in HCC.
Collapse
|
43
|
Validation of plasma microRNAs as biomarkers for myotonic dystrophy type 1. Sci Rep 2016; 6:38174. [PMID: 27905532 PMCID: PMC5131283 DOI: 10.1038/srep38174] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022] Open
Abstract
Non-invasive and simple to measure biomarkers are still an unmet need for myotonic dystrophy type 1 (DM1). Indeed, muscle biopsies can be extremely informative, but their invasive nature limits their application. Extracellular microRNAs are emerging humoral biomarkers and preliminary studies identified a group of miRNAs that are deregulated in the plasma or serum of small groups of DM1 patients. Here we adopted very stringent selection and normalization criteria to validate or disprove these miRNAs in 103 DM1 patients and 111 matched controls. We confirmed that 8 miRNAs out of 12 were significantly deregulated in DM1 patients: miR-1, miR-27b, miR-133a, miR-133b, miR-206, miR-140-3p, miR-454 and miR-574. The levels of these miRNAs, alone or in combination, discriminated DM1 from controls significantly, and correlated with both skeletal muscle strength and creatine kinase values. Interestingly, miR-133b levels were significantly higher in DM1 female patients. Finally, the identified miRNAs were also deregulated in the plasma of a small group (n = 30) of DM2 patients. In conclusion, this study proposes that miRNAs might be useful as DM1 humoral biomarkers.
Collapse
|
44
|
Tumor invasion and metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell lung cancer. Oncotarget 2016; 6:44609-22. [PMID: 26587830 PMCID: PMC4792579 DOI: 10.18632/oncotarget.6338] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor that has an extremely poor clinical prognosis. Metastasis is the key event in SCLC progression, but its mechanism has not been fully elucidated. MicroRNAs (miRNAs) have been proven to participate in cancer processes, but their function in SCLC has not been thoroughly studied either. Here, we performed microarray and quantitative real-time PCR (qRT-PCR) analysesto identify the miRNAsassociated with metastasis and prognosis in SCLC as well as the correlation between serum and tissue. We also explored these miRNAs' promising molecular mechanisms by 3′UTR reporter assay and immunoblotting. We showed thatmiR-184 significantly attenuated the metastasis of SCLC, whereas miR-574–5p enhanced it. Both miRNAs were found to participate in β-catenin signaling by suppressing protein tyrosine phosphatase receptor type U (PTPRU)orendothelial PAS domain protein 1 (EPAS1). Furthermore, miR-574–5p was verified as an independent prognostic risk factor for SCLC. Taken together, our findings providea comprehensive analysis of the miRNA expression pattern in SCLC and indicate that miRNAs may serve as potential therapeutic and prognostic predictors in SCLC.
Collapse
|
45
|
Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle. Biochem Biophys Res Commun 2016; 479:590-595. [PMID: 27671199 DOI: 10.1016/j.bbrc.2016.09.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Muscle wasting is estimated to affect 40-60% of alcoholics, and is more common than cirrhosis among chronic alcohol abusers. The molecular and cellular mechanisms underlying alcohol-related musculoskeletal dysfunction are, however, poorly understood. Muscle-specific microRNAs (miRNAs) referred to as myoMirs are now known to play a key role in both myogenesis and muscle atrophy. Yet, no studies have investigated a role for myoMirs in alcohol-related skeletal muscle damage. We developed a zebrafish model of chronic ethanol exposure to better define the mechanisms mediating alcohol-induced muscle atrophy. Adult fish maintained at 0.5% ethanol for eight weeks demonstrated significantly reduced muscle fiber cross-sectional area (∼12%, P < 0.05) compared to fish housed in normal water. Zebrafish miRNA microarray revealed marked changes in several miRNAs with ethanol treatment. Importantly, miR-140, a miRNA that shows 100% sequence homology with miR-140 from both mouse and human, is decreased 10-fold in ethanol treated fish. miR-140 targets several members of the Notch signaling pathway such as DNER, JAG1, and Hey1, and PCR data show that both Hey1 and Notch 1 are significantly up-related (3-fold) in muscle of ethanol treated fish. In addition, miR-146a, which targets the Notch antagonist Numb, is elevated in muscle from ethanol-treated fish. Upregulation of Notch signaling suppresses myogenesis and maintains muscle satellite cell quiescence. These data suggest that miRNAs targeting Notch are likely to play important roles in alcohol-related myopathy. Furthermore, zebrafish may serve as a useful model for better understanding the role of microRNAs in alcohol-related tissue damage.
Collapse
|
46
|
Siracusa J, Koulmann N, Bourdon S, Goriot ME, Banzet S. Circulating miRNAs as Biomarkers of Acute Muscle Damage in Rats. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1313-27. [PMID: 26952641 DOI: 10.1016/j.ajpath.2016.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
Skeletal muscle damage is an often-occurring event. Diagnosis using the classic blood marker creatine kinase sometimes yields unsatisfactory results due to great interindividual variability. Therefore, the identification of reliable biomarkers is important. Our aim was to detect and characterize circulating miRNAs in plasma in response to acute notexin-induced muscle damage in rats. Real-time quantitative RT-PCR profiling led to the identification of miRNAs that were highly increased in plasma in response to notexin injection into several muscles, namely miR-1-3p, -133a-3p, -133b-3p, -206-3p, -208b-3p, and -499-5p, as well as miR-378a-3p and miR-434-3p. Peak values of miRNAs appeared 12 hours after injury, and were contained both in the vesicular and nonvesicular fractions of plasma. Receiver operating characteristic curve analysis showed that circulating miRNAs could accurately discriminate between damaged and nondamaged tissues. Furthermore, we tested the robustness of expression profiles in slow- and fast-type fibers. Upon inducing damage in slow- or fast-type muscle, we found that the damaged-muscle phenotype had a very limited impact on the miRNA response. Similarly, the circulating miRNAs selected were not affected by hemolysis or platelets, two pre-analytical factors known to affect plasma miRNA profiles. Taken together, our results show that circulating muscle-specific miRNAs, miR-378a-3p and miR-434-3p, are robust and promising biomarkers of acute muscle damage in rats.
Collapse
Affiliation(s)
- Julien Siracusa
- Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Nathalie Koulmann
- Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France; Ecole du Val-de-Grâce, Paris, France
| | - Stéphanie Bourdon
- Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Marie-Emmanuelle Goriot
- Armed Forces Biomedical Research Institute/Armed Forces Blood Transfusion Center Jean Julliard, Clamart, France; INSERM U 1197, Clamart, France
| | - Sébastien Banzet
- Armed Forces Biomedical Research Institute/Armed Forces Blood Transfusion Center Jean Julliard, Clamart, France; INSERM U 1197, Clamart, France.
| |
Collapse
|
47
|
Six Serum miRNAs Fail to Validate as Myotonic Dystrophy Type 1 Biomarkers. PLoS One 2016; 11:e0150501. [PMID: 26919350 PMCID: PMC4769077 DOI: 10.1371/journal.pone.0150501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by expansion of a CTG microsatellite in the 3' untranslated region of the DMPK gene. Despite characteristic muscular, cardiac, and neuropsychological symptoms, CTG trinucleotide repeats are unstable both in the somatic and germinal lines, making the age of onset, clinical presentation, and disease severity very variable. A molecular biomarker to stratify patients and to follow disease progression is, thus, an unmet medical need. Looking for a novel biomarker, and given that specific miRNAs have been found to be misregulated in DM1 heart and muscle tissues, we profiled the expression of 175 known serum miRNAs in DM1 samples. The differences detected between patients and controls were less than 2.6 fold for all of them and a selection of six candidate miRNAs, miR-103, miR-107, miR-21, miR-29a, miR-30c, and miR-652 all failed to show consistent differences in serum expression in subsequent validation experiments.
Collapse
|
48
|
Epigenetic Reprogramming of Muscle Progenitors: Inspiration for Clinical Therapies. Stem Cells Int 2015; 2016:6093601. [PMID: 26839565 PMCID: PMC4709771 DOI: 10.1155/2016/6093601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/23/2023] Open
Abstract
In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD).
Collapse
|
49
|
Meola G, Cardani R. Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism. J Neuromuscul Dis 2015; 2:S59-S71. [PMID: 27858759 PMCID: PMC5240594 DOI: 10.3233/jnd-150088] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in CNBP. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders. The pathogenesis of DM is explained by a common RNA gain-of-function mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. However additional pathogenic mechanism like changes in gene expression, modifier genes, protein translation and micro-RNA metabolism may also contribute to disease pathology and to clarify the phenotypic differences between these two types of myotonic dystrophies.This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
50
|
Dumache R, Rogobete AF, Bedreag OH, Sarandan M, Cradigati AC, Papurica M, Dumbuleu CM, Nartita R, Sandesc D. Use of miRNAs as biomarkers in sepsis. Anal Cell Pathol (Amst) 2015; 2015:186716. [PMID: 26221578 PMCID: PMC4499375 DOI: 10.1155/2015/186716] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 12/19/2022] Open
Abstract
Sepsis is one of the most common causes of death in critical patients. Severe generalized inflammation, infections, and severe physiological imbalances significantly decrease the survival rate with more than 50%. Moreover, monitoring, evaluation, and therapy management often become extremely difficult for the clinician in this type of patients. Current methods of diagnosing sepsis vary based especially on the determination of biochemical-humoral markers, such as cytokines, components of the complement, and proinflammatory and anti-inflammatory compounds. Recent studies highlight the use of new biomarkers for sepsis, namely, miRNAs. miRNAs belong to a class of small, noncoding RNAs with an approximate content of 19-23 nucleotides. Following biochemical and physiological imbalances, the expression of miRNAs in blood or other body fluids changes significantly. Moreover, its stability, specificity, and selectivity make miRNAs ideal candidates for sepsis biomarkers. In conclusion, we can affirm that stable species of circulating miRNAs represent potential biomarkers for monitoring the evolution of sepsis.
Collapse
Affiliation(s)
- Raluca Dumache
- Department of Forensic Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandru Florin Rogobete
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Faculty of Chemistry, Biology, and Geography, West University of Timisoara, 300115 Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mirela Sarandan
- Clinic of Anaesthesia and Intensive Care “Casa Austria”, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
| | - Alina Carmen Cradigati
- Clinic of Anaesthesia and Intensive Care “Casa Austria”, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
| | - Marius Papurica
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Corina Maria Dumbuleu
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
| | - Radu Nartita
- Faculty of Chemistry, Biology, and Geography, West University of Timisoara, 300115 Timisoara, Romania
| | - Dorel Sandesc
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|