1
|
van de Velde NM, Koeks Z, Signorelli M, Verwey N, Overzier M, Bakker JA, Sajeev G, Signorovitch J, Ricotti V, Verschuuren J, Brown K, Spitali P, Niks EH. Longitudinal Assessment of Creatine Kinase, Creatine/Creatinine ratio, and Myostatin as Monitoring Biomarkers in Becker Muscular Dystrophy. Neurology 2023; 100:e975-e984. [PMID: 36849458 PMCID: PMC9990441 DOI: 10.1212/wnl.0000000000201609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The slow and variable disease progression of Becker muscular dystrophy (BMD) urges the development of biomarkers to facilitate clinical trials. We explored changes in 3 muscle-enriched biomarkers in serum of patients with BMD over 4-year time and studied associations with disease severity, disease progression, and dystrophin levels in BMD. METHODS We quantitatively measured creatine kinase (CK) using the International Federation of Clinical Chemistry reference method, creatine/creatinineratio (Cr/Crn) using liquid chromatography-tandem mass spectrometry, and myostatin with ELISA in serum and assessed functional performance using the North Star Ambulatory Assessment (NSAA), 10-meter run velocity (TMRv), 6-Minute Walking Test (6MWT), and forced vital capacity in a 4-year prospective natural history study. Dystrophin levels were quantified in the tibialis anterior muscle using capillary Western immunoassay. The correlation between biomarkers, age, functional performance, mean annual change, and prediction of concurrent functional performance was analyzed using linear mixed models. RESULTS Thirty-four patients with 106 visits were included. Eight patients were nonambulant at baseline. Cr/Crn and myostatin were highly patient specific (intraclass correlation coefficient for both = 0.960). Cr/Crn was strongly negatively correlated, whereas myostatin was strongly positively correlated with the NSAA, TMRv, and 6MWT (Cr/Crn rho = -0.869 to -0.801 and myostatin rho = 0.792 to 0.842, all p < 0.001). CK showed a negative association with age (p = 0.0002) but was not associated with patients' performance. Cr/Crn and myostatin correlated moderately with the average annual change of the 6MWT (rho = -0.532 and 0.555, p = 0.02). Dystrophin levels did not correlate with the selected biomarkers nor with performance. Cr/Crn, myostatin, and age could explain up to 75% of the variance of concurrent functional performance of the NSAA, TMRv, and 6MWT. DISCUSSION Both Cr/Crn and myostatin could potentially serve as monitoring biomarkers in BMD, as higher Cr/Crn and lower myostatin were associated with lower motor performance and predictive of concurrent functional performance when combined with age. Future studies are needed to more precisely determine the context of use of these biomarkers.
Collapse
Affiliation(s)
- Nienke M van de Velde
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Zaïda Koeks
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Mirko Signorelli
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Nisha Verwey
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Maurice Overzier
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Jaap A Bakker
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Gautam Sajeev
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - James Signorovitch
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Valeria Ricotti
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Jan Verschuuren
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Kristy Brown
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Pietro Spitali
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom
| | - Erik H Niks
- From the Departments of Neurology (N.M.V., Z.K., J.V., E.H.N.), Biomedical Data Sciences (M.S.), Human Genetics (N.V., M.O., P.S.), and Clinical Chemistry and Laboratory Medicine (J.A.B.), Leiden University Medical Center, the Netherlands; Duchenne Center Netherlands (N.M.V., J.V., P.S., E.H.N.); European Reference Network for Rare Neuromuscular Diseases [ERN EURO-NMD] (N.M.V., Z.K., N.V., M.O., J.V., P.S., E.H.N.); Mathematical Institute (M.S.), Leiden University, the Netherlands; Analysis Group Inc (G.S., J.S.), Boston, MA; Solid Biosciences Inc (V.R., K.B.), Cambridge, MA; and NIHR Great Ormond Street Hospital Biomedical Research Centre (V.R.), Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, United Kingdom.
| |
Collapse
|
2
|
Zygmunt AM, Wong BL, Horn PS, Lambert J, Bange JE, Rybalsky I, Chouteau W, Tian C. A longitudinal study of creatine kinase and creatinine levels in Duchenne muscular dystrophy. Muscle Nerve 2023; 67:138-145. [PMID: 36444146 DOI: 10.1002/mus.27760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION/AIMS Management of Duchenne muscular dystrophy (DMD) has entered an era featuring novel treatments. Trackable noninvasive biomarkers could improve disease progression monitoring and drug effect detection. Our aim in this study was to measure changes in selected noninvasive biomarkers and assess their relationship to age and motor function. METHODS We retrospectively studied 555 patients with DMD who had at least 12 months of treatment of glucocorticoids and were not enrolled in trials of potential disease-modifying therapies. We extracted biomarker data of serum creatine kinase (CK), serum creatinine (Cr), urine Cr, and urine Cr/urine osmolality (osm), as well as functional data for age at loss of ambulation and Functional Motor Scale (FMS) values from patients' clinical records. Data were analyzed using linear mixed-model analyses. RESULTS CK, serum Cr, urine Cr, and urine Cr/urine osm all decreased with declining motor function. CK consistently decreased and FMS score consistently worsened with age without clear inflection points. There was an increased odds ratio for LOA with lower values of CK, serum Cr, urine Cr, and urine Cr/urine osm, most notably for urine Cr. DISCUSSION Although individual biomarker values are challenging to directly apply clinically, our study has demonstrated that trends over time may complement functional measures in the assessment of individuals with DMD. Future studies could elucidate predictive utility of these biomarkers in assessing motor function changes in DMD.
Collapse
Affiliation(s)
- Alexander M Zygmunt
- Division of Neurology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brenda L Wong
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Paul S Horn
- Division of Neurology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joshua Lambert
- Department of Psychology, University of Alabama, Tuscaloosa, Alabama
| | - Jean E Bange
- Division of Neurology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Irina Rybalsky
- Division of Neurology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Wendy Chouteau
- Division of Neurology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Cuixia Tian
- Division of Neurology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
3
|
Eser G, Topaloğlu H. Current Outline of Exon Skipping Trials in Duchenne Muscular Dystrophy. Genes (Basel) 2022; 13:genes13071241. [PMID: 35886024 PMCID: PMC9320322 DOI: 10.3390/genes13071241] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
Molecular treatments for Duchenne muscular dystrophy (DMD) are already in clinical practice. One particular means is exon skipping, an approach which has more than 15 years of background. There are several promising clinical trials based on earlier works. The aim is to be able to initiate the production of enough dystrophin to change the rate of progression and create a clinical shift towards the better. Some of these molecules already have received at least conditional approval by health authorities; however, we still need new accumulating data.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW This review highlights the key studies investigating various types of biomarkers in Duchenne muscular dystrophy (DMD). RECENT FINDINGS Several proteomic and metabolomic studies have been undertaken in both human DMD patients and animal models of DMD that have identified potential biomarkers in DMD. Although there have been a number of proteomic and metabolomic studies that have identified various potential biomarkers in DMD, more definitive studies still need to be undertaken in DMD patients to firmly correlate these biomarkers with diagnosis, disease progression, and monitoring the effects of novel treatment strategies being developed.
Collapse
Affiliation(s)
- Theo Lee-Gannon
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Xuan Jiang
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tara C Tassin
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pradeep P A Mammen
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Heart Failure, Ventricular Assist Device & Heart Transplant Program, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Passarelli C, Selvatici R, Carrieri A, Di Raimo FR, Falzarano MS, Fortunato F, Rossi R, Straub V, Bushby K, Reza M, Zharaieva I, D'Amico A, Bertini E, Merlini L, Sabatelli P, Borgiani P, Novelli G, Messina S, Pane M, Mercuri E, Claustres M, Tuffery-Giraud S, Aartsma-Rus A, Spitali P, T'Hoen PAC, Lochmüller H, Strandberg K, Al-Khalili C, Kotelnikova E, Lebowitz M, Schwartz E, Muntoni F, Scapoli C, Ferlini A. Tumor Necrosis Factor Receptor SF10A (TNFRSF10A) SNPs Correlate With Corticosteroid Response in Duchenne Muscular Dystrophy. Front Genet 2020; 11:605. [PMID: 32719714 PMCID: PMC7350910 DOI: 10.3389/fgene.2020.00605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a rare and severe X-linked muscular dystrophy in which the standard of care with variable outcome, also due to different drug response, is chronic off-label treatment with corticosteroids (CS). In order to search for SNP biomarkers for corticosteroid responsiveness, we genotyped variants across 205 DMD-related genes in patients with differential response to steroid treatment. Methods and Findings We enrolled a total of 228 DMD patients with identified dystrophin mutations, 78 of these patients have been under corticosteroid treatment for at least 5 years. DMD patients were defined as high responders (HR) if they had maintained the ability to walk after 15 years of age and low responders (LR) for those who had lost ambulation before the age of 10 despite corticosteroid therapy. Based on interactome mapping, we prioritized 205 genes and sequenced them in 21 DMD patients (discovery cohort or DiC = 21). We identified 43 SNPs that discriminate between HR and LR. Discriminant Analysis of Principal Components (DAPC) prioritized 2 response-associated SNPs in the TNFRSF10A gene. Validation of this genotype was done in two additional larger cohorts composed of 46 DMD patients on corticosteroid therapy (validation cohorts or VaC1), and 150 non ambulant DMD patients and never treated with corticosteroids (VaC2). SNP analysis in all validation cohorts (N = 207) showed that the CT haplotype is significantly associated with HR DMDs confirming the discovery results. Conclusion We have shown that TNFRSF10A CT haplotype correlates with corticosteroid response in DMD patients and propose it as an exploratory CS response biomarker.
Collapse
Affiliation(s)
- Chiara Passarelli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,U.O.C. Laboratory of Medical Genetics, Paediatric Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Rita Selvatici
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alberto Carrieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rachele Rossi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katie Bushby
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mojgan Reza
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Irina Zharaieva
- Dubowitz Neuromuscular Center, University College London Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom
| | - Adele D'Amico
- Molecular Medicine and Unit of Neuromuscular and Neurodegenerative Diseases, Paediatric Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Enrico Bertini
- Molecular Medicine and Unit of Neuromuscular and Neurodegenerative Diseases, Paediatric Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Sabatelli
- IRCCS Rizzoli & Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
| | - Paola Borgiani
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Istituto Neuromed, IRCCS, Pozzilli, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, Nemo Sud Clinical Center, University of Messina, Messina, Italy
| | - Marika Pane
- Paediatric Neurology Unit, Centro Clinico Nemo, IRCCS Fondazione Policlinico A. Gemelli, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Eugenio Mercuri
- Paediatric Neurology Unit, Centro Clinico Nemo, IRCCS Fondazione Policlinico A. Gemelli, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Mireille Claustres
- Laboratory of Genetics of Rare Diseases, University of Montpellier, Montpellier, France
| | - Sylvie Tuffery-Giraud
- Laboratory of Genetics of Rare Diseases, University of Montpellier, Montpellier, France
| | - Annemieke Aartsma-Rus
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A C T'Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.,Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Kristin Strandberg
- Department of Systems Biology, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili
- Department of Systems Biology, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | - Francesco Muntoni
- Dubowitz Neuromuscular Center, University College London Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom.,NIH Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Great Ormond Street Hospital Trust, London, United Kingdom
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Dubowitz Neuromuscular Center, University College London Institute of Child Health & Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
6
|
Signorelli M, Ayoglu B, Johansson C, Lochmüller H, Straub V, Muntoni F, Niks E, Tsonaka R, Persson A, Aartsma-Rus A, Nilsson P, Al-Khalili Szigyarto C, Spitali P. Longitudinal serum biomarker screening identifies malate dehydrogenase 2 as candidate prognostic biomarker for Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2020; 11:505-517. [PMID: 31881125 PMCID: PMC7113516 DOI: 10.1002/jcsm.12517] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/13/2019] [Accepted: 10/17/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a fatal disease for which no cure is available. Clinical trials have shown to be largely underpowered due to inter-individual variability and noisy outcome measures. The availability of biomarkers able to anticipate clinical benefit is highly needed to improve clinical trial design and facilitate drug development. METHODS In this study, we aimed to appraise the value of protein biomarkers to predict prognosis and monitor disease progression or treatment outcome in patients affected by DMD. We collected clinical data and 303 blood samples from 157 DMD patients in three clinical centres; 78 patients contributed multiple blood samples over time, with a median follow-up time of 2 years. We employed linear mixed models to identify biomarkers that are associated with disease progression, wheelchair dependency, and treatment with corticosteroids and performed survival analysis to find biomarkers whose levels are associated with time to loss of ambulation. RESULTS Our analysis led to the identification of 21 proteins whose levels significantly decrease with age and nine proteins whose levels significantly increase. Seven of these proteins are also differentially expressed in non-ambulant patients, and three proteins are differentially expressed in patients treated with glucocorticosteroids. Treatment with corticosteroids was found to partly counteract the effect of disease progression on two biomarkers, namely, malate dehydrogenase 2 (MDH2, P = 0.0003) and ankyrin repeat domain 2 (P = 0.0005); however, patients treated with corticosteroids experienced a further reduction on collagen 1 serum levels (P = 0.0003), especially following administration of deflazacort. A time to event analysis allowed to further support the use of MDH2 as a prognostic biomarker as it was associated with an increased risk of wheelchair dependence (P = 0.0003). The obtained data support the prospective evaluation of the identified biomarkers in natural history and clinical trials as exploratory biomarkers. CONCLUSIONS We identified a number of serum biomarkers associated with disease progression, loss of ambulation, and treatment with corticosteroids. The identified biomarkers are promising candidate prognostic and surrogate biomarkers, which may support drug developers if confirmed in prospective studies. The serum levels of MDH2 are of particular interest, as they correlate with disease stage and response to treatment with corticosteroids, and are also associated with the risk of wheelchair dependency and pulmonary function.
Collapse
Affiliation(s)
- Mirko Signorelli
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Burcu Ayoglu
- Department of Protein Sciences, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Camilla Johansson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Volker Straub
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, UK
| | - Erik Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roula Tsonaka
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Anja Persson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Annemieke Aartsma-Rus
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Nilsson
- Division of Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili Szigyarto
- Department of Protein Sciences, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Spitali P, Hettne K, Tsonaka R, Charrout M, van den Bergen J, Koeks Z, Kan HE, Hooijmans MT, Roos A, Straub V, Muntoni F, Al-Khalili-Szigyarto C, Koel-Simmelink MJA, Teunissen CE, Lochmüller H, Niks EH, Aartsma-Rus A. Tracking disease progression non-invasively in Duchenne and Becker muscular dystrophies. J Cachexia Sarcopenia Muscle 2018; 9:715-726. [PMID: 29682908 PMCID: PMC6104105 DOI: 10.1002/jcsm.12304] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/25/2018] [Accepted: 03/10/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Analysis of muscle biopsies allowed to characterize the pathophysiological changes of Duchenne and Becker muscular dystrophies (D/BMD) leading to the clinical phenotype. Muscle tissue is often investigated during interventional dose finding studies to show in situ proof of concept and pharmacodynamics effect of the tested drug. Less invasive readouts are needed to objectively monitor patients' health status, muscle quality, and response to treatment. The identification of serum biomarkers correlating with clinical function and able to anticipate functional scales is particularly needed for personalized patient management and to support drug development programs. METHODS A large-scale proteomic approach was used to identify serum biomarkers describing pathophysiological changes (e.g. loss of muscle mass), association with clinical function, prediction of disease milestones, association with in vivo 31 P magnetic resonance spectroscopy data and dystrophin levels in muscles. Cross-sectional comparisons were performed to compare DMD patients, BMD patients, and healthy controls. A group of DMD patients was followed up for a median of 4.4 years to allow monitoring of individual disease trajectories based on yearly visits. RESULTS Cross-sectional comparison enabled to identify 10 proteins discriminating between healthy controls, DMD and BMD patients. Several proteins (285) were able to separate DMD from healthy, while 121 proteins differentiated between BMD and DMD; only 13 proteins separated BMD and healthy individuals. The concentration of specific proteins in serum was significantly associated with patients' performance (e.g. BMP6 serum levels and elbow flexion) or dystrophin levels (e.g. TIMP2) in BMD patients. Analysis of longitudinal trajectories allowed to identify 427 proteins affected over time indicating loss of muscle mass, replacement of muscle by adipose tissue, and cardiac involvement. Over-representation analysis of longitudinal data allowed to highlight proteins that could be used as pharmacodynamic biomarkers for drugs currently in clinical development. CONCLUSIONS Serum proteomic analysis allowed to not only discriminate among DMD, BMD, and healthy subjects, but it enabled to detect significant associations with clinical function, dystrophin levels, and disease progression.
Collapse
Affiliation(s)
- Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kristina Hettne
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Roula Tsonaka
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohammed Charrout
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Zaïda Koeks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermien E Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Melissa T Hooijmans
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | | | - Marleen J A Koel-Simmelink
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center Amsterdam, The Netherlands
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Crowe KE, Shao G, Flanigan KM, Martin PT. N-terminal α Dystroglycan (αDG-N): A Potential Serum Biomarker for Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 3:247-260. [PMID: 27854211 DOI: 10.3233/jnd-150127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Duchenne Muscular Dystrophy (DMD) is a severe, progressive, neuromuscular disorder of childhood. While a number of serum factors have been identified as potential biomarkers of DMD, none, as yet, are proteins within the dystrophin-associated glycoprotein (DAG) complex. OBJECTIVE We have developed an immobilized serum ELISA assay to measure the expression of a constitutively cleaved and secreted component of the DAG complex, the N-terminal domain of α dystroglycan (αDG-N), and assayed relative expression in serum from muscular dystrophy patients and normal controls. METHODS ELISAs of immobilized patient or mouse serum and Western blots were used to assess αDG-N expression. RESULTS Immobilization of diluted serum on ELISA plates was important for this assay, as methods to measure serum αDG-N in solution were less robust. αDG-N ELISA signals were significantly reduced in DMD serum (27±3% decrease, n = 9, p < 0.001) relative to serum from otherwise normal controls (n = 38), and calculated serum αDG-N concentrations were reduced in DMD relative to normal (p < 0.01) and Becker Muscular Dystrophy (n = 11, p < 0.05) patient serum. By contrast, ELISA signals from patients with Inclusion Body Myositis were not different than normal (4±3% decrease, n = 8, p = 0.99). αDG-N serum signals were also significantly reduced in utrophin-deficient mdx mice as compared to mdx and wild type mice. CONCLUSIONS Our results are the first demonstration of a component of the DAG complex as a potential serum biomarker in DMD. Such a serum measure could be further developed as a tool to help reflect overall muscle DAG complex expression or stability.
Collapse
Affiliation(s)
- Kelly E Crowe
- Graduate Program in Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Guohong Shao
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kevin M Flanigan
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
9
|
Identification of plasma interleukins as biomarkers for deflazacort and omega-3 based Duchenne muscular dystrophy therapy. Cytokine 2018; 102:55-61. [DOI: 10.1016/j.cyto.2017.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023]
|
10
|
226 th ENMC International Workshop:: Towards validated and qualified biomarkers for therapy development for Duchenne muscular dystrophy 20-22 January 2017, Heemskerk, The Netherlands. Neuromuscul Disord 2017; 28:77-86. [PMID: 29203356 DOI: 10.1016/j.nmd.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022]
|
11
|
Aartsma-Rus A, Straub V, Hemmings R, Haas M, Schlosser-Weber G, Stoyanova-Beninska V, Mercuri E, Muntoni F, Sepodes B, Vroom E, Balabanov P. Development of Exon Skipping Therapies for Duchenne Muscular Dystrophy: A Critical Review and a Perspective on the Outstanding Issues. Nucleic Acid Ther 2017; 27:251-259. [PMID: 28796573 PMCID: PMC5649120 DOI: 10.1089/nat.2017.0682] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare, severe, progressive muscle-wasting disease leading to disability and premature death. Patients lack the muscle membrane-stabilizing protein dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach that aims to induce production of partially functional dystrophins. Recently, an AON targeting exon 51 became the first of its class to be approved by the United States regulators [Food and Drug Administration (FDA)] for the treatment of DMD. A unique aspect of the exon-skipping approach for DMD is that, depending on the size and location of the mutation, different exons need to be skipped. This challenge raises a number of questions regarding the development and regulatory approval of those individual compounds. In this study, we present a perspective on those questions, following a European stakeholder meeting involving academics, regulators, and representatives from industry and patient organizations, and in the light of the most recent scientific and regulatory experience.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- 1 Department of Human Genetics, Leiden University Medical Center , Leiden, the Netherlands .,2 John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- 2 John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Robert Hemmings
- 3 Medicines and Healthcare Product Regulatory Agency , London, United Kingdom
| | - Manuel Haas
- 4 Central Nervous System and Ophthalmology, Scientific and Regulatory Management Department, Human Medicines Evaluation Division, European Medicines Agency , London, United Kingdom
| | | | | | - Eugenio Mercuri
- 7 Department of Pediatric Neurology, Catholic University , Rome, Italy .,8 Centro Clinico Nemo, Policlinico Gemelli , Rome, Italy
| | - Francesco Muntoni
- 9 Dubowitz Neuromuscular Center, UCL Great Ormond Street Institute of Child Health , London, United Kingdom
| | - Bruno Sepodes
- 10 Faculdade de Farmácia, Universidade de Lisboa , Lisboa, Portugal
| | - Elizabeth Vroom
- 11 United Parent Project Muscular Dystrophy , Amsterdam, the Netherlands
| | - Pavel Balabanov
- 4 Central Nervous System and Ophthalmology, Scientific and Regulatory Management Department, Human Medicines Evaluation Division, European Medicines Agency , London, United Kingdom
| |
Collapse
|
12
|
Carr SJ, Zahedi RP, Lochmüller H, Roos A. Mass spectrometry-based protein analysis to unravel the tissue pathophysiology in Duchenne muscular dystrophy. Proteomics Clin Appl 2017. [DOI: 10.1002/prca.201700071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephanie J. Carr
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
| | - René P. Zahedi
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V.; Dortmund Germany
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V.; Dortmund Germany
| |
Collapse
|
13
|
Marsolier J, Laforet P, Pegoraro E, Vissing J, Richard I. 1st International Workshop on Clinical trial readiness for sarcoglycanopathies 15-16 November 2016, Evry, France. Neuromuscul Disord 2017; 27:683-692. [PMID: 28521973 DOI: 10.1016/j.nmd.2017.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Justine Marsolier
- Généthon, INSERM, U951, INTEGRARE Research Unit, Evry F-91002, France
| | | | | | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Isabelle Richard
- Généthon, INSERM, U951, INTEGRARE Research Unit, Evry F-91002, France.
| | | |
Collapse
|
14
|
Guiraud S, Edwards B, Squire SE, Babbs A, Shah N, Berg A, Chen H, Davies KE. Identification of serum protein biomarkers for utrophin based DMD therapy. Sci Rep 2017; 7:43697. [PMID: 28252048 PMCID: PMC5333102 DOI: 10.1038/srep43697] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/30/2017] [Indexed: 12/18/2022] Open
Abstract
Despite promising therapeutic avenues, there is currently no effective treatment for Duchenne muscular dystrophy (DMD), a lethal monogenic disorder caused by the loss of the large cytoskeletal protein, dystrophin. A highly promising approach to therapy, applicable to all DMD patients irrespective to their genetic defect, is to modulate utrophin, a functional paralogue of dystrophin, able to compensate for the primary defects of DMD restoring sarcolemmal stability. One of the major difficulties in assessing the effectiveness of therapeutic strategies is to define appropriate outcome measures. In the present study, we utilised an aptamer based proteomics approach to profile 1,310 proteins in plasma of wild-type, mdx and Fiona (mdx overexpressing utrophin) mice. Comparison of the C57 and mdx sera revealed 83 proteins with statistically significant >2 fold changes in dystrophic serum abundance. A large majority of previously described biomarkers (ANP32B, THBS4, CAMK2A/B/D, CYCS, CAPNI) were normalised towards wild-type levels in Fiona animals. This work also identified potential mdx markers specific to increased utrophin (DUS3, TPI1) and highlights novel mdx biomarkers (GITR, MYBPC1, HSP60, SIRT2, SMAD3, CNTN1). We define a panel of putative protein mdx biomarkers to evaluate utrophin based strategies which may help to accelerate their translation to the clinic.
Collapse
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Benjamin Edwards
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Sarah E Squire
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Arran Babbs
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Nandini Shah
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Adam Berg
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Huijia Chen
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, United Kingdom
| |
Collapse
|
15
|
Straub V, Balabanov P, Bushby K, Ensini M, Goemans N, De Luca A, Pereda A, Hemmings R, Campion G, Kaye E, Arechavala-Gomeza V, Goyenvalle A, Niks E, Veldhuizen O, Furlong P, Stoyanova-Beninska V, Wood MJ, Johnson A, Mercuri E, Muntoni F, Sepodes B, Haas M, Vroom E, Aartsma-Rus A. Stakeholder cooperation to overcome challenges in orphan medicine development: the example of Duchenne muscular dystrophy. Lancet Neurol 2016; 15:882-890. [DOI: 10.1016/s1474-4422(16)30035-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023]
|
16
|
Duchenne muscular dystrophy: meeting the therapeutic challenge. Lancet Neurol 2016; 15:785-787. [DOI: 10.1016/s1474-4422(16)30078-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022]
|
17
|
Circulating miRNAs are generic and versatile therapeutic monitoring biomarkers in muscular dystrophies. Sci Rep 2016; 6:28097. [PMID: 27323895 PMCID: PMC4914855 DOI: 10.1038/srep28097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/26/2016] [Indexed: 12/29/2022] Open
Abstract
The development of medical approaches requires preclinical and clinical trials for assessment of therapeutic efficacy. Such evaluation entails the use of biomarkers, which provide information on the response to the therapeutic intervention. One newly-proposed class of biomarkers is the microRNA (miRNA) molecules. In muscular dystrophies (MD), the dysregulation of miRNAs was initially observed in muscle biopsy and later extended to plasma samples, suggesting that they may be of interest as biomarkers. First, we demonstrated that dystromiRs dysregulation occurs in MD with either preserved or disrupted expression of the dystrophin-associated glycoprotein complex, supporting the utilization of dystromiRs as generic biomarkers in MD. Then, we aimed at evaluation of the capacity of miRNAs as monitoring biomarkers for experimental therapeutic approach in MD. To this end, we took advantage of our previously characterized gene therapy approach in a mouse model for α-sarcoglycanopathy. We identified a dose-response correlation between the expression of miRNAs on both muscle tissue and blood serum and the therapeutic benefit as evaluated by a set of new and classically-used evaluation methods. This study supports the utility of profiling circulating miRNAs for the evaluation of therapeutic outcome in medical approaches for MD.
Collapse
|
18
|
Hathout Y, Seol H, Han MHJ, Zhang A, Brown KJ, Hoffman EP. Clinical utility of serum biomarkers in Duchenne muscular dystrophy. Clin Proteomics 2016; 13:9. [PMID: 27051355 PMCID: PMC4820909 DOI: 10.1186/s12014-016-9109-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 12/14/2022] Open
Abstract
Assessments of disease progression and response to therapies in Duchenne muscular dystrophy (DMD) patients remain challenging. Current DMD patient assessments include complex physical tests and invasive procedures such as muscle biopsies, which are not suitable for young children. Defining alternative, less invasive and objective outcome measures to assess disease progression and response to therapy will aid drug development and clinical trials in DMD. In this review we highlight advances in development of non-invasive blood circulating biomarkers as a means to assess disease progression and response to therapies in DMD.
Collapse
Affiliation(s)
- Yetrib Hathout
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Haeri Seol
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Meng Hsuan J Han
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Aiping Zhang
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Kristy J Brown
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| | - Eric P Hoffman
- Center for Genetic Medicine, Children's National Healthy System, Washington, DC USA
| |
Collapse
|
19
|
A Phase I/IIa Clinical Trial in Duchenne Muscular Dystrophy Using Systemically Delivered Morpholino Antisense Oligomer to Skip Exon 53 (SKIP-NMD). HUM GENE THER CL DEV 2016; 26:92-5. [PMID: 26086759 DOI: 10.1089/humc.2015.2528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
20
|
Ribeiro D, Stuckey DW. The Action Duchenne 13th International Annual Conference, November 6-7, 2015, London, UK. EBioMedicine 2016; 2:1836-7. [PMID: 26844248 PMCID: PMC4703741 DOI: 10.1016/j.ebiom.2015.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 11/30/2022] Open
|
21
|
Ricotti V, Muntoni F, Voit T. Challenges of clinical trial design for DMD. Neuromuscul Disord 2015; 25:932-5. [PMID: 26584589 DOI: 10.1016/j.nmd.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Valeria Ricotti
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Thomas Voit
- NIHR Biomedical Research Centre, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| |
Collapse
|
22
|
Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJB, Kunkel LM. The Pathogenesis and Therapy of Muscular Dystrophies. Annu Rev Genomics Hum Genet 2015; 16:281-308. [DOI: 10.1146/annurev-genom-090314-025003] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Natassia M. Vieira
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Gert-Jan B. van Ommen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Louis M. Kunkel
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|