1
|
Rajasingham T, Rodriguez HM, Betz A, Sproule DM, Sinha U. Validation of a novel western blot assay to monitor patterns and levels of alpha dystroglycan in skeletal muscle of patients with limb girdle muscular dystrophies. J Muscle Res Cell Motil 2024; 45:123-138. [PMID: 38635147 DOI: 10.1007/s10974-024-09670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
The cell membrane protein, dystroglycan, plays a crucial role in connecting the cytoskeleton of a variety of mammalian cells to the extracellular matrix. The α-subunit of dystroglycan (αDG) is characterized by a high level of glycosylation, including a unique O-mannosyl matriglycan. This specific glycosylation is essential for binding of αDG to extracellular matrix ligands effectively. A subset of muscular dystrophies, called dystroglycanopathies, are associated with aberrant, dysfunctional glycosylation of αDG. This defect prevents myocytes from attaching to the basal membrane, leading to contraction-induced injury. Here, we describe a novel Western blot (WB) assay for determining levels of αDG glycosylation in skeletal muscle tissue. The assay described involves extracting proteins from fine needle tibialis anterior (TA) biopsies and separation using SDS-PAGE followed by WB. Glycosylated and core αDG are then detected in a multiplexed format using fluorescent antibodies. A practical application of this assay is demonstrated with samples from normal donors and patients diagnosed with LGMD2I/R9. Quantitative analysis of the WB, which employed the use of a normal TA derived calibration curve, revealed significantly reduced levels of αDG in patient biopsies relative to unaffected TA. Importantly, the assay was able to distinguish between the L276I homozygous patients and a more severe form of clinical disease observed with other FKRP variants. Data demonstrating the accuracy and reliability of the assay are also presented, which further supports the potential utility of this novel assay to monitor changes in ⍺DG of TA muscle biopsies in the evaluation of potential therapeutics.
Collapse
Affiliation(s)
- Thulashitha Rajasingham
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA.
| | - Hector M Rodriguez
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Andreas Betz
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Douglas M Sproule
- Department of Clinical Development, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Uma Sinha
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| |
Collapse
|
2
|
Lu QL, Holbrook MC, Cataldi MP, Blaeser A. Break Down of the Complexity and Inconsistency Between Levels of Matriglycan and Disease Phenotype in FKRP-Related Dystroglycanopathies: A Review and Model of Interpretation. J Neuromuscul Dis 2024; 11:275-284. [PMID: 38277301 DOI: 10.3233/jnd-230205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Dystroglycanopathies are a group of muscle degenerative diseases characterized with significant reduction in matriglycan expression critical in disease pathogenesis. Missense point mutations in the Fukutin-related protein (FKRP) gene cause variable reduction in the synthesis of matriglycan on alpha-dystroglycan (α-DG) and a wide range of disease severity. Data analyses of muscle biopsies from patients fail to show consistent correlation between the levels of matriglycan and clinical phenotypes. By reviewing clinical reports in conjunction with analysis of clinically relevant mouse models, we identify likely causes for the confusion. Nearly all missense FKRP mutations retain variable, but sufficient function for the synthesis of matriglycan during the later stage of muscle development and periods of muscle regeneration. These factors lead to a highly heterogenous pattern of matriglycan expression in diseased muscles, depending on age and stages of muscle regeneration. The limited size in clinical biopsy samples from different parts of even a single muscle tissue at different time points of disease progression may well mis-represent the residual function (base-levels) of the mutated FKRPs and phenotypes. We propose to use a simple Multi Point tool from ImageJ to more accurately measure the signal intensity of matriglycan expression on fiber membrane for assessing mutant FKRP function and therapeutic efficacy. A robust and sensitive immunohistochemical protocol would further improve reliability and comparability for the detection of matriglycan.
Collapse
Affiliation(s)
- Qi L Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Molly C Holbrook
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Marcela P Cataldi
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
3
|
Cheung A, Audhya IF, Szabo SM, Friesen M, Weihl CC, Gooch KL. Patterns of Clinical Progression Among Patients With Autosomal Recessive Limb-Girdle Muscular Dystrophy: A Systematic Review. J Clin Neuromuscul Dis 2023; 25:65-80. [PMID: 37962193 DOI: 10.1097/cnd.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVES As the clinical course of autosomal recessive limb-girdle muscular dystrophy (LGMDR) is highly variable, this study characterized the frequency of loss of ambulation (LOA) among patients by subtype (LGMDR1, LGMDR2, LGMDR3-6, LGMDR9, LGMDR12) and progression to cardiac and respiratory involvement among those with and without LOA. METHODS Systematic literature review. RESULTS From 2929 abstracts screened, 418 patients were identified with ambulatory status data (LOA: 265 [63.4%]). Cardiac and/or respiratory function was reported for 142 patients (34.0%; all with LOA). Among these, respiratory involvement was most frequent in LGMDR3-6 (74.1%; mean [SD] age 23.9 [11.0] years) and cardiac in LGMDR9 (73.3%; mean [SD] age 23.7 [17.7] years). Involvement was less common in patients without LOA except in LGMDR9 (71.4% respiratory and 52.4% cardiac). CONCLUSIONS This study described the co-occurrence of LOA, cardiac, and respiratory involvement in LGMDR and provides greater understanding of the clinical progression of LGMDR.
Collapse
Affiliation(s)
| | | | | | | | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
4
|
Abstract
The diagnostic and referral workflow for children with neuromuscular disorders is evolving, particularly as newborn screening programs are expanding in tandem with novel therapeutic developments. However, for the children who present with symptoms and signs of potential neuromuscular disorders, anatomic localization, guided initially by careful history and physical examination, continues to be the cardinal initial step in the diagnostic evaluation. It is important to consider whether the localization is more likely to be in the lower motor neuron, peripheral nerve, neuromuscular junction, or muscle. After that, disease etiologies can be divided broadly into inherited versus acquired categories. Considerations of localization and etiologies will help generate a differential diagnosis, which in turn will guide diagnostic testing. Once a diagnosis is made, it is important to be aware of current treatment options, as a number of new therapies for some of these disorders have been approved in recent years. Families are also increasingly interested in clinical research, which may include natural history studies and interventional clinical trials. Such research has proliferated for rare neuromuscular diseases, leading to exciting advances in diagnostic and therapeutic technologies, promising dramatic changes in the landscape of these disorders in the years to come.
Collapse
Affiliation(s)
- Geetanjali Rathore
- Division of Neurology, Department of Pediatrics, University of Nebraska College of Medicine, Omaha, Nebraska
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
5
|
Geoffroy M, Pili L, Buffa V, Caroff M, Bigot A, Gicquel E, Rouby G, Richard I, Fragnoud R. CRISPR-Cas9 KO Cell Line Generation and Development of a Cell-Based Potency Assay for rAAV-FKRP Gene Therapy. Cells 2023; 12:2444. [PMID: 37887288 PMCID: PMC10604961 DOI: 10.3390/cells12202444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Limb-Girdle Muscular Dystrophy R9 (LGMDR9) is a dystroglycanopathy caused by Fukutin-related protein (FKRP) defects leading to the deficiency of α-DG glycosylation, essential to membrane integrity. Recombinant adeno-associated viral vector (rAAV) gene therapy offers great therapeutic promise for such neuromuscular disorders. Pre-clinical studies have paved the way for a phase 1/2 clinical trial aiming to evaluate the safety and efficacy of FKRP gene therapy in LGMDR9 patients. To demonstrate product activity, quality, and consistency throughout product and clinical development, regulatory authorities request several quality controls, including a potency assay aiming to demonstrate and quantify the intended biological effect of the gene therapy product. In the present study, we generated FKRP knock-out (KO) cells fully depleted of α-DG glycosylation using CRISPR-Cas9 to assess the functional activity of a rAAV-FKRP gene therapy. We then developed a high-throughput On-Cell-Western methodology to evaluate the restoration of α-DG glycosylation in KO-FKRP cells and determine the biological activity of the FKRP transgene. The determination of the half maximal effective concentration (EC50) provides a method to compare the rAAV-FKRP batch using a reference standard. The generation of KO-FKRP muscle cells associated with the high-throughput On-Cell-Western technique may serve as a cell-based potency assay to assess rAAV-FKRP gene therapy products.
Collapse
Affiliation(s)
- Marine Geoffroy
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Louna Pili
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Valentina Buffa
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Maëlle Caroff
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Anne Bigot
- Institut de Myologie, Université Pierre et Marie Curie Paris 6, UM76 Univ. Paris 6/U974 UMR7215, CNRS Pitié-Salpétrière-INSERM, UMRS 974, 75000 Paris, France
| | - Evelyne Gicquel
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Grégory Rouby
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Isabelle Richard
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
- Atamyo Therapeutics, 91000 Evry, France
| | - Romain Fragnoud
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| |
Collapse
|
6
|
Skeletal Muscle Cells Derived from Induced Pluripotent Stem Cells: A Platform for Limb Girdle Muscular Dystrophies. Biomedicines 2022; 10:biomedicines10061428. [PMID: 35740450 PMCID: PMC9220148 DOI: 10.3390/biomedicines10061428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Limb girdle muscular dystrophies (LGMD), caused by mutations in 29 different genes, are the fourth most prevalent group of genetic muscle diseases. Although the link between LGMD and its genetic origins has been determined, LGMD still represent an unmet medical need. Here, we describe a platform for modeling LGMD based on the use of human induced pluripotent stem cells (hiPSC). Thanks to the self-renewing and pluripotency properties of hiPSC, this platform provides a renewable and an alternative source of skeletal muscle cells (skMC) to primary, immortalized, or overexpressing cells. We report that skMC derived from hiPSC express the majority of the genes and proteins that cause LGMD. As a proof of concept, we demonstrate the importance of this cellular model for studying LGMDR9 by evaluating disease-specific phenotypes in skMC derived from hiPSC obtained from four patients.
Collapse
|
7
|
Audhya IF, Cheung A, Szabo SM, Flint E, Weihl CC, Gooch KL. Progression to Loss of Ambulation Among Patients with Autosomal Recessive Limb-girdle Muscular Dystrophy: A Systematic Review. J Neuromuscul Dis 2022; 9:477-492. [PMID: 35527561 PMCID: PMC9398075 DOI: 10.3233/jnd-210771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The impact of age at autosomal recessive limb girdle muscular dystrophy (LGMDR) onset on progression to loss of ambulation (LOA) has not been well established, particularly by subtype. Objectives: To describe the characteristics of patients with adult-, late childhood-, and early childhood-onset LGMDR by subtype and characterize the frequency and timing of LOA. Methods: A systematic review was conducted in MEDLINE, Embase and the Cochrane library. Frequency and timing of LOA in patients with LGMDR1, LGMDR2/Miyoshi myopathy (MM), LGMDR3-6, LGMDR9, and LGMDR12 were synthesized from published data. Results: In 195 studies, 695 (43.4%) patients had adult-, 532 (33.2%) had late childhood-, and 376 (23.5%) had early childhood-onset of disease across subtypes among those with a reported age at onset (n = 1,603); distribution of age at onset varied between subtypes. Among patients with LOA (n = 228), adult-onset disease was uncommon in LGMDR3-6 (14%) and frequent in LGMDR2/MM (42%); LGMDR3-6 cases with LOA primarily had early childhood-onset (74%). Mean (standard deviation [SD]) time to LOA varied between subtypes and was shortest for patients with early childhood-onset LGMDR9 (12.0 [4.9] years, n = 19) and LGMDR3-6 (12.3 [10.7], n = 56) and longest for those with late childhood-onset LGMDR2/MM (21.4 [11.5], n = 36). Conclusions: This review illustrated that patients with early childhood-onset disease tend to have faster progression to LOA than those with late childhood- or adult-onset disease, particularly in LGMDR9. These findings provide a greater understanding of progression to LOA by LGMDR subtype, which may help inform clinical trial design and provide a basis for natural history studies.
Collapse
Affiliation(s)
| | | | | | - Emma Flint
- Broadstreet HEOR, Vancouver, BC, V6A 1A4 Canada
| | - Conrad C Weihl
- Washington University School of Medicine, St.Louis, MO, USA
| | | |
Collapse
|
8
|
Boyd A, Montandon M, Wood AJ, Currie PD. FKRP directed fibronectin glycosylation: A novel mechanism giving insights into muscular dystrophies? Bioessays 2022; 44:e2100270. [PMID: 35229908 DOI: 10.1002/bies.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.
Collapse
Affiliation(s)
- Andrew Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Ortiz-Cordero C, Bincoletto C, Dhoke NR, Selvaraj S, Magli A, Zhou H, Kim DH, Bang AG, Perlingeiro RCR. Defective autophagy and increased apoptosis contribute toward the pathogenesis of FKRP-associated muscular dystrophies. Stem Cell Reports 2021; 16:2752-2767. [PMID: 34653404 PMCID: PMC8581053 DOI: 10.1016/j.stemcr.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in glycosylation of alpha-dystroglycan (α-DG). Mutations in FKRP are associated with muscular dystrophies (MD) ranging from limb-girdle LGMDR9 to Walker-Warburg Syndrome (WWS), a severe type of congenital MD. Although hypoglycosylation of α-DG is the main hallmark of this group of diseases, a full understanding of the underlying pathophysiology is still missing. Here, we investigated molecular mechanisms impaired by FKRP mutations in pluripotent stem (PS) cell–derived myotubes. FKRP-deficient myotubes show transcriptome alterations in genes involved in extracellular matrix receptor interactions, calcium signaling, PI3K-Akt pathway, and lysosomal function. Accordingly, using a panel of patient-specific LGMDR9 and WWS induced PS cell–derived myotubes, we found a significant reduction in the autophagy-lysosome pathway for both disease phenotypes. In addition, we show that WWS myotubes display decreased ERK1/2 activity and increased apoptosis, which were restored in gene edited myotubes. Our results suggest the autophagy-lysosome pathway and apoptosis may contribute to the FKRP-associated MD pathogenesis. The lysosome pathway is deregulated in FKRP-deficient myotubes Autophagy is decreased in patient-specific LGMDR9 and WWS iPS cell–derived myotubes FKRP WWS and LGMDR9 iPS cell–derived myotubes have increased apoptosis FKRP correction in WWS myotubes rescues changes in autophagy and apoptosis
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Claudia Bincoletto
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Awano H, Saito Y, Shimizu M, Sekiguchi K, Niijima S, Matsuo M, Maegaki Y, Izumi I, Kikuchi C, Ishibashi M, Okazaki T, Komaki H, Iijima K, Nishino I. FKRP mutations cause congenital muscular dystrophy 1C and limb-girdle muscular dystrophy 2I in Asian patients. J Clin Neurosci 2021; 92:215-221. [PMID: 34509255 DOI: 10.1016/j.jocn.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/18/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022]
Abstract
Mutation in the fukutin-related protein (FKRP) gene causes alpha-dystroglycanopathies, a group of autosomal recessive disorders associated with defective glycosylated alpha-dystroglycan (α-DG). The disease phenotype shows a broad spectrum, from the most severe congenital form involving brain and eye anomalies to milder limb-girdle form. FKRP-related alpha-dystroglycanopathies are common in European countries. However, a limited number of patients have been reported in Asian countries. Here, we presented the clinical, pathological, and genetic findings of nine patients with FKRP mutations identified at a single muscle repository center in Japan. Three and six patients were diagnosed with congenital muscular dystrophy type 1C and limb-girdle muscular dystrophy 2I, respectively. None of our Asian patients showed the most severe form of alpha-dystroglycanopathy. While all patients showed a reduction in glycosylated α-DG levels, to variable degrees, these levels did not correlate to clinical severity. Fifteen distinct pathogenic mutations were identified in our cohort, including five novel mutations. Unlike in the populations belonging to European countries, no common mutation was found in our cohort.
Collapse
Affiliation(s)
- Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo 650-0017, Japan.
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi-cho, Kodaira, Tokyo 187-8502, Japan
| | - Mamiko Shimizu
- Shimizu Children's Clinic, 3-152 Komaki, Komaki, Aichi 485-0041, Japan
| | - Kenji Sekiguchi
- Division of Neurology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo 650-0017, Japan
| | - Shinichi Niijima
- Department of Pediatrics, Juntendo University, Nerima Hospital, 3-1-10 Takanodai, Nerima, Tokyo 177-8521, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin Univesity, 518 Arise, Ikawadani-cho, Nishi, Kobe, Hyogo 651-2180, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Isho Izumi
- Ibaraki Children's Hospital, 3-3-1 Futabadai, Mito, Ibaraki 311-4145, Japan
| | - Chiya Kikuchi
- Department of Pediatrics, National Hospital Organization Ehime Medical Center, 366 Yokogawara, Toon, Ehime 791-0281, Japan
| | - Masato Ishibashi
- Department of Neurology, Faculty of Medicine, Oita University, 1-1 Hasamamachi-idaigaoka, Yufu, Oita 879-5593, Japan
| | - Tetsuya Okazaki
- Department of Clinical Genetics, Tottori University Hospital, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Hirofumi Komaki
- Translational Medical Center, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi-cho, Kodaira, Tokyo 187-8502, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo 650-0017, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi-cho, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
11
|
Bigotti MG, Brancaccio A. High degree of conservation of the enzymes synthesizing the laminin-binding glycoepitope of α-dystroglycan. Open Biol 2021; 11:210104. [PMID: 34582712 PMCID: PMC8478517 DOI: 10.1098/rsob.210104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The dystroglycan (DG) complex plays a pivotal role for the stabilization of muscles in Metazoa. It is formed by two subunits, extracellular α-DG and transmembrane β-DG, originating from a unique precursor via a complex post-translational maturation process. The α-DG subunit is extensively glycosylated in sequential steps by several specific enzymes and employs such glycan scaffold to tightly bind basement membrane molecules. Mutations of several of these enzymes cause an alteration of the carbohydrate structure of α-DG, resulting in severe neuromuscular disorders collectively named dystroglycanopathies. Given the fundamental role played by DG in muscle stability, it is biochemically and clinically relevant to investigate these post-translational modifying enzymes from an evolutionary perspective. A first phylogenetic history of the thirteen enzymes involved in the fabrication of the so-called 'M3 core' laminin-binding epitope has been traced by an overall sequence comparison approach, and interesting details on the primordial enzyme set have emerged, as well as substantial conservation in Metazoa. The optimization along with the evolution of a well-conserved enzymatic set responsible for the glycosylation of α-DG indicate the importance of the glycosylation shell in modulating the connection between sarcolemma and surrounding basement membranes to increase skeletal muscle stability, and eventually support movement and locomotion.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- School of Translational Health Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK,School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Andrea Brancaccio
- School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK,Institute of Chemical Sciences and Technologies ‘Giulio Natta’ (SCITEC) - CNR, Largo F.Vito 1, 00168, Rome, Italy
| |
Collapse
|
12
|
Diagnostic muscle biopsies in the era of genetics: the added value of myopathology in a selection of limb-girdle muscular dystrophy patients. Acta Neurol Belg 2021; 121:1019-1033. [PMID: 33400223 DOI: 10.1007/s13760-020-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
In the second most common dystrophy associated with predominant pelvic and shoulder girdle muscle weakness termed Limb-Girdle Muscular Dystrophy (LGMD), genetic complexity, large phenotypic variability, and clinical overlap can result in extensive diagnostic delays in certain individuals. In view of the large strides genetics has taken in this day and age, we address the question if muscle biopsies can still provide diagnostic evidence of substance for these patients. We reviewed and reanalyzed muscle biopsy characteristics in a cohort of LGMD patient pairs in which gene variants were picked up in CAPN3, FKRP, TTN, and ANO5, using histochemical-immunohistochemical-and immunofluorescent staining, and western blotting. We found that not the nature and severity of inflammatory changes, but the changed properties of the dystrophin complex were the most valuable assets to differentiate LGMD from myositis. Proteomic evaluation brought both primary and secondary deficiencies to light, which could be equally revealing for diagnosis. Though a muscle biopsy might, at present, not always be strictly necessary anymore, it still represents an irrefutable asset when the genetic diagnosis is complicated.
Collapse
|
13
|
Dhoke NR, Kim H, Selvaraj S, Azzag K, Zhou H, Oliveira NAJ, Tungtur S, Ortiz-Cordero C, Kiley J, Lu QL, Bang AG, Perlingeiro RCR. A universal gene correction approach for FKRP-associated dystroglycanopathies to enable autologous cell therapy. Cell Rep 2021; 36:109360. [PMID: 34260922 PMCID: PMC8327854 DOI: 10.1016/j.celrep.2021.109360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023] Open
Abstract
Mutations in the fukutin-related protein (FKRP) gene result in a broad spectrum of muscular dystrophy (MD) phenotypes, including the severe Walker-Warburg syndrome (WWS). Here, we develop a gene-editing approach that replaces the entire mutant open reading frame with the wild-type sequence to universally correct all FKRP mutations. We apply this approach to correct FKRP mutations in induced pluripotent stem (iPS) cells derived from patients displaying broad clinical severity. Our findings show rescue of functional α-dystroglycan (α-DG) glycosylation in gene-edited WWS iPS cell-derived myotubes. Transplantation of gene-corrected myogenic progenitors in the FKRPP448L-NSG mouse model gives rise to myofiber and satellite cell engraftment and, importantly, restoration of α-DG functional glycosylation in vivo. These findings suggest the potential feasibility of using CRISPR-Cas9 technology in combination with patient-specific iPS cells for the future development of autologous cell transplantation for FKRP-associated MDs.
Collapse
Affiliation(s)
- Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hyunkee Kim
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nelio A J Oliveira
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sudheer Tungtur
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Kiley
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
14
|
Khawajazada T, Kass K, Rudolf K, de Stricker Borch J, Sheikh AM, Witting N, Vissing J. Muscle involvement assessed by quantitative magnetic resonance imaging in patients with anoctamin 5 deficiency. Eur J Neurol 2021; 28:3121-3132. [PMID: 34145687 DOI: 10.1111/ene.14979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Using magnetic resonance imaging (MRI) and stationary dynamometry, the aim was to investigate the muscle affection in paraspinal muscles and lower extremities and compare the muscle affection in men and women with anoctamin 5 (ANO5) deficiency. METHODS Seventeen patients (seven women) with pathogenic ANO5-mutations were included. Quantitative muscle fat fraction of back and leg muscles were assessed by Dixon MRI. Muscle strength was assessed by stationary dynamometer. Results were compared with 11 matched, healthy controls. RESULTS Muscle involvement pattern in men with ANO5-deficiency is characterized by a severe fat replacement of hamstrings, adductor and gastrocnemius muscles, while paraspinal muscles are only mildly affected, while preserved gracilis and sartorius muscles were hypertrophied. Women with ANO5-myopathy, of the same age as male patients, were very mildly affected, showing muscle affection and strength resembling that found in healthy persons, with the exception of the gluteus minimus and medius and gastrocnemii muscles that were significantly replaced by fat. Although individual muscles showed clear asymmetric involvement in a few muscle groups, the overall muscle involvement was symmetric. CONCLUSIONS Patients with ANO5-deficiency have relatively preserved paraspinal muscles on imaging and only mild reduction of trunk extension strength in men only. Our study quantifies the large difference in muscle affection in lower extremity between women and men with ANO5-deficiency. The clinical notion is that affection may be very asymmetric in ANO5-deficiency, but the present study shows that while this may be true for a few muscles, the general impression is that muscle affection is very symmetric.
Collapse
Affiliation(s)
- Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Konni Kass
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Karen Rudolf
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Josefine de Stricker Borch
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Aisha Munawar Sheikh
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. Nat Commun 2021; 12:2951. [PMID: 34012031 PMCID: PMC8134429 DOI: 10.1038/s41467-021-23217-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
The muscular dystrophies encompass a broad range of pathologies with varied clinical outcomes. In the case of patients carrying defects in fukutin-related protein (FKRP), these diverse pathologies arise from mutations within the same gene. This is surprising as FKRP is a glycosyltransferase, whose only identified function is to transfer ribitol-5-phosphate to α-dystroglycan (α-DG). Although this modification is critical for extracellular matrix attachment, α-DG's glycosylation status relates poorly to disease severity, suggesting the existence of unidentified FKRP targets. Here we reveal that FKRP directs sialylation of fibronectin, a process essential for collagen recruitment to the muscle basement membrane. Thus, our results reveal that FKRP simultaneously regulates the two major muscle-ECM linkages essential for fibre survival, and establishes a new disease axis for the muscular dystrophies.
Collapse
|
16
|
Kölbel H, Preuße C, Brand L, von Moers A, Della Marina A, Schuelke M, Roos A, Goebel HH, Schara-Schmidt U, Stenzel W. Inflammation, fibrosis and skeletal muscle regeneration in LGMDR9 are orchestrated by macrophages. Neuropathol Appl Neurobiol 2021; 47:856-866. [PMID: 33973272 DOI: 10.1111/nan.12730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022]
Abstract
AIMS Variable degrees of inflammation, necrosis, regeneration and fibrofatty replacement are part of the pathological spectrum of the dystrophic process in alpha dystroglycanopathy LGMDR9 (FKRP-related, OMIM #607155), one of the most prevailing types of LGMDs worldwide. Inflammatory processes and their complex interplay with vascular, myogenic and mesenchymal cells may have a major impact on disease development. The purpose of our study is to describe the specific immune morphological features in muscle tissue of patients with LGMDR9 to enable a better understanding of the phenotype of muscle damage leading to disease progression. METHODS We have analysed skeletal muscle biopsies of 17 patients genetically confirmed as having LGMDR9 by histopathological and molecular techniques. RESULTS We identified CD206+ MHC class II+ and STAT6+ immune-repressed macrophages dominating the endomysial infiltrate in areas of myofibre regeneration and fibrosis. Additionally, PDGFRβ+ pericytes were located around MHC class II+ activated capillaries residing in close proximity to areas of fibrosis and regenerating fibres. Expression of VEGF was found on many regenerating neonatal myosin+ fibres, myofibres and CD206+ macrophages also co-expressed VEGF. CONCLUSION Our results show characteristic immune inflammatory features in LGMDR9 and more specifically shed light on the predominant role of macrophages and their function in vascular organisation, fibrosis and myogenesis. Understanding disease-specific immune phenomena potentially inform about possibilities for anti-fibrotic and anti-inflammatory therapeutic strategies, which may complement Ribitol replacement and gene therapies for LGMDR9 that may be available in the future.
Collapse
Affiliation(s)
- Heike Kölbel
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Germany
| | - Corinna Preuße
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Lukas Brand
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Germany
| | - Arpad von Moers
- Department of Paediatrics and Neuropaediatrics, DRK Klinikum Westend, Berlin, Germany
| | - Adela Della Marina
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Roos
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuropathology, Universitätsmedizin Mainz, Germany
| | - Ulrike Schara-Schmidt
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
17
|
Franekova V, Storjord HI, Leivseth G, Nilssen Ø. Protein homeostasis in LGMDR9 (LGMD2I) - The role of ubiquitin-proteasome and autophagy-lysosomal system. Neuropathol Appl Neurobiol 2021; 47:519-531. [PMID: 33338270 DOI: 10.1111/nan.12684] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
AIMS Limb-girdle muscular dystrophy R9 (LGMDR9) is an autosomal recessive disorder caused by mutations in the fukutin-related protein gene (FKRP), encoding a glycosyltransferase involved in α-dystroglycan modification. Muscle atrophy, a significant feature of LGMDR9, occurs by a change in the normal balance between protein synthesis and protein degradation. The ubiquitin-proteasome system (UPS) and autophagy-lysosomal system play a key role in protein degradation in skeletal muscle cells, but their involvement in the pathology of LGMDR9 is still largely unknown. We have aimed at clarifying whether proteolysis through the UPS and the autophagy-lysosomal pathway is dysregulated in LGMDR9 patients. METHODS Vastus lateralis biopsies from 8 normal controls and 12 LGMDR9 patients harbouring the c.826C>A/c.826C>A FKRP genotype were assessed for protein markers related to UPS, the autophagy-lysosomal system and endoplasmic reticulum (ER) stress/unfolded protein response (UPR), followed by ultrastructural analysis by transmission electron microscopy (TEM). RESULTS Protein levels of E3 ubiquitin ligases Atrogin-1 and MuRF1 showed a pattern similar to normal controls. Elevation of the autophagy markers Atg7, LC3B-II, decreased level of p62 as well as downregulation of the negative autophagy regulator mTORC1, indicated an activation of autophagy in LGMDR9. Mitophagy markers Bnip3 and Parkin were decreased. TEM analysis demonstrated accumulation of autophagosome-like structures in LGMDR9 muscle. There was also an increase in the expression of ER stress/UPR markers PDI, peIF2α and CHOP and a decrease in IRE1α. However, GRP94, Bip and Calnexin remained unchanged. CONCLUSION Our findings indicate that autophagy and ER stress are induced in LGMDR9 muscle.
Collapse
Affiliation(s)
- Veronika Franekova
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hilde I Storjord
- Department of Pathology, University Hospital of North-Norway, Tromsø, Norway
| | - Gunnar Leivseth
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Øivind Nilssen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North-Norway, Tromsø, Norway
| |
Collapse
|
18
|
Ortiz-Cordero C, Azzag K, Perlingeiro RCR. Fukutin-Related Protein: From Pathology to Treatments. Trends Cell Biol 2020; 31:197-210. [PMID: 33272829 DOI: 10.1016/j.tcb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022]
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in the functional glycosylation of α-dystroglycan (DG), a key component in the link between the cytoskeleton and the extracellular matrix (ECM). Mutations in FKRP lead to dystroglycanopathies with broad severity, including limb-girdle and congenital muscular dystrophy. Studies over the past 5 years have elucidated the function of FKRP, which has expanded the number of therapeutic opportunities for patients carrying FKRP mutations. These include small molecules, gene delivery, and cell therapy. Here we summarize recent findings on the function of FKRP and describe available models for studying diseases and testing therapeutics. Lastly, we highlight preclinical studies that hold potential for the treatment of FKRP-associated dystroglycanopathies.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Libell EM, Richardson JA, Lutz KL, Ng BY, Mockler SRH, Laubscher KM, Stephan CM, Zimmerman BM, Edens ER, Reinking BE, Mathews KD. Cardiomyopathy in limb girdle muscular dystrophy R9, FKRP related. Muscle Nerve 2020; 62:626-632. [PMID: 32914449 PMCID: PMC7693230 DOI: 10.1002/mus.27052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/08/2022]
Abstract
Introduction Reported frequencies of cardiomyopathy in limb girdle muscular dystrophy R9 (LGMDR9) vary. We describe the frequency and age at onset of cardiomyopathy in an LDMDR9 cohort. Methods Echocardiograms from 56 subjects (157 echocardiograms) with LGMDR9 were retrospectively reviewed. The cumulative probability of having an abnormal echocardiogram as a function of age was assessed by survival analysis for interval‐censored data by genotype. Correlations between cardiac and clinical function were evaluated. Results Twenty‐five (45%) participants had cardiomyopathy. The median age at first abnormal echocardiogram for subjects homozygous for the c.826C>A variant was 54.2 y compared to 18.1 y for all other fukutin‐related protein (FKRP) genotypes (P < .0001). There was a weak correlation between ejection fraction and 10‐Meter Walk Test speed (r = 0.25), but no correlation with forced vital capacity (r = 0.08). Discussion Cardiomyopathy is prevalent among those with LGMDR9 and occurs later in subjects homozygous for the c.826C>A mutation. These data will help to guide surveillance and management.
Collapse
Affiliation(s)
- Eric M Libell
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Julia A Richardson
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Katie L Lutz
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Benton Y Ng
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Shelley R H Mockler
- Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, Iowa, USA
| | - Katie M Laubscher
- Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, Iowa, USA
| | - Carrie M Stephan
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Bridget M Zimmerman
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Erik R Edens
- Children's Heart Center, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Benjamin E Reinking
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Katherine D Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW As a group, the limb-girdle muscular dystrophies (LGMDs) are the fourth most prevalent genetic muscle disease, yet they are still not well known or understood. This article defines and describes LGMDs, delineates a diagnostic strategy, and discusses treatment of the LGMDs. RECENT FINDINGS In 2018, the definition of the LGMDs was further refined, and a new nomenclature was proposed. Diagnosis of the LGMDs was long guided by the distinctive clinical characteristics of each particular subtype but now integrates use of genetics-with next-generation sequencing panels, exomes, and full genome analysis-early in the diagnostic assessment. Appreciation of the phenotypic diversity of each LGMD subtype continues to expand. This emphasizes the need for precision genetic diagnostics to better understand each subtype and formulate appropriate management for individual patients. Of significant relevance, the explosion of research into therapeutic options accentuates the need for accurate diagnosis, comprehensive disease characterization, and description of the natural histories of the LGMDs to move the field forward and to mitigate disease impact on patients with LGMD. SUMMARY The LGMDs are genetic muscle diseases that superficially appear similar to one another but have important differences in rates of progression and concomitant comorbidities. Definitive diagnoses are crucial to guide management and treatment now and in the future. As targeted treatments emerge, it will be important for clinicians to understand the nomenclature, diagnosis, clinical manifestations, and treatments of the LGMDs.
Collapse
|
21
|
Okazaki T, Matsuura K, Kasagi N, Adachi K, Kai M, Okubo M, Nishino I, Nanba E, Maegaki Y. Duchenne muscular dystrophy-like phenotype in an LGMD2I patient with novel FKRP gene variants. Hum Genome Var 2020; 7:12. [PMID: 32351701 PMCID: PMC7171098 DOI: 10.1038/s41439-020-0099-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/09/2022] Open
Abstract
A 32-year-old man initially received a diagnosis of Duchenne muscular dystrophy (DMD). Genetic analysis revealed two novel heterozygous FKRP variants: c.169G>A (p.Glu57Lys) and c.692G>A (p.Trp231*). These results indicated that the patient had limb-girdle muscular dystrophy type 2I (LGMD2I) caused by recessive FKRP variants. Patients with LGMD2I and DMD have many overlapping phenotypes. LGMD2I should be considered in patients who have a DMD phenotype but not a DMD pathogenic variant.
Collapse
Affiliation(s)
- Tetsuya Okazaki
- Division of Clinical Genetics, Tottori University Hospital, Yonago, Japan
| | - Kaori Matsuura
- Division of Clinical Genetics, Tottori University Hospital, Yonago, Japan
| | - Noriko Kasagi
- Division of Clinical Genetics, Tottori University Hospital, Yonago, Japan
| | - Kaori Adachi
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Masachika Kai
- Technical Department, Tottori University, Yonago, Japan
| | - Mariko Okubo
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eiji Nanba
- Division of Clinical Genetics, Tottori University Hospital, Yonago, Japan
- Research Strategy Division, Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Yoshihiro Maegaki
- Division of Clinical Genetics, Tottori University Hospital, Yonago, Japan
- Faculty of Medicine, Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago, Japan
| |
Collapse
|
22
|
Winckler PB, da Silva AMS, Coimbra-Neto AR, Carvalho E, Cavalcanti EBU, Sobreira CFR, Marrone CD, Machado-Costa MC, Carvalho AAS, Feio RHF, Rodrigues CL, Gonçalves MVM, Tenório RB, Mendonça RH, Cotta A, Paim JFO, Costa E Silva C, de Aquino Cruz C, Bená MI, Betancur DFA, El Husny AS, de Souza ICN, Duarte RCB, Reed UC, Chaves MLF, Zanoteli E, França MC, Saute JA. Clinicogenetic lessons from 370 patients with autosomal recessive limb-girdle muscular dystrophy. Clin Genet 2019; 96:341-353. [PMID: 31268554 DOI: 10.1111/cge.13597] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022]
Abstract
Limb-girdle muscular dystrophies (LGMD) are a group of genetically heterogeneous disorders characterized by predominantly proximal muscle weakness. We aimed to characterize epidemiological, clinical and molecular data of patients with autosomal recessive LGMD2/LGMD-R in Brazil. A multicenter historical cohort study was performed at 13 centers, in which index cases and their affected relatives' data from consecutive families with genetic or pathological diagnosis of LGMD2/LGMD-R were reviewed from July 2017 to August 2018. Survival curves to major handicap for LGMD2A/LGMD-R1-calpain3-related, LGMD2B/LGMD-R2-dysferlin-related and sarcoglycanopathies were built and progressions according to sex and genotype were estimated. In 370 patients (305 families) with LGMD2/LGMD-R, most frequent subtypes were LGMD2A/LGMD-R1-calpain3-related and LGMD2B/LGMD-R2-dysferlin-related, each representing around 30% of families. Sarcoglycanopathies were the most frequent childhood-onset subtype, representing 21% of families. Five percent of families had LGMD2G/LGMD-R7-telethonin-related, an ultra-rare subtype worldwide. Females with LGMD2B/LGMD-R2-dysferlin-related had less severe progression to handicap than males and LGMD2A/LGMD-R1-calpain3-related patients with truncating variants had earlier disease onset and more severe progression to handicap than patients without truncating variants. We have provided paramount epidemiological data of LGMD2/LGMD-R in Brazil that might help on differential diagnosis, better patient care and guiding future collaborative clinical trials and natural history studies in the field.
Collapse
Affiliation(s)
- Pablo B Winckler
- Neurology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - André M S da Silva
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Antônio R Coimbra-Neto
- Department of Neurology, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Medical Physiopathology, UNICAMP, Campinas, Brazil
| | - Elmano Carvalho
- Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, Brazil
| | | | - Cláudia F R Sobreira
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Neurosciences, Ribeirão Preto, Brazil
| | - Carlo D Marrone
- Physiatry Division, Hospital São Lucas da Pontifícia Universidade Católica, Porto Alegre, Brazil
- Clinica Marrone, Porto Alegre, Brazil
| | | | | | - Raimunda H F Feio
- Hospital Universitário Bettina Ferro de Souza, Universidade Federal do Pará (UFPA), Belém, Brazil
| | | | | | | | - Rodrigo H Mendonça
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ana Cotta
- Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, Brazil
| | - Júlia F O Paim
- Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, Brazil
| | | | - Camila de Aquino Cruz
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Neurosciences, Ribeirão Preto, Brazil
| | - Marjory I Bená
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Neurosciences, Ribeirão Preto, Brazil
| | - Daniel F A Betancur
- Physiatry Division, Hospital São Lucas da Pontifícia Universidade Católica, Porto Alegre, Brazil
| | - Antonette S El Husny
- Hospital Universitário Bettina Ferro de Souza, Universidade Federal do Pará (UFPA), Belém, Brazil
- Centro Universitário do Estado do Pará, Belém, Brazil
| | - Isabel C N de Souza
- Hospital Universitário Bettina Ferro de Souza, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Regina C B Duarte
- Hospital Ophir Loyola, Belém, Brazil
- Department of Neurology, UFPA, Belém, Brazil
| | - Umbertina C Reed
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Márcia L F Chaves
- Neurology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Internal Medicine, UFRGS, Porto Alegre, Brazil
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Marcondes C França
- Department of Neurology, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Medical Physiopathology, UNICAMP, Campinas, Brazil
| | - Jonas A Saute
- Neurology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Medical Genetics Division, HCPA, Porto Alegre, Brazil
- Department of Internal Medicine, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
23
|
Lee AJ, Jones KA, Butterfield RJ, Cox MO, Konersman CG, Grosmann C, Abdenur JE, Boyer M, Beson B, Wang C, Dowling JJ, Gibbons MA, Ballard A, Janas JS, Leshner RT, Donkervoort S, Bönnemann CG, Malicki DM, Weiss RB, Moore SA, Mathews KD. Clinical, genetic, and pathologic characterization of FKRP Mexican founder mutation c.1387A>G. NEUROLOGY-GENETICS 2019; 5:e315. [PMID: 31041397 PMCID: PMC6454397 DOI: 10.1212/nxg.0000000000000315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/02/2019] [Indexed: 01/28/2023]
Abstract
Objective To characterize the clinical phenotype, genetic origin, and muscle pathology of patients with the FKRP c.1387A>G mutation. Methods Standardized clinical data were collected for all patients known to the authors with c.1387A>G mutations in FKRP. Muscle biopsies were reviewed and used for histopathology, immunostaining, Western blotting, and DNA extraction. Genetic analysis was performed on extracted DNA. Results We report the clinical phenotypes of 6 patients homozygous for the c.1387A>G mutation in FKRP. Onset of symptoms was <2 years, and 5 of the 6 patients never learned to walk. Brain MRIs were normal. Cognition was normal to mildly impaired. Microarray analysis of 5 homozygous FKRP c.1387A>G patients revealed a 500-kb region of shared homozygosity at 19q13.32, including FKRP. All 4 muscle biopsies available for review showed end-stage dystrophic pathology, near absence of glycosylated α-dystroglycan (α-DG) by immunofluorescence, and reduced molecular weight of α-DG compared with controls and patients with homozygous FKRP c.826C>A limb-girdle muscular dystrophy. Conclusions The clinical features and muscle pathology in these newly reported patients homozygous for FKRP c.1387A>G confirm that this mutation causes congenital muscular dystrophy. The clinical severity might be explained by the greater reduction in α-DG glycosylation compared with that seen with the c.826C>A mutation. The shared region of homozygosity at 19q13.32 indicates that FKRP c.1387A>G is a founder mutation with an estimated age of 60 generations (∼1,200–1,500 years).
Collapse
Affiliation(s)
- Angela J Lee
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Karra A Jones
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Russell J Butterfield
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Mary O Cox
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Chamindra G Konersman
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Carla Grosmann
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Jose E Abdenur
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Monica Boyer
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Brent Beson
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Ching Wang
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - James J Dowling
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Melissa A Gibbons
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Alison Ballard
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Joanne S Janas
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Robert T Leshner
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Sandra Donkervoort
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Carsten G Bönnemann
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Denise M Malicki
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Robert B Weiss
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Steven A Moore
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| | - Katherine D Mathews
- University of Iowa (A.J.L.), Carver College of Medicine; Department of Pathology (K.A.J., M.O.C., S.A.M.), University of Iowa; Departments of Pediatrics and Neurology (R.J.B.), University of Utah; Department of Neurology (C.G.K.), University of California San Diego; Department of Neurology (C.G.), Gillette Children's Specialty Healthcare; Division of Metabolic Disorders (J.E.A., M.B.), CHOC Children's; Department of Neurology (B.B.), Integris Southwest Medical Center; Departments of Pediatrics and Neurology (C.W.), Driscoll Children's Hospital; Departments of Paediatrics and Molecular Genetics (J.J.D.), Hospital for Sick Children, University of Toronto; Departments of Pediatrics and Neurology (M.A.G., J.S.J.), University of Colorado; Department of Physical Medicine and Rehabilitation (A.B.), University of Colorado; Department of Neurosciences (R.T.L.), University of California San Diego; National Institutes of Health (S.D., C.G.B.), Institute of Neurological Disorders and Stroke; Department of Pathology (D.M.M.), University of California San Diego; Department of Human Genetics (R.B.W.), University of Utah; and Departments of Pediatrics and Neurology (K.D.M.), University of Iowa
| |
Collapse
|
24
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Taghizadeh E, Rezaee M, Barreto GE, Sahebkar A. Prevalence, pathological mechanisms, and genetic basis of limb-girdle muscular dystrophies: A review. J Cell Physiol 2018; 234:7874-7884. [PMID: 30536378 DOI: 10.1002/jcp.27907] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
Limb-girdle muscular dystrophies (LGMDs) are a highly heterogeneous group of neuromuscular disorders that are associated with weakness and wasting of muscles in legs and arms. Signs and symptoms may begin at any age and usually worsen by time. LGMDs are autosomal disorders with different types and their prevalence is not the same in different areas. New technologies such as next-generation sequencing can accelerate their diagnosis. Several important pathological mechanisms that are involved in the pathology of the LGMD include abnormalities in dystrophin-glycoprotein complex, the sarcomere, glycosylation of dystroglycan, vesicle and molecular trafficking, signal transduction pathways, and nuclear functions. Here, we provide a comprehensive review that integrates LGMD clinical manifestations, prevalence, and some pathological mechanisms involved in LGMDs.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculity of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Science, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
26
|
Serafini PR, Feyder MJ, Hightower RM, Garcia-Perez D, Vieira NM, Lek A, Gibbs DE, Moukha-Chafiq O, Augelli-Szafran CE, Kawahara G, Widrick JJ, Kunkel LM, Alexander MS. A limb-girdle muscular dystrophy 2I model of muscular dystrophy identifies corrective drug compounds for dystroglycanopathies. JCI Insight 2018; 3:120493. [PMID: 30232282 DOI: 10.1172/jci.insight.120493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/07/2018] [Indexed: 01/31/2023] Open
Abstract
Zebrafish are a powerful tool for studying muscle function owing to their high numbers of offspring, low maintenance costs, evolutionarily conserved muscle functions, and the ability to rapidly take up small molecular compounds during early larval stages. Fukutin-related protein (FKRP) is a putative protein glycosyltransferase that functions in the Golgi apparatus to modify sugar chain molecules of newly translated proteins. Patients with mutations in the FKRP gene can have a wide spectrum of clinical symptoms with varying muscle, eye, and brain pathologies depending on the location of the mutation in the FKRP protein. Patients with a common L276I FKRP mutation have mild adult-onset muscle degeneration known as limb-girdle muscular dystrophy 2I (LGMD2I), whereas patients with more C-terminal pathogenic mutations develop the severe Walker-Warburg syndrome (WWS)/muscle-eye-brain (MEB) disease. We generated fkrp-mutant zebrafish that phenocopy WWS/MEB pathologies including severe muscle breakdowns, head malformations, and early lethality. We have also generated a milder LGMD2I-model zebrafish via overexpression of a heat shock-inducible human FKRP (L276I) transgene that shows milder muscle pathology. Screening of an FDA-approved drug compound library in the LGMD2I zebrafish revealed a strong propensity towards steroids, antibacterials, and calcium regulators in ameliorating FKRP-dependent pathologies. Together, these studies demonstrate the utility of the zebrafish to both study human-specific FKRP mutations and perform compound library screenings for corrective drug compounds to treat muscular dystrophies.
Collapse
Affiliation(s)
- Peter R Serafini
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, Massachusetts, USA
| | - Michael J Feyder
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rylie M Hightower
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,UAB Center for Exercise Medicine at the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Daniela Garcia-Perez
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA
| | - Natássia M Vieira
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, Massachusetts, USA
| | - Angela Lek
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, Massachusetts, USA
| | - Devin E Gibbs
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, Massachusetts, USA
| | | | | | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Jeffrey J Widrick
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, Massachusetts, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, Massachusetts, USA
| | - Matthew S Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,UAB Center for Exercise Medicine at the University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Genetics at the University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
27
|
Magnetic Resonance Imaging Findings in the Muscle Tissue of Patients with Limb Girdle Muscular Dystrophy Type 2I Harboring the Founder Mutation c.545A>G in the FKRP Gene. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3710814. [PMID: 30003095 PMCID: PMC5996470 DOI: 10.1155/2018/3710814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 04/09/2018] [Accepted: 04/29/2018] [Indexed: 12/15/2022]
Abstract
Limb girdle muscular dystrophy type 2I (LGMD2I) is an autosomal recessive muscular dystrophy that is rare in Asia and is caused by mutations in the fukutin-related protein gene (FKRP). The aim of this study was to determine if there are any characteristic features of muscle on magnetic resonance imaging (MRI) in patients with LGMD2I harboring the founder mutation c.545A>G in FKRP. Using MRI, we delineated changes in the thigh muscles of ten patients with genetically confirmed LGMD2I. The majority of muscle biopsy specimens showed reduced glycosylation of α-dystroglycan, decreased expression of laminin α2, and a dystrophic pattern. In our cohort, the muscles with the most severe fatty infiltration were adductor magnus and vastus intermedius, whereas the rectus femoris, sartorius, and gracilis muscles were relatively spared. In seven patients, we identified a concentric fatty infiltration pattern that was most pronounced in the vastus intermedius and vastus medialis muscles around the distal femoral diaphysis. In this disease, the initial fatty infiltration of the posterior thigh muscles gradually progresses anteriorly regardless of the founder mutation in FKRP. Muscle tissue in patients with LGMD2I who have the founder mutation c.545A>G in FKRP shows a distinctive concentric pattern of fatty infiltration and edema on MRI.
Collapse
|