1
|
Ogbonmwan YE, Sciolino NR, Groves-Chapman JL, Freeman KG, Schroeder JP, Edwards GL, Holmes PV, Weinshenker D. The galanin receptor agonist, galnon, attenuates cocaine-induced reinstatement and dopamine overflow in the frontal cortex. Addict Biol 2015; 20:701-13. [PMID: 25053279 PMCID: PMC4305031 DOI: 10.1111/adb.12166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Relapse represents one of the most significant problems in the long-term treatment of drug addiction. Cocaine blocks plasma membrane monoamine transporters and increases dopamine (DA) overflow in the brain, and DA is critical for the motivational and primary reinforcing effects of the drug as well as cocaine-primed reinstatement of cocaine seeking in rats, a model of relapse. Thus, modulators of the DA system may be effective for the treatment of cocaine dependence. The endogenous neuropeptide galanin inhibits DA transmission, and both galanin and the synthetic galanin receptor agonist, galnon, interfere with some rewarding properties of cocaine. The purpose of this study was to further assess the effects of galnon on cocaine-induced behaviors and neurochemistry in rats. We found that galnon attenuated cocaine-induced motor activity, reinstatement and DA overflow in the frontal cortex at a dose that did not reduce baseline motor activity, stable self-administration of cocaine, baseline extracellular DA levels or cocaine-induced DA overflow in the nucleus accumbens (NAc). Similar to cocaine, galnon had no effect on stable food self-administration but reduced food-primed reinstatement. These results indicate that galnon can diminish cocaine-induced hyperactivity and relapse-like behavior, possibly in part by modulating DA transmission in the frontal cortex.
Collapse
Affiliation(s)
- Yvonne E. Ogbonmwan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Natale R. Sciolino
- Graduate Program in Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602
| | - Jessica L. Groves-Chapman
- Graduate Program in Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602
| | - Kimberly G. Freeman
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Jason P. Schroeder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Gaylen L. Edwards
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Philip V. Holmes
- Graduate Program in Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602
- Department of Psychology, University of Georgia, Athens, GA 30602
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
2
|
Flynn SP, White HS. Regulation of glucose and insulin release following acute and repeated treatment with the synthetic galanin analog NAX-5055. Neuropeptides 2015; 50:35-42. [PMID: 25690510 PMCID: PMC4402648 DOI: 10.1016/j.npep.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 11/19/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Abstract
The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems. However there is limited understanding of how individual galanin receptor (GalR1, 2, and 3) subtypes mediate the physiological activity of galanin in vivo. To address this issue we utilized NAX-5055, a systemically available, metabolically stable galanin analog. NAX-5055 displays a preference for GalR1 receptors and possesses potent anticonvulsant activity in vivo, suggesting that NAX-5055 engages central galanin receptors. To determine if NAX-5055 also modulates the activity of peripheral galanin receptors, we evaluated the effect of NAX-5055 on blood glucose and insulin levels in mice. Acute and repeated (once daily for four days) systemic administration of NAX-5055 (4 mg/kg) significantly increased blood glucose levels compared to vehicle treated mice. However, a hyperglycemic response was not observed following systemic administration of NAX-805-1, a scrambled analog of NAX-5055, with critical receptor binding residues, Trp(2) and Tyr(9), reversed. These results suggest that chemical modifications independent of the galanin backbone of NAX-5055 are not responsible for the hyperglycemic response. The effect of NAX-5055 on glucose homeostasis was further evaluated with a glucose tolerance test (GTT). Mice administered either acute or repeated (once daily for four days) injections of NAX-5055 (4 mg/kg) displayed impaired glucose handling and reduced insulin response to an acute glucose (1g/kg) challenge. Here we have shown that systemic administration of a centrally active GalR1-preferring galanin analog produces acute hyperglycemia and an inhibition of insulin release in vivo and that these effects are not attenuated with repeated administration. NAX-5055 thus provides a new pharmacological tool to further the understanding of function of both central and peripheral GalR1 receptors in vivo.
Collapse
Affiliation(s)
- Sean P Flynn
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84108, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84108, USA
| | - H Steve White
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84108, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84108, USA.
| |
Collapse
|
3
|
Mutolo D, Cinelli E, Bongianni F, Pantaleo T. Inhibitory control of the cough reflex by galanin receptors in the caudal nucleus tractus solitarii of the rabbit. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1358-67. [DOI: 10.1152/ajpregu.00237.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The caudal nucleus tractus solitarii (NTS) is the main central station of cough-related afferents and a strategic site for the modulation of the cough reflex. The similarities between the characteristics of central processing of nociceptive and cough-related inputs led us to hypothesize that galanin, a neuropeptide implicated in the control of pain, could also be involved in the regulation of the cough reflex at the level of the NTS, where galanin receptors have been found. We investigated the effects of galanin and galnon, a nonpeptide agonist at galanin receptors, on cough responses to mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30–50 nl) into the caudal NTS of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Galnon antitussive effects on cough responses to the mechanical stimulation of the airway mucosa via a custom-built device were also investigated. Bilateral microinjections of 1 mM galanin markedly decreased cough number, peak abdominal activity, and increased cough-related total cycle duration. Bilateral microinjections of 1 mM galnon induced mild depressant effects on cough, whereas bilateral microinjections of 10 mM galnon caused marked antitussive effects consistent with those produced by galanin. Galnon effects were confirmed by using the cough-inducing device. The results indicate that galanin receptors play a role in the inhibitory control of the cough reflex at the level of the caudal NTS and provide hints for the development of novel antitussive strategies.
Collapse
Affiliation(s)
- Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
4
|
Kothandan G, Gadhe CG, Cho SJ. Theoretical Characterization of Galanin Receptor Type 3 (Gal3) and Its Interaction with Agonist (GALANIN) and Antagonists (SNAP 37889 and SNAP 398299): AnIn SilicoAnalysis. Chem Biol Drug Des 2013; 81:757-74. [DOI: 10.1111/cbdd.12128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Gugan Kothandan
- Department of Bio-New Drug Development; College of Medicine; Chosun University; Gwangju; 501-759; Korea
| | - Changdev G. Gadhe
- Department of Bio-New Drug Development; College of Medicine; Chosun University; Gwangju; 501-759; Korea
| | | |
Collapse
|
5
|
Jackson KJ, Chen X, Miles MF, Harenza J, Damaj MI. The neuropeptide galanin and variants in the GalR1 gene are associated with nicotine dependence. Neuropsychopharmacology 2011; 36:2339-48. [PMID: 21796100 PMCID: PMC3176570 DOI: 10.1038/npp.2011.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The neuropeptide galanin and its receptors are expressed in brain regions implicated in drug dependence. Indeed, several lines of evidence support a role for galanin in modulating the effects of drugs of abuse, including morphine, cocaine, amphetamine, and alcohol. Despite these findings, the role of galanin and its receptors in the effects of nicotine is largely underexplored. Here, using mouse models of nicotine reward and withdrawal, we show that there is a significant correlation between mecamylamine-precipitated nicotine withdrawal somatic signs and basal galanin or galanin receptor 1 (GALR1) expression in mesolimbocortical dopamine regions across the BXD battery of recombinant inbred mouse lines. The non-peptide galanin receptor agonist, galnon, also blocks nicotine rewarding effects and reverses mecamylamine-precipitated nicotine withdrawal signs in ICR mice. Additionally, we conducted a meta-analysis using smoking information from six European-American and African-American data sets. In support of our animal data, results from the association study show that variants in the GALR1 gene are associated with a protective effect in nicotine dependence (ND). Taken together, our data suggest that galanin has a protective role against progression to ND, and these effects may be mediated through GALR1.
Collapse
Affiliation(s)
- Kia J Jackson
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA;
| | - Xiangning Chen
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA;
| | - Michael F Miles
- Department of Pharmacology/Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - JoLynne Harenza
- Department of Pharmacology/Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology/Toxicology, Virginia Commonwealth University, Richmond, VA, USA,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA, Tel: +1 804 828 1676, Fax: +1 804 828 2117, E-mail:
| |
Collapse
|
6
|
Sagi VN, Liu T, Lu X, Bartfai T, Roberts E. Synthesis and biological evaluation of novel pyrimidine derivatives as sub-micromolar affinity ligands of GalR2. Bioorg Med Chem Lett 2011; 21:7210-5. [PMID: 22018787 DOI: 10.1016/j.bmcl.2011.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 01/03/2023]
Abstract
GalR1 and GalR2 represent unique pharmacological targets for treatment of seizures and epilepsy. A novel series of 2,4,6-triaminopyrimidine derivatives were synthesized and found to have sub-micromolar affinity for GalR2. Optimization of a series of 2,4,6-triaminopyrimidines led to the discovery of several analogs with IC50 values ranging from 0.3 to 1 μM.
Collapse
Affiliation(s)
- Vasudeva Naidu Sagi
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | | | | | | | |
Collapse
|
7
|
Abstract
Since the discovery of galanin in 1983, one of the most frequently suggested physiological function for this peptide is pain modulation at the level of the spinal cord. This notion, initially based on the preferential distribution of galanin in dorsal spinal cord, has been supported by results from a large number of morphological, molecular, and functional studies. It is generally agreed that spinally applied galanin produces a biphasic, dose-dependent effect on spinal nociception through activation of GalR1 (inhibitory) or GalR2 (excitatory) receptors. Galanin also appears to have an endogenous inhibitory role, particularly after peripheral nerve injury when the synthesis of galanin is increased in sensory neurons. In recent years, small molecule ligands of galanin receptors have been developed, which may lead to the development of analgesic drugs, which affects the galanin system at the spinal cord level.
Collapse
|
8
|
Robertson CR, Flynn SP, White HS, Bulaj G. Anticonvulsant neuropeptides as drug leads for neurological diseases. Nat Prod Rep 2011; 28:741-62. [PMID: 21340067 DOI: 10.1039/c0np00048e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anticonvulsant neuropeptides are best known for their ability to suppress seizures and modulate pain pathways. Galanin, neuropeptide Y, somatostatin, neurotensin, dynorphin, among others, have been validated as potential first-in-class anti-epileptic or/and analgesic compounds in animal models of epilepsy and pain, but their therapeutic potential extends to other neurological indications, including neurodegenerative and psychatric disorders. Disease-modifying properties of neuropeptides make them even more attractive templates for developing new-generation neurotherapeutics. Arguably, efforts to transform this class of neuropeptides into drugs have been limited compared to those for other bioactive peptides. Key challenges in developing neuropeptide-based anticonvulsants are: to engineer optimal receptor-subtype selectivity, to improve metabolic stability and to enhance their bioavailability, including penetration across the blood–brain barrier (BBB). Here, we summarize advances toward developing systemically active and CNS-penetrant neuropeptide analogs. Two main objectives of this review are: (1) to provide an overview of structural and pharmacological properties for selected anticonvulsant neuropeptides and their analogs and (2) to encourage broader efforts to convert these endogenous natural products into drug leads for pain, epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Charles R Robertson
- College of Pharmacy, Department of Medicinal Chemistry, 421 Wakara Way, STE. 360 Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
9
|
Neuropeptide receptor positive allosteric modulation in epilepsy: galanin modulation revealed. Proc Natl Acad Sci U S A 2010; 107:14943-4. [PMID: 20713719 DOI: 10.1073/pnas.1010365107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Mitsukawa K, Lu X, Bartfai T. Galanin, galanin receptors, and drug targets. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:7-23. [PMID: 21299058 DOI: 10.1007/978-3-0346-0228-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Galanin, a neuropeptide widely expressed in the central and peripheral nervous systems and in the endocrine system, has been shown to regulate numerous physiological and pathological processes through interactions with three G-protein-coupled receptors, GalR1 through GalR3. Over the past decade, some of the receptor subtype-specific effects have been elucidated through pharmacological studies using subtype selective ligands, as well as through molecular approaches involving knockout animals. In this chapter, we summarize the current data which constitute the basis of targeting GalR1, GalR2, and GalR3 for the treatment of various human diseases and pathological conditions, including seizure, Alzheimer's disease, mood disorders, anxiety, alcohol intake in addiction, metabolic diseases, pain and solid tumors.
Collapse
Affiliation(s)
- K Mitsukawa
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
11
|
Brooks-Kayal AR, Raol YH, Russek SJ. Alteration of epileptogenesis genes. Neurotherapeutics 2009; 6:312-8. [PMID: 19332325 PMCID: PMC2700027 DOI: 10.1016/j.nurt.2009.01.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 01/03/2023] Open
Abstract
Retrospective studies suggest that precipitating events such as prolonged seizures, stroke, or head trauma increase the risk of developing epilepsy later in life. The process of epilepsy development, known as epileptogenesis, is associated with changes in the expression of a myriad of genes. One of the major challenges for the epilepsy research community has been to determine which of these changes contributes to epileptogenesis, which may be compensatory, and which may be noncontributory. Establishing this for any given gene is essential if it is to be considered a therapeutic target for the prevention or treatment of epilepsy. Our laboratories have examined alterations in gene expression related to inhibitory neurotransmission that have been proposed as contributing factors in epileptogenesis. The GABA(A) receptor mediates most fast synaptic inhibition, and changes in GABA(A) receptor subunit expression and function have been reported in adult animals beginning immediately after prolonged seizures (status epilepticus [SE]) and continue as animals become chronically epileptic. Prevention of GABA(A) receptor subunit changes after SE using viral gene transfer inhibits development of epilepsy in an animal model, suggesting that these changes directly contribute to epileptogenesis. The mechanisms that regulate differential expression of GABA(A) receptor subunits in hippocampus after SE have recently been identified, and include the CREB-ICER, JAK-STAT, BDNF, and Egr3 signaling pathways. Targeting signaling pathways that alter the expression of genes involved in epileptogenesis may provide novel therapeutic approaches for preventing or inhibiting the development of epilepsy after a precipitating insult.
Collapse
Affiliation(s)
- Amy R Brooks-Kayal
- Division of Neurology, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
12
|
Bulaj G, Green BR, Lee HK, Robertson CR, White K, Zhang L, Sochanska M, Flynn SP, Scholl EA, Pruess TH, Smith MD, White HS. Design, Synthesis, and Characterization of High-Affinity, Systemically-Active Galanin Analogues with Potent Anticonvulsant Activities. J Med Chem 2008; 51:8038-47. [DOI: 10.1021/jm801088x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Grzegorz Bulaj
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Brad R. Green
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Hee-Kyoung Lee
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Charles R. Robertson
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Karen White
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Liuyin Zhang
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Marianna Sochanska
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Sean P. Flynn
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Erika Adkins Scholl
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Timothy H. Pruess
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - Misty D. Smith
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| | - H. Steve White
- Department of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108
| |
Collapse
|
13
|
Blakeney JS, Reid RC, Le GT, Fairlie DP. Nonpeptidic Ligands for Peptide-Activated G Protein-Coupled Receptors. Chem Rev 2007; 107:2960-3041. [PMID: 17622179 DOI: 10.1021/cr050984g] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jade S Blakeney
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
14
|
Schlifke I, Kuteeva E, Hokfelt T, Kokaia M. Galanin expressed in the excitatory fibers attenuates synaptic strength and generalized seizures in the piriform cortex of mice. Exp Neurol 2006; 200:398-406. [PMID: 16630615 DOI: 10.1016/j.expneurol.2006.02.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/17/2006] [Accepted: 02/24/2006] [Indexed: 10/24/2022]
Abstract
The neuropeptide galanin is considered to be an endogenous antiepileptic agent, presumably acting via inhibition of glutamate release. Previously, we have demonstrated that in mice ectopically overexpressing galanin in cortical and hippocampal neurons, particularly in granule cells and their axons, the mossy fibers, hippocampal kindling epileptogenesis is suppressed and is associated with attenuated frequency facilitation in mossy fiber-CA3 cell synapses. We hypothesized that changes in synaptic transmission might occur also in other excitatory synapses of the galanin overexpressing (GalOE) mouse, contributing to seizure suppression. Lateral olfactory tract (LOT) synapses, formed by axons of olfactory bulb (OB) mitral cells and targeting piriform cortex (PC) pyramidal cells, ectopically express galanin in GalOE mice. Using whole-cell patch-clamp recordings, we found that excitatory synaptic responses recorded in PC pyramidal cells during high frequency stimulation of the LOT were attenuated in GalOE mice as compared to wild-type controls. This effect was mimicked by bath application of galanin or its agonist galnon to wild-type slices, supporting the notion of ectopic galanin action. Since the high frequency activation induced in vitro resembles epileptic seizures in vivo, we asked whether the observed synaptic inhibition would result in altered epileptogenesis when animals were kindled via the same synapses. In male GalOE mice, we found that the latency to convulsions was prolonged, and once animals had experienced the first stage 5 seizure, generalized seizures were less sustainable. These data indicate that the PC is a possible target for epilepsy treatment by ectopically overexpressing galanin to modulate seizure activity.
Collapse
Affiliation(s)
- Irene Schlifke
- Experimental Epilepsy Group, Wallenberg Neuroscience Center, BMC A-11, Lund University Hospital, 221 84 Lund, Sweden
| | | | | | | |
Collapse
|
15
|
Karlsson RM, Holmes A. Galanin as a modulator of anxiety and depression and a therapeutic target for affective disease. Amino Acids 2006; 31:231-9. [PMID: 16733616 DOI: 10.1007/s00726-006-0336-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/06/2006] [Indexed: 12/31/2022]
Abstract
Galanin is a 29 amino-acid (30 in humans) neuropeptide with a close functional relationship with neurotransmitter systems implicated in the pathophysiology and treatment of depression and anxiety disorders. In rodent models of depression-related behavior, treatment with galanin or compounds with agonist actions at galanin receptors has been shown to affect depression-related behaviors and the behavioral and neurochemical effects of antidepressants. Treatment with clinically efficacious antidepressants alters galanin and galanin receptor gene expression in rodents. Rodent anxiety-like behaviors appear to be modulated by galanin in a complex manner, with studies showing either increases, decreases and no effects of galanin treatments and galanin mutations on anxiety-like behavior in various tasks. One concept to emerge from this literature is that galanin recruitment during extreme behavioral and physiological provocations such as stress and opiate withdrawal may serve to attenuate negative emotional states caused by noradrenergic hyperactivation. The specific galanin receptor subtypes mediating the anxiety- and depression-related effects of galanin remains to be determined, with evidence supporting a possible contribution of GalR1, GalR2 and GalR3. While our understanding of the role of galanin as a modulator of emotion remains at an early stage, recent progress in this rapidly evolving field raise possibility of that galanin may represent a target for the development of novel antidepressant and anxiolytic drug treatments.
Collapse
Affiliation(s)
- R-M Karlsson
- Laboratory of Clinical and Translational Science, National Institute of Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD 20892, U.S.A.
| | | |
Collapse
|
16
|
Florén A, Sollenberg U, Lundström L, Zorko M, Stojan J, Budihna M, Wheatley M, Martin NP, Kilk K, Mazarati A, Bartfai T, Lindgren M, Langel U. Multiple interaction sites of galnon trigger its biological effects. Neuropeptides 2005; 39:547-58. [PMID: 16297447 DOI: 10.1016/j.npep.2005.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 09/24/2005] [Indexed: 11/22/2022]
Abstract
Galnon was first reported as a low molecular weight non-peptide agonist at galanin receptors [Saar et al. (2002) Proc. Natl. Acad. Sci. USA 99, 7136-7141]. Following its systemic administration, this synthetic ligand affected a range of important physiological processes including appetite, seizures and pain. Physiological activity of galnon could not be explained solely by the activation of the three known galanin receptors, GalR1, GalR2 and GalR3. Consequently, it was possible that galnon generates its manifold effects by interacting with other signaling pathway components, in addition to via GalR1-3. In this report, we establish that galnon: (i) can penetrate across the plasma membrane of cells, (ii) can activate intracellular G-proteins directly independent of receptor activation thereby triggering downstream signaling, (iii) demonstrates selectivity for different G-proteins, and (iiii) is a ligand to other G-protein coupled receptors (GPCRs) in addition to via GalR1-3. We conclude that galnon has multiple sites of interaction within the GPCR signaling cascade which mediate its physiological effects.
Collapse
Affiliation(s)
- Anders Florén
- Department of Neurochemistry, Stockholm University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hökfelt T. Galanin and its receptors: introduction to the Third International Symposium, San Diego, California, USA, 21-22 October 2004. Neuropeptides 2005; 39:125-42. [PMID: 15908000 DOI: 10.1016/j.npep.2005.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Third Galanin Symposium presented many different and exciting results on galanin research reflecting a major progress since the previous symposium in 1998. A major impression was the many possible relationships of galaninergic mechanisms to important brain functions such as development, cognition and ageing as well as many aspects related to a wide spectrum of diseases, including Alzheimer's disease, anxiety/depression, addiction, obesity, pain and tumour growth. These studies were based on an extensive armament of methodologies including various strains of transgenic mice. Unfortunately, the pharmaceutical industry had only a minor participation. Nevertheless, exciting developments in the generation of agonists and antagonists are emerging, providing hope that we at the next symposium will be able to validitate many of the challenging hypotheses concerning galanin and disease with the help of pharmacological tools.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-171 77 Stockholm, Sweden.
| |
Collapse
|