1
|
Fakira AK, Peck EG, Liu Y, Lueptow LM, Trimbake NA, Han MH, Calipari ES, Devi LA. The role of the neuropeptide PEN receptor, GPR83, in the reward pathway: Relationship to sex-differences. Neuropharmacology 2019; 157:107666. [PMID: 31199956 DOI: 10.1016/j.neuropharm.2019.107666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
GPR83, the receptor for the neuropeptide PEN, exhibits high expression in the nucleus accumbens of the human and rodent brain, suggesting that it plays a role in modulating the mesolimbic reward pathway. However, the cell-type specific expression of GPR83, its functional impact in the reward pathway, and in drug reward-learning has not been fully explored. Using GPR83/eGFP mice, we show high GPR83 expression on cholinergic interneurons in the nucleus accumbens and moderate expression on ventral tegmental area dopamine neurons. In GPR83 knockout mice, baseline dopamine release in the nucleus accumbens is enhanced which disrupts the ratio of tonic vs phasic release. Additionally, GPR83 knockout leads to changes in the expression of dopamine-related genes. Using the morphine conditioned place preference model, we identify sex differences in morphine reward-learning, show that GPR83 is upregulated in the nucleus accumbens following morphine conditioned place preference, and show that shRNA-mediated knockdown of GPR83 in the nucleus accumbens leads to attenuation morphine reward. Together, these findings detect GPR83 expression in the reward-pathway, and show its involvement in dopamine release and morphine reward-learning.
Collapse
Affiliation(s)
- Amanda K Fakira
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Emily G Peck
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yutong Liu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Lindsay M Lueptow
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Nikita A Trimbake
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY, NY, USA.
| |
Collapse
|
2
|
Khaksari M, Hajializadeh Z, Shahrokhi N, Esmaeili-Mahani S. Changes in the gene expression of estrogen receptors involved in the protective effect of estrogen in rat's trumatic brain injury. Brain Res 2015; 1618:1-8. [PMID: 26003937 DOI: 10.1016/j.brainres.2015.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023]
Abstract
It has been demonstrated that estradiol has neuroprotective effects after traumatic brain injury (TBI) in female rats. Since estrogen receptors have an important role in estradiol effects at the cellular level and the exact mechanism(s) of estradiol-induced neuroprotection has not yet been fully clarified, the present study was designed to determine the changes in the levels of estrogen receptors mRNAs and proteins involved in this phenomenon. All experiments were carried out on female Wistar rats. The brain edema and blood-brain-barrier (BBB) disruption were assessed. The TBI method was diffuse type and induced by the Marmarou method. Semiquantitative RT-PCR and immunoblotting were used to assess ERα and ERβ gene expression. The data showed that the level of brain water content was significantly increased in TBI group. The increased water content was significantly attenuated in estradiol-treated (1mg/kg) TBI rats. Disruption of BBB after TBI was significantly inhibited just by estradiol treatment. Estrogen-treated animals showed a significant increase in ERα mRNA (18%) and protein (35%) levels in the brain tissue. Furthermore, in the brain-injured rats the levels of ERβ mRNA were lower than those in control rats. Following estrogen treatment, the protein levels of ERβ were closed to those in control group. In conclusion, the data demonstrate that estrogen treatment can protect brain against traumatic brain injury. Estrogen treatment increases ER mRNA and protein levels which were coincident with its protective effects. It seems that such phenomenon participates in the induction of neuroprotective effects of estrogen. This article is part of a Special Issue entitled 1618.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box 76135-133, Kerman, Iran.
| | - Zahra Hajializadeh
- Laboratory of Molecular Neurosciences, Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
3
|
Afrazi S, Esmaeili-Mahani S, Sheibani V, Abbasnejad M. Neurosteroid allopregnanolone attenuates high glucose-induced apoptosis and prevents experimental diabetic neuropathic pain: in vitro and in vivo studies. J Steroid Biochem Mol Biol 2014; 139:98-103. [PMID: 24176764 DOI: 10.1016/j.jsbmb.2013.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/14/2013] [Accepted: 10/17/2013] [Indexed: 01/23/2023]
Abstract
Hyperglycemia plays a critical role in the development of diabetic neuropathy. Hyperglycemia induces oxidative stress in neurons, resulting in neuronal cell apoptosis and dysfunction. Anti-apoptotic properties of neurosteroids have been demonstrated in numerous cellular models of neurodegenerative studies. Here, the protective effects of neurosteroid allopregnanolone were investigated in in vitro and in vivo models of diabetic neuropathy. The data show that glucose decreased the viability of PC12 cells in a concentration-dependent manner. Allopregnanolone at concentrations of 2.5, 5 and 10μM markedly prevented high glucose-induced toxicity in naïve and NGF-treated (neuron-like) PC12 cells. Furthermore, treatment of diabetic rats with allopregnanolone (5 and 20mg/kg) significantly ameliorated diabetic-induced thermal hyperalgesia. Moreover, this neurosteroid inhibited caspase 3 and decreased Bax/Bcl2 ratio in high glucose-treated cells and spinal cord of diabetic rats. In conclusion, the data revealed that allopregnanolone has protective effects against hyperglycemic-induced cellular damage and prevention of cell apoptosis is involved in its mechanisms. Our findings suggest that allopregnanolone has protective effect against pro-apoptotic challenges such as diabetes and hyperglycemia and propose therapeutic potential of neurosteroids in attenuation of diabetic side effects such as neuropathy.
Collapse
Affiliation(s)
- Samira Afrazi
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | | |
Collapse
|
4
|
Esmaeili-Mahani S, Ebrahimi Z, Noraie T, Sheibani V, Hajializadeh Z. Exercise-induced morphine insensitivity is accompanied with a decrease in specific G-protein subunits gene expression in rats. Pharmacol Biochem Behav 2013; 105:128-33. [DOI: 10.1016/j.pbb.2013.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 11/28/2022]
|
5
|
Yuan Y, Elbegdorj O, Chen J, Akubathini SK, Zhang F, Stevens DL, Beletskaya IO, Scoggins KL, Zhang Z, Gerk PM, Selley DE, Akbarali HI, Dewey WL, Zhang Y. Design, synthesis, and biological evaluation of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'-pyridyl)carboxamido]morphinan derivatives as peripheral selective μ opioid receptor Agents. J Med Chem 2012; 55:10118-29. [PMID: 23116124 DOI: 10.1021/jm301247n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peripheral selective μ opioid receptor (MOR) antagonists could alleviate the symptoms of opioid-induced constipation (OIC) without compromising the analgesic effect of opioids. However, a variety of adverse effects were associated with them, partially due to their relatively low MOR selectivity. NAP, a 6β-N-4'-pyridyl substituted naltrexamine derivative, was identified previously as a potent and highly selective MOR antagonist mainly acting within the peripheral nervous system. The noticeable diarrhea associated with it prompted the design and synthesis of its analogues in order to study its structure-activity relationship. Among them, compound 8 showed improved pharmacological profiles compared to the original lead, acting mainly at peripheral while increasing the intestinal motility in morphine-pelleted mice (ED(50) = 0.03 mg/kg). The slight decrease of the ED(50) compared to the original lead was well compensated by the unobserved adverse effect. Hence, this compound seems to be a more promising lead to develop novel therapeutic agents toward OIC.
Collapse
Affiliation(s)
- Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University , 800 East Leigh Street, Richmond, Virginia 23298, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Darvishzadeh-Mahani F, Esmaeili-Mahani S, Komeili G, Sheibani V, Zare L. Ginger (Zingiber officinale Roscoe) prevents the development of morphine analgesic tolerance and physical dependence in rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:901-7. [PMID: 22472107 DOI: 10.1016/j.jep.2012.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/05/2012] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginger (Zingiber officinale Roscoe), a well-known spice plant, has been used traditionally in the treatment of a wide variety of ailments such as opiates withdrawal-induced disorders. However, its influences on opioid tolerance and dependence have not yet been clarified. MATERIALS AND METHODS Adult male Wistar rats were rendered tolerant to analgesic effect of morphine by injection of morphine (10 mg/kg, i.p.) twice daily for 8 days. To develop morphine dependence, rats given escalating doses of chronic morphine. To determine the effect of ginger on the development of morphine tolerance and dependence, different doses of ginger were administrated before morphine. The tail-flick and naloxone precipitation tests were used to assess the degree of tolerance and dependence, respectively. RESULTS Our results showed that chronic morphine-injected rats displayed tolerance to the analgesic effect of morphine as well as morphine dependence. Ginger (50 and 100 mg/kg) completely prevented the development of morphine tolerance. In addition, concomitant treatment of morphine with 100 and 150 mg/kg attenuated almost all of the naloxone-induced withdrawal sings which include weight lose, abdominal contraction, diarrhea, petosis, teeth chattering, and jumping. In addition, morphine-induced L-type calcium channel over-expression in spinal cord was reversed by 100 mg/kg ginger. CONCLUSION The data indicate that ginger extract has a potential anti-tolerant/anti-dependence property against chronic usage of morphine.
Collapse
Affiliation(s)
- Fatemeh Darvishzadeh-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | | |
Collapse
|
7
|
Hajializadeh Z, Esmaeili-Mahani S, Sheibani V, Kaeidi A, Atapour M, Abbasnejad M. Changes in the gene expression of specific G-protein subunits correlate with morphine insensitivity in streptozotocin-induced diabetic rats. Neuropeptides 2010; 44:299-304. [PMID: 20334911 DOI: 10.1016/j.npep.2010.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 12/21/2022]
Abstract
Several animal and human studies have shown a decreased analgesic potency of morphine in diabetic subjects. Since G-protein subunits have an important role in morphine effects at the cellular level and the exact mechanism(s) of diabetes-induced morphine insensitivity has not been fully clarified yet, the present study was designed to determine the changes in the levels of G(alphai), G(alphas), G(beta) mRNAs and proteins involved in this phenomenon. All experiments were carried out on male Wistar rats. The tail-flick test was used to assess the nociceptive threshold. Diabetes was induced by injection of 50 mg/kg (i.p.) streptozotocin. Four weeks after diabetes induction, the dorsal half of the lumbar spinal cord was assayed for the expression of G-protein subunits using semiquantitative RT-PCR and immunoblotting. The antinociceptive effect of intrathecal morphine (5, 10 and 15 microg i.t.) was significantly reduced in diabetic rats and these effects were reversed with insulin replacement. In diabetic animals, a significant increase in the mRNA levels of G(alphai) (23.5%) was observed in the dorsal portion of the lumbar spinal cord. The mRNA level of G(alphas) and G(beta) did not change. Following diabetes a significant decrease in the protein levels of G(alphai) was induced. In contrast, no significant changes were observed in the protein level of G(alphas) and G(beta). In diabetic animals that received insulin, levels of G(alphai) mRNA and protein were close to those in control rats. In conclusion, our results demonstrate that the expression pattern of the cellular components involved in morphine analgesia changes in diabetic animals. This may be, at least partly, responsible for diabetes-induced morphine insensitivity.
Collapse
Affiliation(s)
- Zahra Hajializadeh
- Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|