1
|
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. ADDICTION NEUROSCIENCE 2022; 2:100011. [PMID: 37220637 PMCID: PMC10201992 DOI: 10.1016/j.addicn.2022.100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesolimbic dopamine system is the primary neural circuit mediating motivation, reinforcement, and reward-related behavior. The activity of this system and multiple behaviors controlled by it are affected by changes in feeding and body weight, such as fasting, food restriction, or the development of obesity. Multiple different peptides and hormones that have been implicated in the control of feeding and body weight interact with the mesolimbic dopamine system to regulate many different dopamine-dependent, reward-related behaviors. In this review, we summarize the effects of a selected set of feeding-related peptides and hormones acting within the ventral tegmental area and nucleus accumbens to alter feeding, as well as food, drug, and social reward.
Collapse
Affiliation(s)
- Anna I. Dunigan
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron G. Roseberry
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Chen G, Ghazal M, Rahman S, Lutfy K. The impact of adolescent nicotine exposure on alcohol use during adulthood: The role of neuropeptides. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:53-93. [PMID: 34801174 DOI: 10.1016/bs.irn.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nicotine and alcohol abuse and co-dependence represent major public health crises. Indeed, previous research has shown that the prevalence of alcoholism is higher in smokers than in non-smokers. Adolescence is a susceptible period of life for the initiation of nicotine and alcohol use and the development of nicotine-alcohol codependence. However, there is a limited number of pharmacotherapeutic agents to treat addiction to nicotine or alcohol alone. Notably, there is no effective medication to treat this comorbid disorder. This chapter aims to review the early nicotine use and its impact on subsequent alcohol abuse during adolescence and adulthood as well as the role of neuropeptides in this comorbid disorder. The preclinical and clinical findings discussed in this chapter will advance our understanding of this comorbid disorder's neurobiology and lay a foundation for developing novel pharmacotherapies to treat nicotine and alcohol codependence.
Collapse
Affiliation(s)
- G Chen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - M Ghazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - K Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States.
| |
Collapse
|
3
|
Abstract
Introduction: Neurotensin is a gut-brain peptide hormone, a 13 amino acid neuropeptide found in the central nervous system and in the GI tract. The neurotensinergic system is implicated in various physiological and pathological processes related to neuropsychiatric and metabolic machineries, cancer growth, food, and drug intake. NT mediates its functions through its two G protein-coupled receptors: neurotensin receptor 1 (NTS1/NTSR1) and neurotensin receptor 2 (NTS2/NTSR2). Over the past decade, the role of NTS3/NTSR3/sortilin has also gained importance in human pathologies. Several approaches have appeared dealing with the discovery of compounds able to modulate the functions of this neuropeptide through its receptors for therapeutic gain.Areas covered: The article provides an overview of over four decades of research and details the drug discovery approaches and patented strategies targeting NTSR in the past decade.Expert opinion: Neurotensin is an important neurotransmitter that enables crosstalk with various neurotransmitter and neuroendocrine systems. While significant efforts have been made that have led to selective agonists and antagonists with promising in vitro and in vivo activities, the therapeutic potential of compounds targeting the neurotensinergic system is still to be fully harnessed for successful clinical translation of compounds for the treatment of several pathologies.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
4
|
Schroeder LE, Furdock R, Quiles CR, Kurt G, Perez-Bonilla P, Garcia A, Colon-Ortiz C, Brown J, Bugescu R, Leinninger GM. [Not Available]. Neuropeptides 2019; 76:101930. [PMID: 31079844 PMCID: PMC7721284 DOI: 10.1016/j.npep.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Neurotensin (Nts) is a neuropeptide implicated in the regulation of many facets of physiology, including cardiovascular tone, pain processing, ingestive behaviors, locomotor drive, sleep, addiction and social behaviors. Yet, there is incomplete understanding about how the various populations of Nts neurons distributed throughout the brain mediate such physiology. This knowledge gap largely stemmed from the inability to simultaneously identify Nts cell bodies and manipulate them in vivo. One means of overcoming this obstacle is to study NtsCre mice crossed onto a Cre-inducible green fluorescent reporter line (NtsCre;GFP mice), as these mice permit both visualization and in vivo modulation of specific populations of Nts neurons (using Cre-inducible viral and genetic tools) to reveal their function. Here we provide a comprehensive characterization of the distribution and relative densities of the Nts-GFP populations observed throughout the male NtsCre;GFP mouse brain, which will pave the way for future work to define their physiologic roles. We also compared the distribution of Nts-GFP neurons with Nts-In situ Hybridization (Nts-ISH) data from the adult mouse brain. By comparing these data sets we can distinguish Nts-GFP populations that may only transiently express Nts during development but not in the mature brain, and hence which populations may not be amenable to Cre-mediated manipulation in adult NtsCre;GFP mice. This atlas of Nts-GFP neurons will facilitate future studies using the NtsCre;GFP line to describe the physiological functions of individual Nts populations and how modulating them may be useful to treat disease.
Collapse
Affiliation(s)
- Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Ryan Furdock
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Cristina Rivera Quiles
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Patricia Perez-Bonilla
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Angela Garcia
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Crystal Colon-Ortiz
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Juliette Brown
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States.
| |
Collapse
|
5
|
Woodworth HL, Brown JA, Batchelor HM, Bugescu R, Leinninger GM. Determination of neurotensin projections to the ventral tegmental area in mice. Neuropeptides 2018; 68:57-74. [PMID: 29478718 PMCID: PMC5906039 DOI: 10.1016/j.npep.2018.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/11/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022]
Abstract
Pharmacologic treatment with the neuropeptide neurotensin (Nts) modifies motivated behaviors such as feeding, locomotor activity, and reproduction. Dopamine (DA) neurons of the ventral tegmental area (VTA) control these behaviors, and Nts directly modulates the activity of DA neurons via Nts receptor-1. While Nts sources to the VTA have been described in starlings and rats, the endogenous sources of Nts to the VTA of mice remain incompletely understood, impeding determination of which Nts circuits orchestrate specific behaviors in this model. To overcome this obstacle we injected the retrograde tracer Fluoro-Gold into the VTA of mice that express GFP in Nts neurons. Identification of GFP-Nts cells that accumulate Fluoro-Gold revealed the Nts afferents to the VTA in mice. Similar to rats, most Nts afferents to the VTA of mice arise from the medial and lateral preoptic areas (POA) and the lateral hypothalamic area (LHA), brain regions that are critical for coordination of feeding and reproduction. Additionally, the VTA receives dense input from Nts neurons in the nucleus accumbens shell (NAsh) of mice, and minor Nts projections from the amygdala and periaqueductal gray area. Collectively, our data reveal multiple populations of Nts neurons that provide direct afferents to the VTA and which may regulate specific aspects of motivated behavior. This work lays the foundation for understanding endogenous Nts actions in the VTA, and how circuit-specific Nts modulation may be useful to correct motivational and affective deficits in neuropsychiatric disease.
Collapse
Affiliation(s)
| | - Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hannah M Batchelor
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Schroeder LE, Leinninger GM. Role of central neurotensin in regulating feeding: Implications for the development and treatment of body weight disorders. Biochim Biophys Acta Mol Basis Dis 2017; 1864:900-916. [PMID: 29288794 DOI: 10.1016/j.bbadis.2017.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
The peptide neurotensin (Nts) was discovered within the brain over 40years ago and is implicated in regulating analgesia, body temperature, blood pressure, locomotor activity and feeding. Recent evidence suggests, however, that these disparate processes may be controlled via specific populations of Nts neurons and receptors. The neuronal mediators of Nts anorectic action are now beginning to be understood, and, as such, modulating specific Nts pathways might be useful in treating feeding and body weight disorders. This review considers mechanisms through which Nts normally regulates feeding and how disruptions in Nts signaling might contribute to the disordered feeding and body weight of schizophrenia, Parkinson's disease, anorexia nervosa, and obesity. Defining how Nts specifically mediates feeding vs. other aspects of physiology will inform the design of therapeutics that modify body weight without disrupting other important Nts-mediated physiology.
Collapse
Affiliation(s)
- Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48823, United States
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48823, United States.
| |
Collapse
|
7
|
Systemic PD149163, a neurotensin receptor 1 agonist, decreases methamphetamine self-administration in DBA/2J mice without causing excessive sedation. PLoS One 2017; 12:e0180710. [PMID: 28686721 PMCID: PMC5501585 DOI: 10.1371/journal.pone.0180710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/20/2017] [Indexed: 01/23/2023] Open
Abstract
Methamphetamine (METH) is a psychostimulant that exhibits significant abuse potential. Although METH addiction is a major health and societal concern, no drug is currently approved for its therapeutic management. METH activates the central dopaminergic “reward” circuitry, and with repeated use increases levels of the neuromodulatory peptide neurotensin in the nucleus accumbens and ventral tegmental area. Previous studies in rats suggest that neurotensin agonism decreases METH self-administration, but these studies did not examine the effect of neurotensin agonism on the pattern of self-administration or open field locomotion. In our studies, we established intravenous METH self-administration in male, DBA/2J mice (fixed ratio 3, 2 hr sessions) and examined the effect of pretreatment with the NTS1 receptor agonist PD149163 on METH self-administration behavior. Locomotion following PD149163 was also measured up to 2 hours after injection on a rotarod and in an open field. Pretreatment with PD149163 (0.05 and 0.10 mg/kg, s.c.) significantly decreased METH self-administration. The pattern of responding suggested that PD149163 decreased motivation to self-administer METH initially in the session with more normal intake in the second hour of access. Voluntary movement in the open-field was significantly decreased by both 0.05 and 0.10 mg/kg (s.c.) PD149163 from 10–120 minutes after injection, but rotarod performance suggested that PD149163 did not cause frank sedation. These results suggest that a systemically delivered NTS1 receptor agonist decreases METH self-administration in mice. The pattern of self-administration suggests that PD149163 may acutely decrease motivation to self-administer METH before the drug is experienced, but cannot rule out that depression of voluntary movement plays a role in the decreased self-administration.
Collapse
|
8
|
Bruijnzeel AW. Neuropeptide systems and new treatments for nicotine addiction. Psychopharmacology (Berl) 2017; 234:1419-1437. [PMID: 28028605 PMCID: PMC5420481 DOI: 10.1007/s00213-016-4513-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE The mildly euphoric and cognitive enhancing effects of nicotine play a role in the initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in nicotine addiction. OBJECTIVES The goal of this paper is to describe the role of neuropeptide systems in the initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine seeking. RESULTS The reviewed studies indicate that several drugs that target neuropeptide systems diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria during nicotine withdrawal, and melanocortin 4 receptor blockade prevents stress-induced reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 receptors in cue-induced reinstatement of nicotine seeking. CONCLUSION Drugs that target neuropeptide systems might decrease the euphoric effects of smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress resilience.
Collapse
Affiliation(s)
- Adriaan W. Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA,Department of Neuroscience, University of Florida, Gainesville, Florida, USA,Center for Addiction Research and Education, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Pittenger ST, Swalve N, Chou S, Smith MD, Hoonakker AJ, Pudiak CM, Fleckenstein AE, Hanson GR, Bevins RA. Sex differences in neurotensin and substance P following nicotine self-administration in rats. Synapse 2016; 70:336-46. [PMID: 27074301 DOI: 10.1002/syn.21907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/21/2016] [Accepted: 04/08/2016] [Indexed: 02/02/2023]
Abstract
Investigator-administered nicotine alters neurotensin and substance P levels in Sprague-Dawley rats. This finding suggested a role of the dopamine-related endogenous neuropeptides in nicotine addiction. We sought to extend this observation by determining the responses of neurotensin and substance P systems (assessed using radioimmunoassay) in male and female rats following nicotine self-administration (SA). Male and female Sprague-Dawley were trained to self-administer nicotine, or receive saline infusions yoked to a nicotine-administering rat during daily sessions (1-h; 21 days). Brains were extracted 3 h after the last SA session. Nicotine SA increased tissue levels of neurotensin in the males in the anterior and posterior caudate, globus pallidus, frontal cortex, nucleus accumbens core and shell, and ventral tegmental area. Nicotine SA also increased tissue levels of neurotensin in the females in the anterior caudate, globus pallidus, nucleus accumbens core and shell, but not in the posterior caudate, frontal cortex, or ventral tegmental area. There were fewer sex differences observed in the substance P systems. Nicotine SA increased tissue levels of substance P in both the males and females in the posterior caudate, globus pallidus, frontal cortex, nucleus accumbens shell, and ventral tegmental area. A sex difference was observed in the nucleus accumbens core, where nicotine SA increased tissue levels of substance P in the males, yet decreased levels in the females. The regulation of neuropeptides following nicotine SA may play a role in the susceptibility to nicotine dependence in females and males. Synapse 70:336-346, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven T Pittenger
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Natashia Swalve
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Shinnyi Chou
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Misty D Smith
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108.,Department of Pharmacology and Toxicology, University of Utah, Skaggs Hall, Salt Lake City, Utah, 84112
| | - Amanda J Hoonakker
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108
| | - Cindy M Pudiak
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Annette E Fleckenstein
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108
| | - Glen R Hanson
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108.,Department of Pharmacology and Toxicology, University of Utah, Skaggs Hall, Salt Lake City, Utah, 84112
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| |
Collapse
|
10
|
Gevaert B, Wynendaele E, Stalmans S, Bracke N, D'Hondt M, Smolders I, van Eeckhaut A, De Spiegeleer B. Blood-brain barrier transport kinetics of the neuromedin peptides NMU, NMN, NMB and NT. Neuropharmacology 2016; 107:460-470. [PMID: 27040796 DOI: 10.1016/j.neuropharm.2016.03.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
Abstract
The neuromedin peptides are peripherally and centrally produced, but until now, it is generally believed that they only function as locally acting compounds without any quantitative knowledge about their blood-brain barrier (BBB) passage. Here, we characterize the transport kinetics of four neuromedins (NMU, NMN, NMB and NT) across the BBB, as well as their metabolization profile, and evaluate if they can act as endocrine hormones. Using the in vivo mouse model, multiple time regression (MTR), capillary depletion (CD) and brain efflux studies were performed. Data was fitted using linear (NMU, NT and NMB) or biphasic modeling (NMU and NMN). Three of the four investigated peptides, i.e. NMU, NT and NMN, showed a significant influx into the brain with unidirectional influx rate constants of 1.31 and 0.75 μL/(g × min) for NMU and NT respectively and initial influx constants (K1) of 72.14 and 7.55 μL/(g × min) and net influx constants (K) of 1.28 and 1.36 × 10(-16) μL/(g×min) for NMU and NMN respectively. The influx of NMB was negligible. Only NMN and NT showed a significant efflux out of the brain with an efflux constant (kout) of 0.042 min(-1) and 0.053 min(-1) respectively. Our results indicate that locally produced neuromedin peptides and/or fragments can be transported through the whole body, including passing the BBB, and taken up by different organs/tissues, supporting the idea that the neuromedins could have a much bigger role in the regulation of biological processes than currently assumed.
Collapse
Affiliation(s)
- Bert Gevaert
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nathalie Bracke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Matthias D'Hondt
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30:112-27. [PMID: 26755548 DOI: 10.1177/0269881115622240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Tiozzo Fasiolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Malgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
12
|
Di Fruscia P, He Y, Koenig M, Tabrizifard S, Nieto A, McDonald PH, Kamenecka TM. The discovery of indole full agonists of the neurotensin receptor 1 (NTSR1). Bioorg Med Chem Lett 2014; 24:3974-8. [PMID: 24997685 DOI: 10.1016/j.bmcl.2014.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023]
Abstract
Neurotensin (NT) is an endogenous tridecapeptide found in the central nervous system (CNS) and in peripheral tissues. Neurotensin exerts a wide range of physiological effects and it has been found to play a critical role in a number of human diseases, such as schizophrenia, Parkinson's disease and drug addiction. The discovery of small-molecule non-peptide neurotensin receptor (NTSR) modulators would represent an important breakthrough as such compounds could be used as pharmacological tools, to further decipher the cellular functions of neurotensin, and potentially as therapeutic agents to treat human disease. Herein, we report the identification of non-peptide low-micromolar neurotensin receptor 1 (NTSR1) full agonists, discovered through structural optimization of the known NTSR1 partial agonist 1. In vitro cellular screenings, based on an intracellular Ca(2+) mobilization assay, revealed our best hit molecule 8 (SR-12062) to have an EC50 of 2 μM at NTSR1 with full agonist behaviour (Emax=100%), showing a higher efficacy and ∼90-fold potency improvement compared to parent compound 1 (EC50=178 μM; Emax=17%).
Collapse
Affiliation(s)
- Paolo Di Fruscia
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Yuanjun He
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Marcel Koenig
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Sahba Tabrizifard
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Ainhoa Nieto
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Patricia H McDonald
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA.
| |
Collapse
|
13
|
Elucidating the role of neurotensin in the pathophysiology and management of major mental disorders. Behav Sci (Basel) 2014; 4:125-153. [PMID: 25379273 PMCID: PMC4219245 DOI: 10.3390/bs4020125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
Neurotensin (NT) is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders.
Collapse
|
14
|
Prus AJ, Schuck CJ, Rusch KR, Carey LM. The discriminative stimulus effects of the neurotensin NTS1 receptor agonist PD149163 in rats: stimulus generalization testing with dopamine D1 and D2 receptor ligands. Drug Dev Res 2014; 75:47-58. [PMID: 24668440 DOI: 10.1002/ddr.21171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022]
Abstract
Brain-penetrant neurotensin NTS1 receptor agonists produce antipsychotic drug-like effects in animal models, including inhibition of conditioned avoidance responding and reversal of psychostimulant-induced hyperactivity and stereotypy. Allosteric interactions between NTS1 receptors and dopamine D2 receptors may account for some of these antipsychotic effects. In order to determine the role that dopamine receptors may play in the behavioral effects produced by activation of NTS1 receptors, a drug discrimination approach was used in rats to evaluate the potential mediation of NTS1 receptor agonist stimulus effects by dopamine D1 and D2 receptors. Rats were trained to discriminate either the NTS1 receptor agonist PD149163, the D1 receptor agonist SKF81297, or the D2 receptor agonist quinpirole from vehicle in a two choice drug discrimination task. Full stimulus generalization occurred from PD149163 to the typical antipsychotic drug and D2 receptor-preferring antagonist haloperidol. However, stimulus generalization did not occur from SKF81297 or quinpirole to PD149163. The discriminative cue for SKF91297 and quinpirole was fully blocked the D1 receptor antagonist SCH23390 and the D2/3 receptor antagonist raclopride, respectively. Cross generalization did not occur between SKF91297 and quinpirole. Based on these findings, the stimulus effects of PD149163 may be mediated, in part, through D2 receptor antagonism, but this may only be evident when PD149163 is used as the training drug.
Collapse
Affiliation(s)
- Adam J Prus
- Department of Psychology, Northern Michigan University, Marquette, MI, USA
| | | | | | | |
Collapse
|
15
|
Neurotensin agonist attenuates nicotine potentiation to cocaine sensitization. Behav Sci (Basel) 2014; 4:42-52. [PMID: 25379267 PMCID: PMC4219249 DOI: 10.3390/bs4010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022] Open
Abstract
Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a “gateway drug”. Neurotensin (NT) is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13) analog, blocks behavioral sensitization (an animal model for psychostimulant addiction) to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control) followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine.
Collapse
|
16
|
Opland D, Sutton A, Woodworth H, Brown J, Bugescu R, Garcia A, Christensen L, Rhodes C, Myers M, Leinninger G. Loss of neurotensin receptor-1 disrupts the control of the mesolimbic dopamine system by leptin and promotes hedonic feeding and obesity. Mol Metab 2013; 2:423-34. [PMID: 24327958 DOI: 10.1016/j.molmet.2013.07.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 01/04/2023] Open
Abstract
Neurons of the lateral hypothalamic area (LHA) control motivated behaviors such as feeding and ambulatory activity, in part by modulating mesolimbic dopamine (DA) circuits. The hormone, leptin, acts via the long form of the leptin receptor (LepRb) in the brain to signal the repletion of body energy stores, thereby decreasing feeding and promoting activity. LHA LepRb neurons, most of which contain neurotensin (Nts; LepRb(Nts) neurons) link leptin action to the control of mesolimbic DA function and energy balance. To understand potential roles for Nts in these processes, we examined mice null for Nts receptor 1 (NtsR1KO). While NtsR1KO mice consume less food than controls on a chow diet, they eat more and become obese when fed a high-fat, high-sucrose palatable diet; NtsR1KO mice also exhibit augmented sucrose preference, consistent with increased hedonic feeding in these animals. We thus sought to understand potential roles for NtsR1 in the control of the mesolimbic DA system and LHA leptin action. LHA Nts cells project to DA-containing midbrain areas, including the ventral tegmental area (VTA) and the substantia nigra (SN), where many DA neurons express NtsR1. Furthermore, in contrast to wild-type mice, intra-LHA leptin treatment increased feeding and decreased VTA Th expression in NtsR1KO mice, consistent with a role for NtsR1 signaling from LHA LepRb neurons in the suppression of food intake and control of mesolimbic DA function. Additionally, these data suggest that other leptin-regulated LHA neurotransmitters normally oppose aspects of Nts action to promote balanced responses to leptin.
Collapse
Key Words
- DA, dopamine
- Dopamine
- LHA, lateral hypothalamic area
- LepRb, long form of the leptin receptor
- MCH, melanin concentrating hormone
- NAc, nucleus accumbens
- Neurotensin
- Nts, neurotensin
- NtsR1, neurotensin receptor-1
- NtsR1KO, neurotensin receptor-1 knock out
- NtsR2, neurotensin receptor-2
- OX, Orexin/hypocretin
- Obesity
- Orexin
- PD, palatable diet
- SN, substantia nigra
- TH, tyrosine hydroxylase
- VTA, ventral tegmental area
- pSTAT3, phosphorylation of signal transducer and activator of transcription 3
Collapse
Affiliation(s)
- Darren Opland
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gozen O, Balkan B, Yildirim E, Koylu EO, Pogun S. The epigenetic effect of nicotine on dopamine D1 receptor expression in rat prefrontal cortex. Synapse 2013; 67:545-52. [PMID: 23447334 DOI: 10.1002/syn.21659] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
Nicotine is a highly addictive drug and exerts its effect partially through causing dopamine release, thereby increasing intrasynaptic dopamine levels in the brain reward systems. Dopaine D1 receptor (DRD1) mRNAs and receptors are localized in reward-related brain regions, which receive cholinergic input. The aim of this study is to evaluate whether nicotine administration affects the expression of DRD1s, and if so, whether epigenetic mechanisms, such as histone acetylation, are involved. Twenty Male Sprague Dawley rats received nicotine (0.4 mg/kg/day, s.c.) or saline injections for 15 days. After nicotine/saline treatment, rats were perfused with saline; prefrontal cortex (PFC), corpus striatum (STR), and ventral tegmental area (VTA) were dissected. Homogenates were divided into two parts for total RNA isolation and histone H4 acetylation studies. DRD1 mRNA expression was significantly higher in the PFC of the nicotine-treated group compared with controls; similar trends were observed in the VTA and STR. To study epigenetic regulation, the 2kb upstream region of the DRD1 gene promoter was investigated for histone H4 acetylation in PFC samples. After chromatin immunoprecipitation with anti-acetyl histone H4 antibody, we found an increase in histone acetylation by two different primer pairs which amplified the -1365 to -1202 (P < 0.005) and -170 to +12 (P < 0.05) upstream regions of the DRD1 promoter. Our results suggest that intermittent subcutaneous nicotine administration increases the expression of DRD1 mRNA in the PFC of rats, and this increase may be due to changes in histone H4 acetylation of the 2kb promoter of the DRD1 gene.
Collapse
Affiliation(s)
- Oguz Gozen
- Ege University School of Medicine Department of Physiology, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
18
|
Boules M, Li Z, Smith K, Fredrickson P, Richelson E. Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne) 2013; 4:36. [PMID: 23526754 PMCID: PMC3605594 DOI: 10.3389/fendo.2013.00036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/06/2013] [Indexed: 01/10/2023] Open
Abstract
Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson's disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
- *Correspondence: Mona Boules, Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. e-mail:
| | - Zhimin Li
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Kristin Smith
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Paul Fredrickson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Elliott Richelson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| |
Collapse
|
19
|
Harmey D, Griffin PR, Kenny PJ. Development of novel pharmacotherapeutics for tobacco dependence: progress and future directions. Nicotine Tob Res 2012; 14:1300-18. [PMID: 23024249 PMCID: PMC3611986 DOI: 10.1093/ntr/nts201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/25/2012] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The vast majority of tobacco smokers seeking to quit will relapse within the first month of abstinence. Currently available smoking cessation agents have limited utility in increasing rates of smoking cessation and in some cases there are notable safety concerns related to their use. Hence, there is a pressing need to develop safer and more efficacious smoking cessation medications. METHODS Here, we provide an overview of current efforts to develop new pharmacotherapeutic agents to facilitate smoking cessation, identified from ongoing clinical trials and published reports. RESULTS Nicotine is considered the major addictive agent in tobacco smoke, and the vast majority of currently available smoking cessation agents act by modulating nicotinic acetylcholine receptor (nAChR) signaling. Accordingly, there is much effort directed toward developing novel small molecule therapeutics and biological agents such as nicotine vaccines for smoking cessation that act by modulating nAChR activity. Our increasing knowledge of the neurobiology of nicotine addiction has revealed new targets for novel smoking cessation therapeutics. Indeed, we highlight many examples of novel small molecule drug development around non-nAChR targets. Finally, there is a growing appreciation that medications already approved for other disease indications could show promise as smoking cessation agents, and we consider examples of such repurposing efforts. CONCLUSION Ongoing clinical assessment of potential smoking cessation agents offers the promise of new effective medications. Nevertheless, much of our current knowledge of molecular mechanisms of nicotine addiction derived from preclinical studies has not yet been leveraged for medications development.
Collapse
Affiliation(s)
- Dympna Harmey
- Department of Molecular Therapeutics, The Scripps Research Institute—Scripps Florida, Jupiter, FL
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute—Scripps Florida, Jupiter, FL
| | - Paul J. Kenny
- Department of Molecular Therapeutics, The Scripps Research Institute—Scripps Florida, Jupiter, FL
| |
Collapse
|
20
|
Hanson GR, Hoonakker AJ, Alburges ME, McFadden LM, Robson CM, Frankel PS. Response of limbic neurotensin systems to methamphetamine self-administration. Neuroscience 2012; 203:99-107. [PMID: 22245499 DOI: 10.1016/j.neuroscience.2011.12.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 12/19/2022]
Abstract
Methamphetamine (METH) abuse is personally and socially devastating. Although effects of METH on dopamine (DA) systems likely contribute to its highly addictive nature, no medications are approved to treat METH dependence. Thus, we and others have studied the METH-induced responses of neurotensin (NT) systems. NT is associated with inhibitory feedback action on DA projections, and NT levels are elevated in both the nucleus accumbens and dorsal striatum after noncontingent treatment with high doses of METH. In the present study, we used a METH self-administration (SA) model (linked to lever pressing) to demonstrate that substitution of an NT agonist for METH, while not significantly affecting motor activity, dramatically reduced lever pressing but was not self-administered per se. We also found that nucleus accumbens NT levels were elevated via a D1 mechanism after five sessions in rats self-administering METH (SAM), with a lesser effect in corresponding yoked rats. Extended (15 daily sessions) exposure to METH SA manifested similar NT responses; however, more detailed analyses revealed (i) 15 days of METH SA significantly elevated NT levels in the nucleus accumbens shell and dorsal striatum, but not the nucleus accumbens core, with a lesser effect in the corresponding yoked METH rats; (ii) the elevation of NT in both the nucleus accumbens shell and dorsal striatum significantly correlated with the total amount of METH received in the self-administering, but not the corresponding yoked METH rats; and (iii) an NT agonist blocked, but an NT antagonist did not alter, lever-pressing behavior on day 15 in SAM rats. After 5 days in SAM animals, NT levels were also elevated in the ventral tegmental area, but not frontal cortex of rats self-administering METH.
Collapse
Affiliation(s)
- G R Hanson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112, USA.
| | | | | | | | | | | |
Collapse
|