1
|
Asim M, Qianqian G, Waris A, Wang H, Lai Y, Chen X. Unraveling the role of cholecystokinin in epilepsy: Mechanistic insight into neuroplasticity. Neurochem Int 2024; 180:105870. [PMID: 39343303 DOI: 10.1016/j.neuint.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Epilepsy is a disorder characterized by an imbalance between excitability and inhibition, leading to uncontrolled hyperexcitability of neurons in the central nervous system. Despite the prevalence of epileptic seizures, the underlying mechanisms driving this hyperexcitability remain poorly understood. This review article aims to enhance our understanding of the mechanisms of epilepsy, with a specific focus on the role of cholecystokinin (CCK) in this debilitating disease. We will begin with an introduction to the topic, followed by an examination of the role of GABAergic neurons and the synaptic plasticity mechanisms associated with seizures. As we delve deeper, we will elucidate how CCK and its receptors contribute to seizure behavior. Finally, we will discuss the CCK-dependent synaptic plasticity mechanisms and highlight their potential implications in seizure activity. Through a comprehensive examination of these aspects, this review provides valuable insights into the involvement of CCK and its receptors in epilepsy. By improving our understanding of the mechanisms underlying this condition, particularly the role of CCK, we aim to contribute to the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong.
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Abdul Waris
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
| |
Collapse
|
2
|
Kumagai S, Nakajima T, Muramatsu SI. Intraparenchymal delivery of adeno-associated virus vectors for the gene therapy of neurological diseases. Expert Opin Biol Ther 2024; 24:773-785. [PMID: 39066718 DOI: 10.1080/14712598.2024.2386339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION In gene therapy with adeno-associated virus (AAV) vectors for diseases of the central nervous system, the vectors can be administered into blood vessels, cerebrospinal fluid space, or the brain parenchyma. When gene transfer to a large area of the brain is required, the first two methods are used, but for diseases in which local gene transfer is expected to be effective, vectors are administered directly into the brain parenchyma. AREAS COVERED Strategies for intraparenchymal vector delivery in gene therapy for Parkinson's disease, aromatic l-amino acid decarboxylase (AADC) deficiency, and epilepsy are reviewed. EXPERT OPINION Stereotactic intraparenchymal injection of AAV vectors allows precise gene delivery to the target site. Although more surgically invasive than intravascular or intrathecal administration, intraparenchymal vector delivery has the advantage of a lower vector dose, and preexisting neutralizing antibodies have little effect on the transduction efficacy. This approach improves motor function in AADC deficiency and led to regulatory approval of an AAV vector for the disease in the EU. Although further validation through clinical studies is needed, direct infusion of viral vectors into the brain parenchyma is expected to be a novel treatment for Parkinson's disease and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
3
|
Ruszczak A, Poznański P, Leśniak A, Łazarczyk M, Skiba D, Nawrocka A, Gaweł K, Paszkiewicz J, Mickael ME, Sacharczuk M. Susceptibility to Pentylenetetrazole-Induced Seizures in Mice with Distinct Activity of the Endogenous Opioid System. Int J Mol Sci 2024; 25:6978. [PMID: 39000086 PMCID: PMC11241619 DOI: 10.3390/ijms25136978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Currently, pharmacotherapy provides successful seizure control in around 70% of patients with epilepsy; however, around 30% of cases are still resistant to available treatment. Therefore, effective anti-epileptic therapy still remains a challenge. In our study, we utilized two mouse lines selected for low (LA) and high (HA) endogenous opioid system activity to investigate the relationship between down- or upregulation of the opioid system and susceptibility to seizures. Pentylenetetrazole (PTZ) is a compound commonly used for kindling of generalized tonic-clonic convulsions in animal models. Our experiments revealed that in the LA mice, PTZ produced seizures of greater intensity and shorter latency than in HA mice. This observation suggests that proper opioid system tone is crucial for preventing the onset of generalized tonic-clonic seizures. Moreover, a combination of an opioid receptor antagonist-naloxone-and a GABA receptor agonist-diazepam (DZP)-facilitates a significant DZP-sparing effect. This is particularly important for the pharmacotherapy of neurological patients, since benzodiazepines display high addiction risk. In conclusion, our study shows a meaningful, protective role of the endogenous opioid system in the prevention of epileptic seizures and that disturbances in that balance may facilitate seizure occurrence.
Collapse
Affiliation(s)
- Anna Ruszczak
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Anna Leśniak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-697 Warsaw, Poland
| | - Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Dominik Skiba
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Agata Nawrocka
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Kinga Gaweł
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Justyna Paszkiewicz
- Department of Health, John Paul II University of Applied Sciences in Biala Podlaska, Sidorska 95/97, 21-500 Biała Podlaska, Poland
| | - Michel-Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-697 Warsaw, Poland
| |
Collapse
|
4
|
Santos VR, Tilelli CQ, Fernandes A, de Castro OW, Del-Vecchio F, Garcia-Cairasco N. Different types of Status Epilepticus may lead to similar hippocampal epileptogenesis processes. IBRO Neurosci Rep 2023; 15:68-76. [PMID: 37457787 PMCID: PMC10338355 DOI: 10.1016/j.ibneur.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
About 1-2% of people worldwide suffer from epilepsy, which is characterized by unpredictable and intermittent seizure occurrence. Despite the fact that the exact origin of temporal lobe epilepsy is frequently unknown, it is frequently linked to an early triggering insult like brain damage, tumors, or Status Epilepticus (SE). We used an experimental approach consisting of electrical stimulation of the amygdaloid complex to induce two behaviorally and structurally distinct SE states: Type I (fully convulsive), with more severe seizure behaviors and more extensive brain damage, and Type II (partial convulsive), with less severe seizure behaviors and brain damage. Our goal was to better understand how the various types of SE impact the hippocampus leading to the development of epilepsy. Despite clear variations between the two behaviors in terms of neurodegeneration, study of neurogenesis revealed a comparable rise in the number of Ki-67 + cells and an increase in Doublecortin (DCX) in both kinds of SE.
Collapse
Affiliation(s)
- Victor R. Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Cristiane Q. Tilelli
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Campus Centro-Oeste Dona Lindu, Federal University of São João Del Rey, Divinópolis, MG, Brazil
| | - Artur Fernandes
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Pharmacology and Physiology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Flávio Del-Vecchio
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Choi U, Hu M, Zhang Q, Sieburth D. The head mesodermal cell couples FMRFamide neuropeptide signaling with rhythmic muscle contraction in C. elegans. Nat Commun 2023; 14:4218. [PMID: 37452027 PMCID: PMC10349088 DOI: 10.1038/s41467-023-39955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
FMRFamides are evolutionarily conserved neuropeptides that play critical roles in behavior, energy balance, and reproduction. Here, we show that FMRFamide signaling from the nervous system is critical for the rhythmic activation of a single cell of previously unknown function, the head mesodermal cell (hmc) in C. elegans. Behavioral, calcium imaging, and genetic studies reveal that release of the FLP-22 neuropeptide from the AVL neuron in response to pacemaker signaling activates hmc every 50 s through an frpr-17 G protein-coupled receptor (GPCR) and a protein kinase A signaling cascade in hmc. hmc activation results in muscle contraction through coupling by gap junctions composed of UNC-9/Innexin. hmc activation is inhibited by the neuronal release of a second FMRFamide-like neuropeptide, FLP-9, which functions through its GPCR, frpr-21, in hmc. This study reveals a function for two opposing FMRFamide signaling pathways in controlling the rhythmic activation of a target cell through volume transmission.
Collapse
Affiliation(s)
- Ukjin Choi
- DSR graduate program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mingxi Hu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qixin Zhang
- MPHY program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Derek Sieburth
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
6
|
Atacan Yaşgüçlükal M, Ayça S, Demirbilek V, Saltık S, Yalçınkaya C, Erdoğan Döventaş Y, Çokar Ö. Serum Levels of Neuropeptides in Epileptic Encephalopathy With Spike-and-Wave Activation in Sleep. Pediatr Neurol 2023; 144:110-114. [PMID: 37229878 DOI: 10.1016/j.pediatrneurol.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Epileptic encephalopathy with spike-and-wave activation in sleep (EE-SWAS) is a syndrome of childhood, characterized by diffuse or generalized spike-wave activity in electroencephalography during non-rapid eye movement sleep. Neuropeptides have been demonstrated in several studies to function in the sleep-wake cycle and display convulsant and anticonvulsant features. In this study, we aimed to investigate the relationship between EE-SWAS and neuropeptides such as dynorphin, galanin, ghrelin, leptin, melatonin, and orexin. METHODS This multicenter study was conducted from July 2019 to January 2021. There were three groups: Group 1 contained patients with EE-SWAS. Group 2 consisted of patients with self-limited focal epilepsy of childhood (SeLFE), and group 3 was the control group. Levels of neuropeptides were compared in the sera of these three groups. RESULTS There were 59 children aged between four and 15 years. Group 1 contained 14 children, group 2 contained 24 children, and group 3 contained 21 children. The level of leptin is higher and the level of melatonin is lower in group 1 than in group 3 (P = 0.01 and P = 0.005, respectively). In group 3, the level of orexin was lower than in both groups 2 and 3 (P = 0.01 and P = 0.01). CONCLUSIONS These data show that the level of leptin was higher and the level of melatonin was lower in patients with EE-SWAS than in the control group. Furthermore, patients with EE-SWAS had lower orexin levels than both the control group and patients with SeLFE. Further research is required to understand the potential role of these neuropeptides in the pathophysiology of EE-SWAS.
Collapse
Affiliation(s)
- Miray Atacan Yaşgüçlükal
- Neurology Department, University of Health Sciences Haseki Education and Research Hospital, Istanbul, Turkey.
| | - Senem Ayça
- Department of Pediatric Neurology, University of Health Sciences Haseki Education and Research Hospital, Istanbul, Turkey
| | - Veysi Demirbilek
- Cerrahpaşa Medical Faculty, Neurology Department, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Sema Saltık
- Cerrahpaşa Medical Faculty, Department of Pediatric Neurology, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Cengiz Yalçınkaya
- Cerrahpaşa Medical Faculty, Neurology Department, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Yasemin Erdoğan Döventaş
- Department of Medical Biochemistry, University of Health Sciences Haseki Education and Research Hospital, Istanbul, Turkey
| | - Özlem Çokar
- Neurology Department, University of Health Sciences Haseki Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Yáñez-Gómez F, Ramos-Miguel A, García-Sevilla JA, Manzanares J, Femenía T. Regulation of Cortico-Thalamic JNK1/2 and ERK1/2 MAPKs and Apoptosis-Related Signaling Pathways in PDYN Gene-Deficient Mice Following Acute and Chronic Mild Stress. Int J Mol Sci 2023; 24:ijms24032303. [PMID: 36768626 PMCID: PMC9916432 DOI: 10.3390/ijms24032303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The crosstalk between the opioidergic system and mitogen-activated protein kinases (MAPKs) has a critical role in mediating stress-induced behaviors related to the pathophysiology of anxiety. The present study evaluated the basal status and stress-induced alterations of cortico-thalamic MAPKs and other cell fate-related signaling pathways potentially underlying the anxiogenic endophenotype of PDYN gene-deficient mice. Compared to littermates, PDYN knockout (KO) mice had lower cortical and or thalamic amounts of the phospho-activated MAPKs c-Jun N-terminal kinase (JNK1/2) and extracellular signal-regulated kinase (ERK1/2). Similarly, PDYN-KO animals displayed reduced cortico-thalamic densities of total and phosphorylated (at Ser191) species of the cell fate regulator Fas-associated protein with death domain (FADD) without alterations in the Fas receptor. Exposure to acute restraint and chronic mild stress stimuli induced the robust stimulation of JNK1/2 and ERK1/2 MAPKs, FADD, and Akt-mTOR pathways, without apparent increases in apoptotic rates. Interestingly, PDYN deficiency prevented stress-induced JNK1/2 and FADD but not ERK1/2 or Akt-mTOR hyperactivations. These findings suggest that cortico-thalamic MAPK- and FADD-dependent neuroplasticity might be altered in PDYN-KO mice. In addition, the results also indicate that the PDYN gene (and hence dynorphin release) may be required to stimulate JNK1/2 and FADD (but not ERK1/2 or Akt/mTOR) pathways under environmental stress conditions.
Collapse
Affiliation(s)
- Fernando Yáñez-Gómez
- Laboratorio de Neurofarmacología, IUNICS, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barrio Sarriena S/N, 48940 Leioa, Spain
- BioCruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain
- Correspondence:
| | - Jesús A. García-Sevilla
- Laboratorio de Neurofarmacología, IUNICS, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Teresa Femenía
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
8
|
Desai D, Shende P. β-Cyclodextrin-crosslinked synthetic neuropeptide Y-based nanosponges in epilepsy by contributing GABAergic signal. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102594. [PMID: 35934306 DOI: 10.1016/j.nano.2022.102594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Neuropeptide Y (NPY) is a polypeptide sequence useful in regulating physiological functions like homeostasis, feeding, etc., but its usage is restricted due to its short half-life. β-cyclodextrin-crosslinked nanosponges improve the drug release and stability due to its wide cavity, which is helpful to deliver therapeutics. The present work aimed to formulate synthetic NPY-based nanocarriers as sponges by polymer condensation mechanism using design experiment to improve the peptide release and stability. The validated nanosponges exhibited a particle size of 423.42 ± 5.32 nm, 75.82 ± 7.43 % entrapment efficiency and 83.50 ± 6.54 % NPY release for 24 h. The NPY and β-cyclodextrin interaction was confirmed by X-ray diffraction, Fourier transform infrared and nuclear magnetic resonance spectroscopy. The NPY-loaded nanosponges were found stable for 6 months at two conditions (5 ± 2 °C and 25 ± 2 °C). The cross-linked nanocarriers of synthetic peptide-based nanosponges powder at different doses were administered intranasally using a metered-dose inhaler in the animal model to check its antiepileptic activity. The synthetic NPY-loaded nanosponges at higher doses showed significant antiepileptic effects equivalent to the standard drug (administered orally) in maximal electroshock and chemically-induced seizures with an increase of NPY in the brain directly proportional to GABAergic signalling by increase in GABA levels resulting in convulsions attenuation.
Collapse
Affiliation(s)
- Drashti Desai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta road, Vile Parle (W), Mumbai, India.
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
9
|
A Mini-Review on Potential of Neuropeptides as Future Therapeutics. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Abstract
Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients frequently develop cognitive deficits and emotional blunting along progression of the disease. The high incidence of refractoriness to antiepileptic drugs and a frequent lack of admissibility to surgery pose an unmet medical challenge. In the urgent quest for novel treatment strategies, neuropeptides and their receptors are interesting candidates. However, their therapeutic potential has not yet been fully exploited. This chapter focuses on the functional role of the dynorphins (Dyns) and the kappa opioid receptor (KOR) system in temporal lobe epilepsy and the hippocampus.Genetic polymorphisms in the prepro-dynorphin (pDyn) gene causing lower levels of Dyns in humans and pDyn gene knockout in mice increase the risk to develop epilepsy. This suggests a role of Dyns and KOR as modulators of neuronal excitability. Indeed, KOR agonists induce inhibition of presynaptic neurotransmitter release, as well as postsynaptic hyperpolarization in glutamatergic neurons, both producing anticonvulsant effects.The development of new approaches to modulate the complex KOR signalling cascade (e.g. biased agonism and gene therapy) opens up new exciting therapeutic opportunities with regard to seizure control and epilepsy. Potential adverse side effects of KOR agonists may be minimized through functional selectivity or locally restricted treatment. Preclinical data suggest a high potential of such approaches to control seizures.
Collapse
Affiliation(s)
- Luca Zangrandi
- Institute of Virology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Shimoda Y, Beppu K, Ikoma Y, Morizawa YM, Zuguchi S, Hino U, Yano R, Sugiura Y, Moritoh S, Fukazawa Y, Suematsu M, Mushiake H, Nakasato N, Iwasaki M, Tanaka KF, Tominaga T, Matsui K. Optogenetic stimulus-triggered acquisition of seizure resistance. Neurobiol Dis 2021; 163:105602. [PMID: 34954320 DOI: 10.1016/j.nbd.2021.105602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Unlike an electrical circuit, the hardware of the brain is susceptible to change. Repeated electrical brain stimulation mimics epileptogenesis. After such "kindling" process, a moderate stimulus would become sufficient in triggering a severe seizure. Here, we report that optogenetic neuronal stimulation can also convert the rat brain to a hyperexcitable state. However, continued stimulation once again converted the brain to a state that was strongly resistant to seizure induction. Histochemical examinations showed that moderate astrocyte activation was coincident with resilience acquisition. Administration of an adenosine A1 receptor antagonist instantly reverted the brain back to a hyperexcitable state, suggesting that hyperexcitability was suppressed by adenosine. Furthermore, an increase in basal adenosine was confirmed using in vivo microdialysis. Daily neuron-to-astrocyte signaling likely prompted a homeostatic increase in the endogenous actions of adenosine. Our data suggest that a certain stimulation paradigm could convert the brain circuit resilient to epilepsy without exogenous drug administration.
Collapse
Affiliation(s)
- Yoshiteru Shimoda
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kaoru Beppu
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Yosuke M Morizawa
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Satoshi Zuguchi
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Utaro Hino
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Ryutaro Yano
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Satoru Moritoh
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yugo Fukazawa
- Division of Cell Biology and Neuroscience, University of Fukui Faculty of Medical Sciences, Fukui 910-1193, Japan
| | - Makoto Suematsu
- Department of Biochemistry & Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ko Matsui
- Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.
| |
Collapse
|
12
|
Domin H. Neuropeptide Y Y2 and Y5 receptors as potential targets for neuroprotective and antidepressant therapies: Evidence from preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110349. [PMID: 33991587 DOI: 10.1016/j.pnpbp.2021.110349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022]
Abstract
There is currently no effective treatment either for neurological illnesses (ischemia and neurodegenerative diseases) or psychiatric disorders (depression), in which the Glu/GABA balance is disturbed and accompanied by significant excitotoxicity. Therefore, the search for new and effective therapeutic strategies is imperative for these disorders. Studies conducted over the last several years indicate that the neuropeptide Y (NPY)-ergic system may be a potential therapeutic target for neuroprotective or antidepressant compounds. This review focuses on the neuroprotective roles of Y2 and Y5 receptors (YRs) in neurological disorders such as ischemia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and in psychiatric disorders such as depression. It summarizes current knowledge on the possible mechanisms underlying the neuroprotective or antidepressant-like actions of Y2R and Y5R ligands. The review also discusses ligands acting at Y2R and Y5R and their limitations as in vivo pharmacological tools. The results from the preclinical studies discussed here may be useful in developing effective therapeutic strategies to treat neurological diseases on the one hand and psychiatric disorders on the other, and may pave the way for the development of novel Y2R and Y5R ligands as candidate drugs for the treatment of these diseases.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland.
| |
Collapse
|
13
|
Antonazzo IC, Fornari C, Maumus-Robert S, Cei E, Paoletti O, Conti S, Cortesi PA, Mantovani LG, Gini R, Mazzaglia G. Impact of COVID-19 Lockdown, during the Two Waves, on Drug Use and Emergency Department Access in People with Epilepsy: An Interrupted Time-Series Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413253. [PMID: 34948862 PMCID: PMC8701966 DOI: 10.3390/ijerph182413253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND In 2020, during the COVID-19 pandemic, Italy implemented two national lockdowns aimed at reducing virus transmission. We assessed whether these lockdowns affected anti-seizure medication (ASM) use and epilepsy-related access to emergency departments (ED) in the general population. METHODS We performed a population-based study using the healthcare administrative database of Tuscany. We defined the weekly time series of prevalence and incidence of ASM, along with the incidence of epilepsy-related ED access from 1 January 2018 to 27 December 2020 in the general population. An interrupted time-series analysis was used to assess the effect of lockdowns on the observed outcomes. RESULTS Compared to pre-lockdown, we observed a relevant reduction of ASM incidence (0.65; 95% Confidence Intervals: 0.59-0.72) and ED access (0.72; 0.64-0.82), and a slight decrease of ASM prevalence (0.95; 0.94-0.96). During the post-lockdown the ASM incidence reported higher values compared to pre-lockdown, whereas ASM prevalence and ED access remained lower. Results also indicate a lower impact of the second lockdown for both ASM prevalence (0.97; 0.96-0.98) and incidence (0.89; 0.80-0.99). CONCLUSION The lockdowns implemented during the COVID-19 outbreaks significantly affected ASM use and epilepsy-related ED access. The potential consequences of these phenomenon are still unknown, although an increased incidence of epilepsy-related symptoms after the first lockdown has been observed. These findings emphasize the need of ensuring continuous care of epileptic patients in stressful conditions such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ippazio Cosimo Antonazzo
- Research Centre on Public Health (CESP), University of Milan-Bicocca, 20900 Monza, Italy; (I.C.A.); (E.C.); (S.C.); (P.A.C.); (L.G.M.); (G.M.)
| | - Carla Fornari
- Research Centre on Public Health (CESP), University of Milan-Bicocca, 20900 Monza, Italy; (I.C.A.); (E.C.); (S.C.); (P.A.C.); (L.G.M.); (G.M.)
- Correspondence:
| | - Sandy Maumus-Robert
- Team Pharmacoepidemiology, Bordeaux Population Health Research Center, Inserm U1219, University of Bordeaux, 33000 Bordeaux, France;
| | - Eleonora Cei
- Research Centre on Public Health (CESP), University of Milan-Bicocca, 20900 Monza, Italy; (I.C.A.); (E.C.); (S.C.); (P.A.C.); (L.G.M.); (G.M.)
| | - Olga Paoletti
- Epidemiology Unit, Regional Agency for Healthcare Services of Tuscany, 50141 Florence, Italy; (O.P.); (R.G.)
| | - Sara Conti
- Research Centre on Public Health (CESP), University of Milan-Bicocca, 20900 Monza, Italy; (I.C.A.); (E.C.); (S.C.); (P.A.C.); (L.G.M.); (G.M.)
| | - Paolo Angelo Cortesi
- Research Centre on Public Health (CESP), University of Milan-Bicocca, 20900 Monza, Italy; (I.C.A.); (E.C.); (S.C.); (P.A.C.); (L.G.M.); (G.M.)
- Value-Based Healthcare Unit, IRCCS MultiMedica, 20099 Sesto San Giovanni, Italy
| | - Lorenzo Giovanni Mantovani
- Research Centre on Public Health (CESP), University of Milan-Bicocca, 20900 Monza, Italy; (I.C.A.); (E.C.); (S.C.); (P.A.C.); (L.G.M.); (G.M.)
- Value-Based Healthcare Unit, IRCCS MultiMedica, 20099 Sesto San Giovanni, Italy
| | - Rosa Gini
- Epidemiology Unit, Regional Agency for Healthcare Services of Tuscany, 50141 Florence, Italy; (O.P.); (R.G.)
| | - Giampiero Mazzaglia
- Research Centre on Public Health (CESP), University of Milan-Bicocca, 20900 Monza, Italy; (I.C.A.); (E.C.); (S.C.); (P.A.C.); (L.G.M.); (G.M.)
| |
Collapse
|
14
|
Patodia S, Somani A, Thom M. Review: Neuropathology findings in autonomic brain regions in SUDEP and future research directions. Auton Neurosci 2021; 235:102862. [PMID: 34411885 PMCID: PMC8455454 DOI: 10.1016/j.autneu.2021.102862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Autonomic dysfunction is implicated from clinical, neuroimaging and experimental studies in sudden and unexpected death in epilepsy (SUDEP). Neuropathological analysis in SUDEP series enable exploration of acquired, seizure-related cellular adaptations in autonomic and brainstem autonomic centres of relevance to dysfunction in the peri-ictal period. Alterations in SUDEP compared to control groups have been identified in the ventrolateral medulla, amygdala, hippocampus and central autonomic regions. These involve neuropeptidergic, serotonergic and adenosine systems, as well as specific regional astroglial and microglial populations, as potential neuronal modulators, orchestrating autonomic dysfunction. Future research studies need to extend to clinically and genetically characterized epilepsies, to explore if common or distinct pathways of autonomic dysfunction mediate SUDEP. The ultimate objective of SUDEP research is the identification of disease biomarkers for at risk patients, to improve post-mortem recognition and disease categorisation, but ultimately, for exposing potential treatment targets of pharmacologically modifiable and reversible cellular alterations.
Collapse
Affiliation(s)
- Smriti Patodia
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alyma Somani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
15
|
Erkec OE, Milanlıoğlu A, Komuroglu AU, Kara M, Huyut Z, Keskin S. Evaluation of serum ghrelin, nesfatin-1, irisin, and vasoactive intestinal peptide levels in temporal lobe epilepsy patients with and without drug resistance: a cross-sectional study. Rev Assoc Med Bras (1992) 2021; 67:207-212. [PMID: 34406243 DOI: 10.1590/1806-9282.67.02.20200521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Epilepsy is a common disorder that affects the nervous systems of 1% of worldwide population. In epilepsy, one-third of patients are unresponsive to current drug therapies and develop drug-resistant epilepsy. Alterations in ghrelin, nesfatin-1, and irisin levels with epilepsy were reported in previous studies. Vasoactive intestinal peptide is among the most common neuropeptides in the hippocampus, which is the focus of the seizures in temporal lobe epilepsy. However, there is also lack of evidence of whether these four neuropeptide levels are altered with drug resistant temporal lobe epilepsy or not. The aim herein was the evaluation of the serum levels of nesfatin-1, ghrelin, irisin, and Vasoactive intestinal peptide in drug-resistant temporal lobe epilepsy patients and temporal lobe epilepsy (TLE) without drug resistance, and to compare them to healthy controls. METHODS This cross-sectional study group included 58 temporal lobe epilepsy patients (24 with drug resistant temporal lobe epilepsy and 34 with temporal lobe epilepsy who were not drug-resistant) and 28 healthy subjects. Nesfatin-1, ghrelin, irisin, and Vasoactive intestinal peptide serum levels were determined using enzyme-linked immunosorbent assay. RESULTS The serum ghrelin levels of patients with drug resistant temporal lobe epilepsy were seen to have significantly decreased when compared to those of the control group (p<0.05). Serum nesfatin-1, vasoactive intestinal peptide, and irisin levels were seen to have decreased in the drug resistant temporal lobe epilepsy group when compared to those of the control and temporal lobe epilepsy groups; however, the difference was non-significant (p>0.05). CONCLUSIONS The results herein suggested that ghrelin might contribute to the pathophysiology of drug resistant temporal lobe epilepsy. However, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology - Van, Turkey
| | - Aysel Milanlıoğlu
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Neurology - Van, Turkey
| | - Ahmet Ufuk Komuroglu
- Van Yüzüncü Yıl University, Van Vocational Higher School of Healthcare Studies - Van, Turkey
| | - Mehmet Kara
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Physiology - Van, Turkey
| | - Zubeyir Huyut
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Biochemistry - Van, Turkey
| | - Sıddık Keskin
- Van Yüzüncü Yıl University, Faculty of Medicine, Department of Biostatistics - Van, Turkey
| |
Collapse
|
16
|
Kalkan ÖF, Şahin Z, Öztürk H, Keser H, Aydın-Abidin S, Abidin İ. Phoenixin-14 reduces the frequency of interictal-like events in mice brain slices. Exp Brain Res 2021; 239:2841-2849. [PMID: 34283252 DOI: 10.1007/s00221-021-06179-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/13/2021] [Indexed: 01/17/2023]
Abstract
Phoenixin-14 (PNX-14) has a wide bioactivity in the central nervous system. Its role in the hypothalamus has been investigated, and it has been reported that it is involved in the regulation of excitability in hypothalamic neurons. However, its role in the regulation of excitability in entorhinal cortex and the hippocampus is unknown. In this study, we investigated whether i. PNX-14 induces any synchronous discharges or epileptiform activity and ii. PNX-14 has any effect on already initiated epileptiform discharges. We used 350 µm thick acute horizontal hippocampal-entorhinal cortex slices obtained from 30- to 35-day-old mice. Extracellular field potential recordings were evaluated in the entorhinal cortex and hippocampus CA1 region. Bath application of PNX-14 did not initiate any epileptiform activity or abnormal discharges. 4-Aminopyridine was applied to induce epileptiform activity in the slices. We found that 200 nM PNX-14 reduced the frequency of interictal-like events in both the entorhinal cortex and hippocampus CA1 region which was induced by 4-aminopyridine. Furthermore, PNX-14 led to a similar suppression in the total power of local field potentials of 1-120 Hz. The frequency or the duration of the ictal events was not affected. These results exhibited for the first time that PNX-14 has a modulatory effect on synchronized neuronal discharges which should be considered in future therapeutic approaches.
Collapse
Affiliation(s)
- Ömer Faruk Kalkan
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Zafer Şahin
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Hilal Öztürk
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Hatice Keser
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Selcen Aydın-Abidin
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - İsmail Abidin
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
17
|
van Westen R, Poppinga J, Díez Arazola R, Toonen RF, Verhage M. Neuromodulator release in neurons requires two functionally redundant calcium sensors. Proc Natl Acad Sci U S A 2021; 118:e2012137118. [PMID: 33903230 PMCID: PMC8106342 DOI: 10.1073/pnas.2012137118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.
Collapse
Affiliation(s)
- Rhodé van Westen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Josse Poppinga
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rocío Díez Arazola
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
18
|
Cunha-Reis D, Caulino-Rocha A, Correia-de-Sá P. VIPergic neuroprotection in epileptogenesis: challenges and opportunities. Pharmacol Res 2021; 164:105356. [DOI: 10.1016/j.phrs.2020.105356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
|
19
|
Vannini E, Restani L, Dilillo M, McDonnell LA, Caleo M, Marra V. Synaptic Vesicles Dynamics in Neocortical Epilepsy. Front Cell Neurosci 2020; 14:606142. [PMID: 33362472 PMCID: PMC7758433 DOI: 10.3389/fncel.2020.606142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022] Open
Abstract
Neuronal hyperexcitability often results from an unbalance between excitatory and inhibitory neurotransmission, but the synaptic alterations leading to enhanced seizure propensity are only partly understood. Taking advantage of a mouse model of neocortical epilepsy, we used a combination of photoconversion and electron microscopy to assess changes in synaptic vesicles pools in vivo. Our analyses reveal that epileptic networks show an early onset lengthening of active zones at inhibitory synapses, together with a delayed spatial reorganization of recycled vesicles at excitatory synapses. Proteomics of synaptic content indicate that specific proteins were increased in epileptic mice. Altogether, our data reveal a complex landscape of nanoscale changes affecting the epileptic synaptic release machinery. In particular, our findings show that an altered positioning of release-competent vesicles represent a novel signature of epileptic networks.
Collapse
Affiliation(s)
- Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom.,Fondazione Umberto Veronesi, Milan, Italy
| | - Laura Restani
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | | | | | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
20
|
Oztas B, Sahin D, Kir H, Kuskay S, Ates N. Effects of leptin, ghrelin and neuropeptide y on spike-wave discharge activity and certain biochemical parameters in WAG/Rij rats with genetic absence epilepsy. J Neuroimmunol 2020; 351:577454. [PMID: 33333420 DOI: 10.1016/j.jneuroim.2020.577454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to evaluate the effects of leptin, ghrelin and neuropeptide-Y on the development of nonconvulsive seizure activity and their role on combating oxidative stress and cytokines produced by the systemic immune response in the WAG/Rij rat model for genetic absence epilepsy. Current study showed that all three peptides aggravated spike wave discharges activity and affected the oxidative stress in WAG/Rij rats without any significant changes in the levels of IL-1β, IL-6 and TNF-α except leptin that only induced an increment in the concentration of IL-1β. Our results support the modulatory role of these endogenous peptides on absence epilepsy.
Collapse
Affiliation(s)
- Berrin Oztas
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Deniz Sahin
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| | - Hale Kir
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Sevinc Kuskay
- Kocaeli University, Faculty of Medicine, Department of Biochemistry, Kocaeli, Turkey
| | - Nurbay Ates
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey
| |
Collapse
|
21
|
Sahay A, Kale A, Joshi S. Role of neurotrophins in pregnancy and offspring brain development. Neuropeptides 2020; 83:102075. [PMID: 32778339 DOI: 10.1016/j.npep.2020.102075] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Neurotrophins are a family of functionally and structurally related proteins which play a key role in the survival, development, and function of neurons in both the central and peripheral nervous systems. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) are the family members of neurotrophins. Neurotrophins play a crucial role in influencing the development of the brain and learning and memory processes. Studies demonstrate that they also play crucial role in influencing reproductive and immune systems. Neurotrophins have been shown to influence various processes in the mother, placenta, and fetus during pregnancy. Development and maturation of feto-placental unit and the fetal growth trajectories are influenced by neurotrophins. In addition to neurotrophins, neuropeptides like neuropeptide Y also play a crucial role during various processes of pregnancy and during fetal brain development. Neurotrophins have also been shown to have a cross talk with various angiogenic factors and influence placental development. Alterations in the levels of neurotrophins and neuropeptides lead to placental pathologies resulting in various pregnancy complications like preeclampsia, intrauterine growth restriction and preterm births. Studies in animals have reported low levels of maternal micronutrients like folic acid, vitamin B12 and omega-3 fatty acids influence brain neurotrophins resulting in impaired cognitive functioning in the offspring. Maternal nutrition is also known to affect the expression of neuropeptides. It is essential to understand the role of various neurotrophins across various stages of pregnancy and its relationship with neurodevelopmental outcomes in children. This will lead to early prediction of poor neurodevelopmental outcomes. The present review describes evidence describing the role of neurotrophins in determining pregnancy outcome and altered neurodevelopment in the offspring. The possible mechanism through which maternal nutrition influences neurotrophins and neuropeptides to regulate offspring brain development and function is also discussed.
Collapse
Affiliation(s)
- Akriti Sahay
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anvita Kale
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
22
|
Christian-Hinman CA. Is On-Demand Dynorphin Destined to Be in Demand to Decrease Seizures? Epilepsy Curr 2020; 21:48-50. [PMID: 34025273 PMCID: PMC7863305 DOI: 10.1177/1535759720951791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[Box: see text]
Collapse
|
23
|
McCulloch KA, Zhou K, Jin Y. Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans. PLoS One 2020; 15:e0233991. [PMID: 32497060 PMCID: PMC7272019 DOI: 10.1371/journal.pone.0233991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/16/2020] [Indexed: 01/06/2023] Open
Abstract
Neuropeptides are secreted molecules that have conserved roles modulating many processes, including mood, reproduction, and feeding. Dysregulation of neuropeptide signaling is also implicated in neurological disorders such as epilepsy. However, much is unknown about the mechanisms regulating specific neuropeptides to mediate behavior. Here, we report that the expression levels of dozens of neuropeptides are up-regulated in response to circuit activity imbalance in C. elegans. acr-2 encodes a homolog of human nicotinic receptors, and functions in the cholinergic motoneurons. A hyperactive mutation, acr-2(gf), causes an activity imbalance in the motor circuit. We performed cell-type specific transcriptomic analysis and identified genes differentially expressed in acr-2(gf), compared to wild type. The most over-represented class of genes are neuropeptides, with insulin-like-peptides (ILPs) the most affected. Moreover, up-regulation of neuropeptides occurs in motoneurons, as well as sensory neurons. In particular, the induced expression of the ILP ins-29 occurs in the BAG neurons, which were previously shown to function in gas-sensing. We also show that this up-regulation of ins-29 in acr-2(gf) animals is activity-dependent. Our genetic and molecular analyses support cooperative effects for ILPs and other neuropeptides in promoting motor circuit activity in the acr-2(gf) background. Together, this data reveals that a major transcriptional response to motor circuit dysregulation is in up-regulation of multiple neuropeptides, and suggests that BAG sensory neurons can respond to intrinsic activity states to feedback on the motor circuit.
Collapse
Affiliation(s)
- Katherine A. McCulloch
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America
| | - Kingston Zhou
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America
| | - Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
24
|
Clinical value of a set of neuropeptides in term and preterm neonates with seizures: Brain derived neurotrophic factor, galanin and neuropeptide Y. J Clin Neurosci 2020; 74:168-174. [PMID: 32098713 DOI: 10.1016/j.jocn.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
The aim of our study to investigate clinical value of a set of neuropeptides (brain derived neurotrophic factor-BDNF, galanin and neuropeptide Y-NPY) in critically ill neonates. A total of 53 neonates (preterm: 26, term: 27) evaluated with lumbar pucture for etiologic evaluation were consequtively included into the study. Serum and CSF levels of the neuropeptides were measured in the first 48 h of life. All infants were prospectively followed for prognostic outcome (survival and neurodevelopmental) at the first year of life. The study cohort was categorized into four groups with respect to seizure development; preterm neonates with or without seizure and term neonates with or without seizure. Mean CSF levels of NPY (pg/ml) were significantly higher in term neonates with than those without seizures (389.76 vs. 122.66) and galanin (3.31 vs. 1.55) respectively. Term neonates with seizures had significantly higher serum levels of NPY (ng/mL) as compared with neonates without seizures (54.00 vs. 9.10). No significant difference was noted in serum and CSF levels for the set of neuropeptides in neonates with respect to prognostic outcome. Serum NPY and CSF NPY and galanin levels have a potential role for detection of clinical seizures in term neonates.
Collapse
|
25
|
Damasceno S, Gómez-Nieto R, Garcia-Cairasco N, Herrero-Turrión MJ, Marín F, Lopéz DE. Top Common Differentially Expressed Genes in the Epileptogenic Nucleus of Two Strains of Rodents Susceptible to Audiogenic Seizures: WAR and GASH/Sal. Front Neurol 2020; 11:33. [PMID: 32117006 PMCID: PMC7031349 DOI: 10.3389/fneur.2020.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.
Collapse
Affiliation(s)
- Samara Damasceno
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| | | | - Manuel Javier Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,INCYL Neurological Tissue Bank (BTN-INCYL), Salamanca, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| |
Collapse
|
26
|
Messanvi F, Perkins A, du Hoffmann J, Chudasama Y. Fronto-temporal galanin modulates impulse control. Psychopharmacology (Berl) 2020; 237:291-303. [PMID: 31705163 PMCID: PMC7024046 DOI: 10.1007/s00213-019-05365-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
Abstract
RATIONALE The neuropeptide galanin has been implicated in a wide range of pathological conditions in which frontal and temporal structures are compromised. It works through three subtypes of G-protein-coupled receptors. One of these, the galanin receptor 1 (Gal-R1) subtype, is densely expressed in the ventral hippocampus (vHC) and ventral prefrontal cortex (vPFC); two brain structures that have similar actions on behavioral control. We hypothesize that Gal-R1 contributes to cognitive-control mechanisms that require hippocampal-prefrontal cortical circuitry. OBJECTIVE To examine the effect of local vHC and vPFC infusions of M617, a Gal-R1 agonist, on inhibitory mechanisms of response control. METHODS Different cohorts of rats were implanted with bilateral guide cannulae targeting the vPFC or the vHC. Following infusion of the Gal-R1 agonist, we examined the animals' behavior using a touchscreen version of the 5-choice reaction time task (5-choice task). RESULTS The Gal-R1 agonist produced opposing behaviors in the vPFC and vHC, leading to disruption of impulse control when infused in the vPFC but high impulse control when infused into the vHC. This contrast between areas was accentuated when we added variability to the timing of the stimulus, which led to long decision times and reduced accuracy in the vPFC group but a general improvement in performance accuracy in the vHC group. CONCLUSIONS These results provide the first evidence of a selective mechanism of Gal-R1-mediated modulation of impulse control in prefrontal-hippocampal circuitry.
Collapse
Affiliation(s)
- F Messanvi
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA.
| | - A Perkins
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - J du Hoffmann
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Y Chudasama
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Somani A, Perry C, Patodia S, Michalak Z, Ellis M, Sisodiya SM, Thom M. Neuropeptide depletion in the amygdala in sudden unexpected death in epilepsy: A postmortem study. Epilepsia 2020; 61:310-318. [PMID: 31958887 DOI: 10.1111/epi.16425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is typically unwitnessed but can be preceded by seizures in the period prior to death. Peri-ictal respiratory dysfunction is a likely mechanism for some SUDEP, and central apnea has been shown following amygdala stimulation. The amygdala is enriched in neuropeptides that modulate neuronal activity and can be transiently depleted following seizures. In a postmortem SUDEP series, we sought to investigate alterations of neuropeptidergic networks in the amygdala, including cases with recent poor seizure control. METHODS In 15 SUDEP cases, 12 epilepsy controls, and 10 nonepilepsy controls, we quantified the labeling index (LI) for galanin, neuropeptide Y (NPY), and somatostatin (SST) in the lateral, basal, and accessory basal nuclei and periamygdala cortex with whole slide scanning image analysis. Within the SUDEP group, seven had recent generalized seizures with recovery 24 hours prior to death (SUDEP-R). RESULTS Galanin, NPY, and SST LIs were significantly lower in all amygdala regions in SUDEP cases compared to epilepsy controls (P < .05 to P < .0005), and galanin LI was lower in the lateral nucleus compared to nonepilepsy controls (P < .05). There was no difference in the LI in the SUDEP-R group compared to other SUDEP. Higher LI was noted in epilepsy controls than nonepilepsy controls; this was significant for NPY in lateral and basal nuclei (P < .005 and P < .05). SIGNIFICANCE A reduction in galanin in the lateral nucleus in SUDEP could represent acute depletion, relevant to postictal amygdala dysfunction. In addition, increased amygdala neuropeptides in epilepsy controls support their seizure-induced modulation, which is relatively deficient in SUDEP; this could represent a vulnerability factor for amygdala dysfunction in the postictal period.
Collapse
Affiliation(s)
- Alyma Somani
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Charlotte Perry
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Smriti Patodia
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Zuzanna Michalak
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Matthew Ellis
- Neuropathology Division, National Hospital for Neurology and Neurosurgery, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Neuropathology Division, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
28
|
Mohamed WS, Nageeb RS, Elsaid HH. Serum and urine ghrelin in adult epileptic patients. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019. [DOI: 10.1186/s41983-019-0127-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Several neuropeptides have concerned with epilepsy pathogenesis; ghrelin showed an anticonvulsant effect. There is a potential relation between its level and antiepileptic drug (AEDs) response.
Objective
To evaluate ghrelin effect in adult epileptic patients and in response to AEDs.
Materials and methods
This case control study included 40 adult epileptic patients and 40 healthy controls. Participants were subjected to history taking of seizure semiology, full general and neurological examination, electroencephalography, and cranial imaging. Fasting serum acylated ghrelin (AG), unacylated ghrelin (UAG), and urine AG levels were estimated to all participants by enzyme-linked immunosorbent assay (ELIZA).
Results
Serum AG, UAG, and urine AG levels were statistically higher in epileptic patients than controls (p = 0.005, 0.003, and 0.018 respectively). A significant higher level of serum AG was found among generalized epileptic patients (p = 0.038). There was higher statistically significant levels of all measured parameters among poly therapy patients (p = 0.003, 0.013, and 0.001 respectively). Also, a higher statistical significant level of serum AG and UAG in AEDs-responsive patients was found (p < 0.001). Our results demonstrated significant positive correlation between all measured parameters (serum AG, UAG, and urine AG) and epilepsy duration (p = 0.001, 0.002, and 0.009 respectively). High serum AG and UAG levels were independently associated with longer epilepsy duration (p = 0.00 and 0.008) and better response to AEDs (p < 0.001).
Conclusion
These results indicated that serum AG and UAG levels were significantly high in epileptic patients especially with prolonged epilepsy duration and good AEDs response.
Trial registration
ClinicalTrials.gov NCT03926273 (22-04-2019) “retrospectively registered.”
Collapse
|
29
|
Ivanova N, Tchekalarova J. The Potential Therapeutic Capacity of Inhibiting the Brain Renin-Angiotensin System in the Treatment of Co-Morbid Conditions in Epilepsy. CNS Drugs 2019; 33:1101-1112. [PMID: 31680223 DOI: 10.1007/s40263-019-00678-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epilepsy is one of the most prevalent neurological diseases and although numerous novel anticonvulsants have been approved, the proportion of patients who are refractory to medical treatment of seizures and have progressive co-morbidities such as cognitive impairment and depression remains at about 20-30%. In the last decade, extensive research has identified a therapeutic capacity of the components of the brain renin-angiotensin system (RAS) in seizure- and epilepsy-related phenomena. Alleviating the activity of RAS in the central nervous system is considered to be a potential adjuvant strategy for the treatment of numerous detrimental consequences of epileptogenesis. One of the main advantages of RAS is associated with its modulatory influence on different neurotransmitter systems, thereby exerting a fine-tuning control mechanism for brain excitability. The most recent scientific findings regarding the involvement of the components of brain RAS show that angiotensin II (Ang II), angiotensin-converting enzyme (ACE), Ang II type 1 (AT1) and type 2 (AT2) receptors are involved in the control of epilepsy and its accompanying complications, and therefore they are currently of therapeutic interest in the treatment of this disease. However, data on the role of different components of brain RAS on co-morbid conditions in epilepsy, including hypertension, are insufficient. Experimental and clinical findings related to the involvement of Ang II, ACE, AT1, and AT2 receptors in the control of epilepsy and accompanying complications may point to new therapeutic opportunities and adjuvants for the treatment of common co-morbid conditions of epilepsy.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria.
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria
| |
Collapse
|
30
|
Melin E, Nanobashvili A, Avdic U, Gøtzsche CR, Andersson M, Woldbye DPD, Kokaia M. Disease Modification by Combinatorial Single Vector Gene Therapy: A Preclinical Translational Study in Epilepsy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:179-193. [PMID: 31660420 PMCID: PMC6807261 DOI: 10.1016/j.omtm.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
Gene therapy has been suggested as a plausible novel approach to achieve seizure control in patients with focal epilepsy that do not adequately respond to pharmacological treatment. We investigated the seizure-suppressant potential of combinatorial neuropeptide Y and Y2 receptor single vector gene therapy based on adeno-associated virus serotype 1 (AAV1) in rats. First, a dose-response study in the systemic kainate-induced acute seizure model was performed, whereby the 1012 genomic particles (gp)/mL titer of the vector was selected as an optimal concentration. Second, an efficacy study was performed in the intrahippocampal kainate chronic model of spontaneous recurrent seizures (SRSs), designed to reflect a likely clinical scenario, with magnetic resonance image (MRI)-guided focal unilateral administration of the vector in the hippocampus during the chronic stage of the disease. The efficacy study demonstrated a favorable outcome of the gene therapy, with a 31% responder rate (more than 50% reduction in SRS frequency) and 13% seizure-freedom rate, whereas no such effects were observed in the control animals. The inter-SRS and SRS cluster intervals were also significantly prolonged in the treated group compared to controls. In addition, the SRS duration was significantly reduced in the treated group but not in the controls. This study establishes the SRS-suppressant ability of the single vector combinatorial neuropeptide Y/Y2 receptor gene therapy in a clinically relevant chronic model of epilepsy.
Collapse
Affiliation(s)
- Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - Avtandil Nanobashvili
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden.,CombiGene AB, Medicon Village, Scheelevägen 2, 223 81 Lund, Sweden
| | - Una Avdic
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - Casper R Gøtzsche
- CombiGene AB, Medicon Village, Scheelevägen 2, 223 81 Lund, Sweden.,Laboratory of Neural Plasticity, Center for Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - My Andersson
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| | - David P D Woldbye
- Laboratory of Neural Plasticity, Center for Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Sölvegatan 17, 221 84 Lund, Sweden
| |
Collapse
|
31
|
Li C, Wu X, Liu S, Zhao Y, Zhu J, Liu K. Roles of Neuropeptide Y in Neurodegenerative and Neuroimmune Diseases. Front Neurosci 2019; 13:869. [PMID: 31481869 PMCID: PMC6710390 DOI: 10.3389/fnins.2019.00869] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
Neuropeptide Y (NPY) is a neurotransmitter or neuromodulator that mainly exists in the nervous system. It plays a neuroprotective role in organisms and widely participates in the regulation of various physiological processes in vivo. Studies in both humans and animal models have been revealed that NPY levels are altered in some neurodegenerative and neuroimmune disorders. NPY plays various roles in these diseases, such as exerting a neuroprotective effect, increasing trophic support, decreasing excitotoxicity, regulating calcium homeostasis, and attenuating neuroinflammation. In this review, we will focus on the roles of NPY in the pathological mechanisms of neurodegenerative and neuroimmune diseases, highlighting NPY as a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Chunrong Li
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiujuan Wu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Zhao
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
32
|
Nikbakht F, Belali R, Rasoolijazi H, Mohammad Khanizadeh A. 2-Deoxyglucose protects hippocampal neurons against kainate-induced temporal lobe epilepsy by modulating monocyte-derived macrophages (mo-MΦ) and progranulin production in the hippocampus. Neuropeptides 2019; 76:101932. [PMID: 31227312 DOI: 10.1016/j.npep.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/04/2023]
Abstract
Inflammation is an important factor in the pathology of epilepsy with the hallmarks of resident microglia activation and infiltration of circulating monocytes in the damaged area. In the case of recovery and tissue repair, some monocytes change to macrophages (mo-MΦ) to enhance tissue repair. 2-deoxyglucose (2DG) is an analog of glucose capable of protecting the brain, and progranulin is a neurotrophic factor produced mainly by microglia and has an inflammation modulator effect. This study attempted to evaluate if one of the neuroprotective mechanisms of 2-DG is comprised of increasing monocyte-derived macrophages (mo-MΦ) and progranulin production. Status epilepticus (SE) was induced by i.c.v. injection of kainic acid (KA).2DG (125/mg/kg/day) was administered intraperitoneally. Four days later, animals were sacrificed. Their brain sections were then stained with Cresyl violet and Fluoro-Jade B to count the number of necrotic and degenerating neurons in CA3 and Hilus of dentate gyrus of the hippocampus. Lastly, immunohistochemistry was used to detect CD11b + monocyte, macrophage cells, and Progranulin level was evaluated by Western blotting. The histological analysis showed that 2DG can reduce the number of necrotic and degenerating neurons in CA3 and Hilar areas. Following KA administration, a great number of cD11b+ cells with monocyte morphology were observed in the hippocampus. 2DG not only reduced cD11b+ monocyte cells but was able to convert them to cells with the morphology of macrophages (mo-MΦ). 2DG also caused a significant increase in progranulin level in the hippocampus. Because macrophages and microglia are the most important sources of progranulin, it appears that 2DG caused the derivation of monocytes to macrophages and these cells produced progranulin with a subsequent anti-inflammation effect. In summary, it was concluded that 2DG is neuroprotective and probably one of its neuroprotective mechanisms is by modulating monocyte-derived macrophages by progranulin production.
Collapse
Affiliation(s)
- Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rafie Belali
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Rasoolijazi
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
33
|
Predicting psychogenic non-epileptic seizures from serum levels of neuropeptide Y and adrenocorticotropic hormone. Acta Neuropsychiatr 2019; 31:167-171. [PMID: 30929648 DOI: 10.1017/neu.2019.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Patients with psychogenic non-epileptic seizures (PNES) may present with convulsive events that are not accompanied by epileptiform brain activity. Video-electroencephalography (EEG) monitoring is the gold standard for diagnosis, yet not all patients experience convulsive episodes during video-EEG sessions. Hence, we aimed to construct a predictive model in order to detect PNES from serum hormone levels, detached from an evaluation of patients' convulsive episodes. METHODS Fifteen female patients with PNES and 60 healthy female controls participated in the study, providing blood samples for hormone analysis. A binomial logistic regression model and the leave-one-out cross-validation were employed. RESULTS We found that levels of neuropeptide Y and adrenocorticotropic hormone were the optimal combination of predictors, with over 90% accuracy (area under the curve=0.980). CONCLUSIONS The ability to diagnose PNES irrespective of convulsive events would represent an important step considering its feasibility and affordability in daily clinical practice.
Collapse
|
34
|
Cortisol levels and seizures in adults with epilepsy: A systematic review. Neurosci Biobehav Rev 2019; 103:216-229. [PMID: 31129236 DOI: 10.1016/j.neubiorev.2019.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Stress has been suggested as a trigger factor for seizures in epilepsy patients, but little is known about cortisol levels, as indicators of stress, in adults with epilepsy. This systematic review summarizes the evidence on this topic. Following PRISMA guidelines, 38 articles were selected: 14 analyzing basal cortisol levels, eight examining antiepileptic drugs (AEDs) effects, 13 focused on seizure effects, and three examining stress. Higher basal cortisol levels were found in patients than in healthy people in studies with the most homogeneous samples (45% of 38 total studies). Despite heterogeneous results associated with AEDs, seizures were related to increases in cortisol levels in 77% of 38 total studies. The only study with acute stress administration found higher cortisol reactivity in epilepsy than in healthy controls. In studies using self-reported stress, high seizure frequency was related to increased cortisol levels and lower functional brain connectivity. Findings suggest that epilepsy could be considered a chronic stress model. The potential sensitizing role of accumulative seizures and issues for future research are discussed.
Collapse
|
35
|
Campos-Ordonez T, Zarate-Lopez D, Ibarra-Castaneda N, Buritica J, Gonzalez-Perez O. Cyclohexane Inhalation Produces Long-Lasting Alterations in the Hippocampal Integrity and Reward-Seeking Behavior in the Adult Mouse. Cell Mol Neurobiol 2019; 39:435-449. [PMID: 30771197 DOI: 10.1007/s10571-019-00660-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Cyclohexane (CHX) is an organic solvent commonly used as a drug-of-abuse. This drug increases the oxidative stress and glial reactivity in the hippocampus, which suggests that this brain region is vulnerable to CHX effects. This study aimed to establish the behavioral changes and the pathological alterations that occur in the Cornu Ammonis 3 (CA3) and Dentate Gyrus (DG) after a long-lasting exposure to CHX. We exposed CD1 mice to a recreational-like dose of CHX (~ 30,000 ppm) for 30 days and explored its consequences in motor skills, reward-seeking behavior, and the CA3 and DG hippocampal subfields. Twenty-four hours after the last administration of CHX, we found a significant decrease in the number of c-Fos+ cells in the hippocampal CA3 and DG regions. This event coincided with an increased in NMDAR1 expression and apoptotic cells in the CA3 region. At day 13th without CHX, we found a persistent reduction in the number of c-Fos+ and TUNEL+ cells in DG. At both time points, the CHX-exposed mice showed a strong overexpression of neuropeptide Y (NPY) in the CA3 stratum lucidum and the hippocampal hilus. In parallel, we used an operant-based task to assess motor performance and operant conditioning learning. The behavioral analysis indicated that CHX did not modify the acquisition of operant conditioning tasks, but affected some motor skills and increased the reward-seeking behavior. Altogether, this evidence reveals that CHX exposure provokes long-lasting changes in the hippocampal subfields, induces motor impairments and increases the motivation-guided behavior. These findings can help understand the deleterious effect of CHX into the adult hippocampus and unveil its potential to trigger addiction-like behaviors.
Collapse
Affiliation(s)
- Tania Campos-Ordonez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
- Physiological Sciences PhD Program, School of Medicine, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
- Physiological Sciences PhD Program, School of Medicine, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - Nereida Ibarra-Castaneda
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - Jonathan Buritica
- Centro de Estudios e Investigaciones en Comportamiento, University of Guadalajara, St. Francisco de Quevedo 180, 44130, Guadalajara, Jalisco, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico.
| |
Collapse
|
36
|
Iughetti L, Lucaccioni L, Fugetto F, Predieri B, Berardi A, Ferrari F. Brain-derived neurotrophic factor and epilepsy: a systematic review. Neuropeptides 2018; 72:23-29. [PMID: 30262417 DOI: 10.1016/j.npep.2018.09.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/13/2018] [Accepted: 09/19/2018] [Indexed: 12/09/2022]
Abstract
Several in vitro, ex vivo and in vivo studies imply brain-derived neurotrophic factor (BDNF) in the pathophysiology of epilepsy. Aim of our work is to report the most important findings regarding BDNF and its potential role in epilepsy. We targeted those publications addressing both in vitro and in vivo evidences of relationship between BDNF and epilepsy. Basic researches, randomized trials, cohort studies, and reviews were contemplated to give a breadth of clinical data. Medline, CENTRAL, and Science Direct were searched till August 2017 using keywords agreed by the authors. Together with a defined role in developmental and mature brain, BDNF has excitatory effects in neuronal cultures and animal brain slices. Furthermore, both BDNF and its conjugated receptor (i.e. Tropomyosin receptor kinase B or TrkB) are increased in animal models and humans with epilepsy, particularly in the temporal and hippocampal areas. Acute injection of BDNF in brain of mice induces seizures, which are almost or totally abolished blocking its transcription and pathway. Chronic infusion of BDNF is conversely associated with a decreased neuronal excitability, probably via several mechanism including an increase in central levels of neuropeptide Y (NPY), altered conductance of chloride, and downregulation of TrkB. While genetic studies are inconclusive, serum BDNF is more frequently higher in patients with epilepsy and appears to be correlated to severity of disease. Current evidences suggest that inhibiting BDNF-TrkB signaling and reinforcing the NPY system could represent a potential therapeutic strategy for epilepsy, especially for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy.
| | - Laura Lucaccioni
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy
| | - Francesco Fugetto
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy
| | - Alberto Berardi
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy
| | - Fabrizio Ferrari
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy
| |
Collapse
|
37
|
Ergul Erkec O, Algul S, Kara M. Evaluation of ghrelin, nesfatin-1 and irisin levels of serum and brain after acute or chronic pentylenetetrazole administrations in rats using sodium valproate. Neurol Res 2018; 40:923-929. [DOI: 10.1080/01616412.2018.1503992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Sermin Algul
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Kara
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
38
|
Abstract
Epilepsy affects all age groups and is one of the most common and most disabling neurological disorders. The accurate diagnosis of seizures is essential as some patients will be misdiagnosed with epilepsy, whereas others will receive an incorrect diagnosis. Indeed, errors in diagnosis are common, and many patients fail to receive the correct treatment, which often has severe consequences. Although many patients have seizure control using a single medication, others require multiple medications, resective surgery, neuromodulation devices or dietary therapies. In addition, one-third of patients will continue to have uncontrolled seizures. Epilepsy can substantially impair quality of life owing to seizures, comorbid mood and psychiatric disorders, cognitive deficits and adverse effects of medications. In addition, seizures can be fatal owing to direct effects on autonomic and arousal functions or owing to indirect effects such as drowning and other accidents. Deciphering the pathophysiology of epilepsy has advanced the understanding of the cellular and molecular events initiated by pathogenetic insults that transform normal circuits into epileptic circuits (epileptogenesis) and the mechanisms that generate seizures (ictogenesis). The discovery of >500 genes associated with epilepsy has led to new animal models, more precise diagnoses and, in some cases, targeted therapies.
Collapse
Affiliation(s)
- Orrin Devinsky
- Departments of Neurology, Neuroscience, Neurosurgery and Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Annamaria Vezzani
- Laboratory of Experimental Neurology, Department of Neuroscience, IRCCS 'Mario Negri' Institute for Pharmacological Research, Milan, Italy
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nathalie Jette
- Department of Neurology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, and Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
San-Juan D, Sarmiento CI, González KM, Orenday Barraza JM. Successful Treatment of a Drug-Resistant Epilepsy by Long-term Transcranial Direct Current Stimulation: A Case Report. Front Neurol 2018; 9:65. [PMID: 29479337 PMCID: PMC5811469 DOI: 10.3389/fneur.2018.00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/25/2018] [Indexed: 12/03/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a reemerged noninvasive cerebral therapy used to treat patients with epilepsy, including focal cortical dysplasia, with controversial results. We present a case of a 28-year-old female with left frontal cortical dysplasia refractory to antiepileptic drugs, characterized by 10–15 daily right tonic hemi-body seizures. The patient received a total of seven sessions of cathodal tDCS (2 mA, 30 min). The first three sessions were applied over three consecutive days, and the remaining four sessions of tDCS were given each at 2-week intervals. At the 1-year follow-up, the patient reported to have a single seizure per month and only mild adverse events.
Collapse
Affiliation(s)
- Daniel San-Juan
- Department of Clinical Research, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Carlos Ignacio Sarmiento
- Department of Basic Sciences and Engineering, Autonomous Metropolitan University Campus Iztapalapa, Mexico City, Mexico
| | | | | |
Collapse
|
40
|
Menon N, Prabhavalkar KS, Bhatt LK. Neuropeptides: A promising target for treating seizures. Neuropeptides 2017; 65:63-70. [PMID: 28559061 DOI: 10.1016/j.npep.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 11/28/2022]
Abstract
Seizures are serious neurological disorders affecting nearly 50 million people worldwide. Seizures are characterized by abnormal, repetitive and synchronised firing of the neurons which is produced as a result of imbalance in the levels of the excitatory and inhibitory neurotransmitters. Neuropeptides are found to regulate seizures by rectifying this imbalance. These neuropeptides are stored in the dense core synaptic vesicles, and are released on excitation. This review focuses on certain neuropeptides which can alleviate both, the effects of seizures as well as epileptogenesis. Thus making it an attractive target for the management of seizures.
Collapse
Affiliation(s)
- Neethi Menon
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56, India
| | - Kedar S Prabhavalkar
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56, India.
| | - Lokesh K Bhatt
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai-56, India
| |
Collapse
|
41
|
Wang XF, Ge TT, Fan J, Yang W, Cui RJ. The role of substance P in epilepsy and seizure disorders. Oncotarget 2017; 8:78225-78233. [PMID: 29100462 PMCID: PMC5652851 DOI: 10.18632/oncotarget.20606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
A range of evidence implicates the neuropeptide substance P (SP), a member of the tachykinin family, in emotional behavior, anxiety, pain, and inflammation. Recently, SP has been implicated in susceptibility to seizures, for which a potential proconvulsant role was indicated. Indeed, antagonists of a specific SP receptor, neurokinin-1 receptor, were found to attenuate kainic acid (KA)-induced seizure activity. However, detailed mechanisms of SP regulation in epilepsy remain obscure. In this review, we summarize the present literature to expound the role of SP in epilepsy, and provide hypotheses for potential mechanisms.
Collapse
Affiliation(s)
- Xue Feng Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Tong Tong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
42
|
Lucchi C, Costa AM, Giordano C, Curia G, Piat M, Leo G, Vinet J, Brunel L, Fehrentz JA, Martinez J, Torsello A, Biagini G. Involvement of PPARγ in the Anticonvulsant Activity of EP-80317, a Ghrelin Receptor Antagonist. Front Pharmacol 2017; 8:676. [PMID: 29018345 PMCID: PMC5614981 DOI: 10.3389/fphar.2017.00676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 02/03/2023] Open
Abstract
Ghrelin, des-acyl ghrelin and other related peptides possess anticonvulsant activities. Although ghrelin and cognate peptides were shown to physiologically regulate only the ghrelin receptor, some of them were pharmacologically proved to activate the peroxisome proliferator-activated receptor gamma (PPARγ) through stimulation of the scavenger receptor CD36 in macrophages. In our study, we challenged the hypothesis that PPARγ could be involved in the anticonvulsant effects of EP-80317, a ghrelin receptor antagonist. For this purpose, we used the PPARγ antagonist GW9662 to evaluate the modulation of EP-80317 anticonvulsant properties in two different models. Firstly, the anticonvulsant effects of EP-80317 were studied in rats treated with pilocarpine to induce status epilepticus (SE). Secondly, the anticonvulsant activity of EP-80317 was ascertained in the repeated 6-Hz corneal stimulation model in mice. Behavioral and video electrocorticographic (ECoG) analyses were performed in both models. We also characterized levels of immunoreactivity for PPARγ in the hippocampus of 6-Hz corneally stimulated mice. EP-80317 predictably antagonized seizures in both models. Pretreatment with GW9662 counteracted almost all EP-80317 effects both in mice and rats. Only the effects of EP-80317 on power spectra of ECoGs recorded during repeated 6-Hz corneal stimulation were practically unaffected by GW9662 administration. Moreover, GW9662 alone produced a decrease in the latency of tonic-clonic seizures and accelerated the onset of SE in rats. Finally, in the hippocampus of mice treated with EP-80317 we found increased levels of PPARγ immunoreactivity. Overall, these results support the hypothesis that PPARγ is able to modulate seizures and mediates the anticonvulsant effects of EP-80317.
Collapse
Affiliation(s)
- Chiara Lucchi
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Anna M Costa
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Giulia Curia
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Marika Piat
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Giuseppina Leo
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Jonathan Vinet
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Luc Brunel
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Jean-Alain Fehrentz
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Jean Martinez
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-BicoccaMilan, Italy
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| |
Collapse
|
43
|
Gunn BG, Baram TZ. Stress and Seizures: Space, Time and Hippocampal Circuits. Trends Neurosci 2017; 40:667-679. [PMID: 28916130 DOI: 10.1016/j.tins.2017.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Stress is a major trigger of seizures in people with epilepsy. Exposure to stress results in the release of several stress mediators throughout the brain, including the hippocampus, a region sensitive to stress and prone to seizures. Stress mediators interact with their respective receptors to produce distinct effects on the excitability of hippocampal neurons and networks. Crucially, these stress mediators and their actions exhibit unique spatiotemporal profiles, generating a complex combinatorial output with time- and space-dependent effects on hippocampal network excitability and seizure generation.
Collapse
Affiliation(s)
- B G Gunn
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - T Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA; Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA.
| |
Collapse
|
44
|
Burtscher J, Schwarzer C. The Opioid System in Temporal Lobe Epilepsy: Functional Role and Therapeutic Potential. Front Mol Neurosci 2017; 10:245. [PMID: 28824375 PMCID: PMC5545604 DOI: 10.3389/fnmol.2017.00245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients often develop cognitive deficits and emotional blunting along the progression of the disease. The high incidence of resistance to antiepileptic drugs and a frequent lack of admissibility to surgery poses an unmet medical challenge. In the urgent quest of novel treatment strategies, neuropeptides are interesting candidates, however, their therapeutic potential has not yet been exploited. This review focuses on the functional role of the endogenous opioid system with respect to temporal lobe epilepsy, specifically in the hippocampus. The role of dynorphins and kappa opioid receptors (KOPr) as modulators of neuronal excitability is well understood: both the reduced release of glutamate as well of postsynaptic hyperpolarization were shown in glutamatergic neurons. In line with this, low levels of dynorphin in humans and mice increase the risk of epilepsy development. The role of enkephalins is not understood so well. On one hand, some agonists of the delta opioid receptors (DOPr) display pro-convulsant properties probably through inhibition of GABAergic interneurons. On the other hand, enkephalins play a neuro-protective role under hypoxic or anoxic conditions, most probably through positive effects on mitochondrial function. Despite the supposed absence of endorphins in the hippocampus, exogenous activation of the mu opioid receptors (MOPr) induces pro-convulsant effects. Recently-expanded knowledge of the complex ways opioid receptors ligands elicit their effects (including biased agonism, mixed binding, and opioid receptor heteromers), opens up exciting new therapeutic potentials with regards to seizures and epilepsy. Potential adverse side effects of KOPr agonists may be minimized through functional selectivity. Preclinical data suggest a high potential of such compounds to control seizures, with a strong predictive validity toward human patients. The discovery of DOPr-agonists without proconvulsant potential stimulates the research on the therapeutic use of neuroprotective potential of the enkephalin/DOPr system.
Collapse
Affiliation(s)
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of InnsbruckInnsbruck, Austria
| |
Collapse
|
45
|
Endogenously Released Neuropeptide Y Suppresses Hippocampal Short-Term Facilitation and Is Impaired by Stress-Induced Anxiety. J Neurosci 2017; 37:23-37. [PMID: 28053027 DOI: 10.1523/jneurosci.2599-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner.
Collapse
|
46
|
Zhang X, Jiang S, Mitok KA, Li L, Attie AD, Martin TFJ. BAIAP3, a C2 domain-containing Munc13 protein, controls the fate of dense-core vesicles in neuroendocrine cells. J Cell Biol 2017; 216:2151-2166. [PMID: 28626000 PMCID: PMC5496627 DOI: 10.1083/jcb.201702099] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
Dense-core vesicle (DCV) exocytosis is a SNARE (soluble N-ethylmaleimide-sensitive fusion attachment protein receptor)-dependent anterograde trafficking pathway that requires multiple proteins for regulation. Several C2 domain-containing proteins are known to regulate Ca2+-dependent DCV exocytosis in neuroendocrine cells. In this study, we identified others by screening all (∼139) human C2 domain-containing proteins by RNA interference in neuroendocrine cells. 40 genes were identified, including several encoding proteins with known roles (CAPS [calcium-dependent activator protein for secretion 1], Munc13-2, RIM1, and SYT10) and many with unknown roles. One of the latter, BAIAP3, is a secretory cell-specific Munc13-4 paralog of unknown function. BAIAP3 knockdown caused accumulation of fusion-incompetent DCVs in BON neuroendocrine cells and lysosomal degradation (crinophagy) of insulin-containing DCVs in INS-1 β cells. BAIAP3 localized to endosomes was required for Golgi trans-Golgi network 46 (TGN46) recycling, exhibited Ca2+-stimulated interactions with TGN SNAREs, and underwent Ca2+-stimulated TGN recruitment. Thus, unlike other Munc13 proteins, BAIAP3 functions indirectly in DCV exocytosis by affecting DCV maturation through its role in DCV protein recycling. Ca2+ rises that stimulate DCV exocytosis may stimulate BAIAP3-dependent retrograde trafficking to maintain DCV protein homeostasis and DCV function.
Collapse
Affiliation(s)
- Xingmin Zhang
- Department of Biochemistry, University of Wisconsin, Madison, WI
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI
| | - Shan Jiang
- School of Pharmacy, University of Wisconsin, Madison, WI
| | - Kelly A Mitok
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | | |
Collapse
|
47
|
Ge T, Yang W, Fan J, Li B. Preclinical evidence of ghrelin as a therapeutic target in epilepsy. Oncotarget 2017; 8:59929-59939. [PMID: 28938694 PMCID: PMC5601790 DOI: 10.18632/oncotarget.18349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, plays a major role in inhibiting seizures. However, the underlying mechanism of ghrelin's anticonvulsant action is still unclear. Nowadays, there are considerable evidences showing that ghrelin is implicated in various neurophysiological processes, including learning and memory, neuroprotection, neurogenesis, and inflammatory effects. In this review, we will summarize the effects of ghrelin on epilepsy. It may provide a comprehensive picture of the role of ghrelin in epilepsy.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
48
|
Soares JI, Valente MC, Andrade PA, Maia GH, Lukoyanov NV. Reorganization of the septohippocampal cholinergic fiber system in experimental epilepsy. J Comp Neurol 2017; 525:2690-2705. [PMID: 28472854 DOI: 10.1002/cne.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
The septohippocampal cholinergic neurotransmission has long been implicated in seizures, but little is known about the structural features of this projection system in epileptic brain. We evaluated the effects of experimental epilepsy on the areal density of cholinergic terminals (fiber varicosities) in the dentate gyrus. For this purpose, we used two distinct post-status epilepticus rat models, in which epilepsy was induced with injections of either kainic acid or pilocarpine. To visualize the cholinergic fibers, we used brain sections immunostained for the vesicular acetylcholine transporter. It was found that the density of cholinergic fiber varicosities was higher in epileptic rats versus control rats in the inner and outer zones of the dentate molecular layer, but it was reduced in the dentate hilus. We further evaluated the effects of kainate treatment on the total number, density, and soma volume of septal cholinergic cells, which were visualized in brain sections stained for either vesicular acetylcholine transporter or choline acetyltransferase (ChAT). Both the number of septal cells with cholinergic phenotype and their density were increased in epileptic rats when compared to control rats. The septal cells stained for vesicular acetylcholine transporter, but not for ChAT, have enlarged perikarya in epileptic rats. These results revealed previously unknown details of structural reorganization of the septohippocampal cholinergic system in experimental epilepsy, involving fiber sprouting into the dentate molecular layer and a parallel fiber retraction from the dentate hilus. We hypothesize that epilepsy-related neuroplasticity of septohippocampal cholinergic neurons is capable of increasing neuronal excitability of the dentate gyrus.
Collapse
Affiliation(s)
- Joana I Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Maria C Valente
- Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Pedro A Andrade
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal.,Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Gisela H Maia
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Nikolai V Lukoyanov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
49
|
Maasz G, Schmidt J, Avar P, Mark L. Automated SPE and nanoLC–MS analysis of somatostatin. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1315722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gabor Maasz
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecology, Tihany, Hungary
| | - Janos Schmidt
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - Peter Avar
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - Laszlo Mark
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary
- Imaging Center for Life and Material Sciences, University of Pecs, Pecs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pecs, Pecs, Hungary
| |
Collapse
|
50
|
Chi G, Huang Z, Li X, Zhang K, Li G. Substance P Regulation in Epilepsy. Curr Neuropharmacol 2017; 16:43-50. [PMID: 28474564 PMCID: PMC5771382 DOI: 10.2174/1570159x15666170504122410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/19/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022] Open
Abstract
Background: Epilepsy is a common neurological disease characterized by abnormal temporary discharge of neurons in the central nervous system. In recent years, studies have revealed the localization and changes in the density of neuropeptides, such as substance P (SP) in the pathogenesis of epilepsy. This review is a concise overview of SP and their physiologic and pathologic functions on regulating epilepsy, and the underline mechanisms. Methods: We research and collect relative online content for reviewing the effects of SP in Epilepsy. Results: The SP/NK-1 receptor system may induce seizures and play an important role in status epilepticus and in experimental animal models of epilepsy. Newest studies show that several mechanisms may explain the excitatory effects of the SP/NK-1 receptor signaling pathway in epilepsy. By binding to the NK-1 receptor, NK-1 receptor antagonists may block the pathophysiological effects of SP, and further studies are needed to confirm the possible anti-epileptic activity of NK-1 receptor antagonists. Conclusion: SP plays crucial roles on through binding with NK-1 receptor during epilepsy pathologic processing, and the NK-1 receptor is receiving a great attention as a therapeutic target for treating epilepsy. Thus, the use of NK-1 receptor antagonists for the treatment of epilepsy should be investigated in further studies.
Collapse
Affiliation(s)
- Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, Jilin, China
| | - Zhehao Huang
- China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Xianglan Li
- China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|