1
|
Sahu BS, Razzoli M, McGonigle S, Pallais JP, Nguyen ME, Sadahiro M, Jiang C, Lin WJ, Kelley KA, Rodriguez P, Mansk R, Cero C, Caviola G, Palanza P, Rao L, Beetch M, Alejandro E, Sham YY, Frontini A, Salton SR, Bartolomucci A. Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis. Mol Metab 2023; 76:101781. [PMID: 37482186 PMCID: PMC10400922 DOI: 10.1016/j.molmet.2023.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVE Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. METHODS We developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R21→A). RESULTS We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by an environmental temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue. CONCLUSIONS The ΔTLQP-21 mouse line can be a valuable resource to conduct mechanistic studies on the necessary role of TLQP-21 in physiology and disease, while also serving as a platform to test the specificity of novel antibodies or immunoassays directed at TLQP-21. Our approach also has far-reaching implications by informing the development of knowledge-based genetic engineering approaches to generate selective loss of function of other peptides encoded by pro-hormones genes, leaving all other peptides within the pro-protein precursor intact and unmodified.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Masato Sadahiro
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cheng Jiang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei-Jye Lin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevin A Kelley
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel Mansk
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Giada Caviola
- Department of Medicine and Surgery, University of Parma, 43120, Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43120, Parma, Italy
| | - Loredana Rao
- Department of Life and Environmental Sciences, Universita' Politecnica delle Marche, Ancona, 60131, Italy
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emilyn Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Universita' Politecnica delle Marche, Ancona, 60131, Italy
| | - Stephen R Salton
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Gillis HL, Kalinina A, Xue Y, Yan K, Turcotte-Cardin V, Todd MAM, Young KG, Lagace D, Picketts DJ. VGF is required for recovery after focal stroke. Exp Neurol 2023; 362:114326. [PMID: 36682400 DOI: 10.1016/j.expneurol.2023.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The high incidence of ischemic stroke worldwide and poor efficacy of neuroprotective drugs has increased the need for novel therapies in stroke recovery. Transcription of the neurosecretory protein VGF (non-acronym) is enhanced following ischemic stroke and proposed to be important for stroke recovery. To determine the requirement for VGF in recovery, we created Vgffl/fl:Nestin-Cre conditional knockout (Vgf cKO) mice and induced a photothrombotic focal ischemic stroke. Naïve Vgf cKO mice had significant less body weight in the absence of gross defects in brain size, cortical lamination, or deficits in locomotor activity compared to wildtype controls. Following a focal stroke, the Vgf cKO mice had greater deficits including impaired recovery of forepaw motor deficits at 2- and 4-weeks post stroke. The increase in deficits occurred in the absence of any difference in lesion size and was accompanied by a striking loss of stroke-induced migration of SVZ-derived immature neurons to the peri-infarct region. Importantly, exogenous adenoviral delivery of VGF (AdVGF) significantly improved recovery in the Vgf cKO mice and was able to rescue the immature neuron migration defect observed. Taken together, our results define a requirement for VGF in post stroke recovery and identify VGF peptides as a potential future therapeutic.
Collapse
Affiliation(s)
- Hannah L Gillis
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada
| | - Alena Kalinina
- Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yingben Xue
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Valérie Turcotte-Cardin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Matthew A M Todd
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada
| | - Kevin G Young
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Diane Lagace
- Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Departments of Biochemistry, Microbiology and Immunology, K1H 8M5, Canada; Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
3
|
Sahu BS, Razzoli M, McGonigle S, Pallais JP, Nguyen ME, Sadahiro M, Jiang C, Lin WJ, Kelley KA, Rodriguez P, Mansk R, Cero C, Caviola G, Palanza P, Rao L, Beetch M, Alejandro E, Sham YY, Frontini A, Salton SR, Bartolomucci A. Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.532619. [PMID: 36993202 PMCID: PMC10055429 DOI: 10.1101/2023.03.23.532619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. Here, we developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R 21 →A). We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by a temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue.
Collapse
|
4
|
Wang Y, Qin X, Han Y, Li B. VGF: A prospective biomarker and therapeutic target for neuroendocrine and nervous system disorders. Biomed Pharmacother 2022; 151:113099. [PMID: 35594706 DOI: 10.1016/j.biopha.2022.113099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Neuroendocrine regulatory polypeptide VGF (nerve growth factor inducible) was firstly found in the rapid induction of nerve growth factor on PC12 cells. It was selectively distributed in neurons and many neuroendocrine tissues. This paper reviewed the latest literatures on the gene structure, transcriptional regulation, protein processing, distribution and potential receptors of VGF. The neuroendocrine roles of VGF and its derived polypeptides in regulating energy, water electrolyte balance, circadian rhythm and reproductive activities were also summarized. Furthermore, based on the experimental evidence in vivo and in vitro, dysregulation of VGF in different neuroendocrine diseases and the possible mechanism mediated by VGF polypeptides were discussed. We next discussed the potential as the clinical diagnosis and therapy for VGF related diseases in the future.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoxue Qin
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
5
|
Benchoula K, Parhar IS, Hwa WE. The molecular mechanism of vgf in appetite, lipids, and insulin regulation. Pharmacol Res 2021; 172:105855. [PMID: 34461221 DOI: 10.1016/j.phrs.2021.105855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Obesity is an indication of an imbalance between energy expenditure and food intake. It is a complicated disease of epidemic proportions as it involves many factors and organs. Sedentary lifestyles and overeating have caused a substantial rise in people with obesity and type 2 diabetes. Thus, the discovery of successful and sustainable therapies for these chronic illnesses is critical. However, the mechanisms of obesity and diabetes and the crosstalk between these diseases are still ambiguous. Numerous studies are being done to study these mechanisms, with updates made frequently. VGF peptide and its derivatives are anticipated to have a role in the development of obesity and diabetes. However, contradictory studies have produced conflicting findings on the function of VGF. Therefore, in this review, we attempt to clarify and explain the role of VGF peptides in the brain, pancreas, and adipose tissue in the development of obesity.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia), BRIMS, Jeffrey Cheah School of Medicine & Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
6
|
Cho K, Jang YJ, Lee SJ, Jeon YN, Shim YL, Lee JY, Lim DS, Kim DH, Yoon SY. TLQP-21 mediated activation of microglial BV2 cells promotes clearance of extracellular fibril amyloid-β. Biochem Biophys Res Commun 2020; 524:764-771. [DOI: 10.1016/j.bbrc.2020.01.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
|
7
|
Lu Z, Yue Y, Yuan C, Liu J, Chen Z, Niu C, Sun X, Zhu S, Zhao H, Guo T, Yang B. Genome-Wide Association Study of Body Weight Traits in Chinese Fine-Wool Sheep. Animals (Basel) 2020; 10:E170. [PMID: 31963922 PMCID: PMC7022301 DOI: 10.3390/ani10010170] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Body weight is an important economic trait for sheep and it is vital for their successful production and breeding. Therefore, identifying the genomic regions and biological pathways that contribute to understanding variability in body weight traits is significant for selection purposes. In this study, the genome-wide associations of birth, weaning, yearling, and adult weights of 460 fine-wool sheep were determined using resequencing technology. The results showed that 113 single nucleotide polymorphisms (SNPs) reached the genome-wide significance levels for the four body weight traits and 30 genes were annotated effectively, including AADACL3, VGF, NPC1, and SERPINA12. The genes annotated by these SNPs significantly enriched 78 gene ontology terms and 25 signaling pathways, and were found to mainly participate in skeletal muscle development and lipid metabolism. These genes can be used as candidate genes for body weight in sheep, and provide useful information for the production and genomic selection of Chinese fine-wool sheep.
Collapse
Affiliation(s)
- Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zhiqiang Chen
- Novogene Bioinformatics Institute, Beijing 100029, China;
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoping Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
8
|
Guo Z, Sahu BS, He R, Finan B, Cero C, Verardi R, Razzoli M, Veglia G, Di Marchi RD, Miles JM, Bartolomucci A. Clearance kinetics of the VGF-derived neuropeptide TLQP-21. Neuropeptides 2018; 71:97-103. [PMID: 29958697 PMCID: PMC6166661 DOI: 10.1016/j.npep.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
UNLABELLED TLQP-21 is a multifunctional neuropeptide and a promising new medicinal target for cardiometabolic and neurological diseases. However, to date its clearance kinetics and plasma stability have not been studied. The presence of four arginine residues led us to hypothesize that its half-life is relatively short. Conversely, its biological activities led us to hypothesize that the peptide is still taken up by adipose tissues effectively. [125I]TLQP-21 was i.v. administered in rats followed by chasing the plasma radioactivity and assessing tissue uptake. Plasma stability was measured using LC-MS. In vivo lipolysis was assessed by the palmitate rate of appearance. RESULTS A small single i.v. dose of [125I]TLQP-21 had a terminal half-life of 110 min with a terminal clearance rate constant, kt, of 0.0063/min, and an initial half-life of 0.97 min with an initial clearance rate constant, ki, of 0.71/min. The total net uptake by adipose tissue accounts for 4.4% of the entire dose equivalent while the liver, pancreas and adrenal gland showed higher uptake. Uptake by the brain was negligible, suggesting that i.v.-injected peptide does not cross the blood-brain-barrier. TLQP-21 sustained isoproterenol-stimulated lipolysis in vivo. Finally, TLQP-21 was rapidly degraded producing several N-terminal and central sequence fragments after 10 and 60 min in plasma in vitro. This study investigated the clearance and stability of TLQP-21 peptide for the first time. While its pro-lipolytic effect supports and extends previous findings, its short half-life and sequential cleavage in the plasma suggest strategies for chemical modifications in order to enhance its stability and therapeutic efficacy.
Collapse
Affiliation(s)
- ZengKui Guo
- Mayo Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Bhavani S Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rongjun He
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Raffaello Verardi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - John M Miles
- Mayo Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|