1
|
Lei L, Chang S, Cheng L. At least 150 min per week of Tai chi practice improves sleep quality in the older people: evidence from a meta-analysis. Eur Geriatr Med 2024:10.1007/s41999-024-01125-4. [PMID: 39644454 DOI: 10.1007/s41999-024-01125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To conduct a meta-analysis to explore the optimal dosage of Tai chi exercise that positively influences the sleep quality of the older people. METHODS A literature search was conducted from 2004 to October 2024 in PubMed, Embase, Web of Science, Google Scholar, Cochrane Library, and Chinese databases (CNKI and Wanfang) for randomised controlled trials in Chinese and English on Tai chi improving sleep quality in the older people. Data extraction and verification were performed by two independent researchers. Additionally, a meta-analysis of the mean difference (MD) and 95% confidence interval (CI) was conducted using RevMan 5.4. RESULTS A total of nine randomised controlled trials involving 1,166 older participants were included. Compared with the control group, Tai chi significantly reduced the total Pittsburgh Sleep Quality Index (PSQI) scores in the older people [MD = - 1.53, 95% CI (- 2.18, - 0.89), p < 0.001], with heterogeneity results Q = 53.63, df = 12, and I2 of 78% (p < 0.001); Total weekly duration of Tai chi exercise: Less than 150 min reduced PSQI scores, but the difference was not statistically significant [MD = - 1.47, 95% CI (- 3.89, 0.95), p = 0.23]. Between 150-300 min significantly reduced PSQI scores [MD = - 1.54, 95% CI (- 2.00, - 1.08), p < 0.001]; Duration of Tai chi exercise programme: 8-12 weeks significantly reduced PSQI scores [MD = - 1.93, 95% CI (- 2.60, - 1.25), p < 0.001]; 16-24 weeks significantly reduced PSQI scores [MD = - 1.27, 95% CI (- 2.27, - 0.26), p = 0.01]; Single session duration of Tai chi exercise: 60 min significantly reduced PSQI scores [MD = - 2.17, 95% CI (- 3.15, - 1.18), p < 0.001]; Less than 60 min (25-45 min) significantly reduced PSQI scores [MD = - 0.92, 95% CI (- 1.63, - 0.20), p = 0.01]. CONCLUSION Older individuals engaging in at least 150 min per week of Tai chi practice can improve sleep quality. Beyond this threshold, extending the duration of individual practice sessions or the exercise programme does not yield additional benefits for sleep quality.
Collapse
Affiliation(s)
- Lan Lei
- Department of Sports and Human Science, Sichuan Sports College, Chengdu, China
| | | | - Liang Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
2
|
Mukherjee U, Sehar U, Brownell M, Reddy PH. Mechanisms, consequences and role of interventions for sleep deprivation: Focus on mild cognitive impairment and Alzheimer's disease in elderly. Ageing Res Rev 2024; 100:102457. [PMID: 39154978 DOI: 10.1016/j.arr.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Sleep is established as an essential physiological need that impacts physical, emotional, and cognitive functions profoundly. Physiologically, inadequate sleep weakens immune function, heightening susceptibility to infections and chronic illnesses such as obesity, diabetes, and cardiovascular diseases. Hormonal disruptions due to sleep loss further exacerbate metabolic dysregulation, contributing to weight gain and other health complications. Emotionally, sleep deprivation leads to mood disturbances, including increased irritability, heightened stress responses, and a greater likelihood of mood disorders like depression and anxiety. These effects are compounded by cognitive impairments such as reduced alertness, impaired memory consolidation, and compromised decision-making abilities, akin to the impairments caused by alcohol consumption. Motor skills and coordination also suffer, elevating the risk of accidents, particularly in high-stress environments. For older adults, sleep quality is closely linked to cognitive function and overall longevity. Optimal sleep patterns are associated with slower brain aging and improved health outcomes. However, sleep disorders exacerbate existing conditions such as epilepsy and asthma, necessitating interventions like cognitive behavioral therapy (CBT) and medications such as melatonin to mitigate their impact. Education emerges as a crucial tool in promoting healthier sleep habits across all age groups. Addressing misconceptions about sleep and integrating sleep health into public health policies are essential steps toward improving overall well-being. Additionally, lifestyle factors such as diet and physical activity play significant roles in regulating sleep patterns, further emphasizing the interconnectedness of sleep with broader health outcomes. In summary, the articles underscore the intricate mechanisms through which sleep influences physiological functions and advocate for comprehensive approaches to enhance sleep hygiene and mitigate the adverse effects of sleep deprivation on human health.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Malcolm Brownell
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
3
|
Fatahi N, Jafari-Sabet M, Vahabzadeh G, Komaki A. Role of hippocampal and prefrontal cortical cholinergic transmission in combination therapy valproate and cannabidiol in memory consolidation in rats: involvement of CREB- BDNF signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5029-5047. [PMID: 38189934 DOI: 10.1007/s00210-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Cognitive disorders are associated with valproate and drugs used to treat neuropsychological diseases. Cannabidiol (CBD) has beneficial effects on cognitive function. This study examined the effects of co-administration of CBD and valproate on memory consolidation, cholinergic transmission, and cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling pathway in the prefrontal cortex (PFC) and hippocampus (HPC). METHODS One-trial, step-through inhibitory test was used to evaluate memory consolidation in rats. The intra-CA1 injection of physostigmine and atropine was performed to assess the role of cholinergic transmission in this co-administration. Phosphorylated CREB (p-CREB)/CREB ratio and BDNF levels in the PFC and HPC were evaluated. RESULTS Post-training intraperitoneal (i.p.) valproate injection reduced memory consolidation; however, post-training co-administration of CBD with valproate ameliorated memory impairment induced by valproate. Post-training intra-CA1 injection of physostigmine at the ineffective doses in memory consolidation (0.5 and 1 µg/rat), plus injection of 10 mg/kg of CBD as an ineffective dose, improved memory loss induced by valproate, which was associated with BDNF and p-CREB level enhancement in the PFC and HPC. Conversely, post-training intra-CA1 injection of ineffective doses of atropine (1 and 2 µg/rat) reduced the positive effects of injection of CBD at a dose of 20 mg/kg on valproate-induced memory loss associated with BDNF and p-CREB level reduction in the PFC and HPC. CONCLUSION The results indicated a beneficial interplay between valproate and CBD in the process of memory consolidation, which probably creates this interaction through the BDNF-CREB signaling pathways in the cholinergic transmission of the PFC and HPC regions.
Collapse
Affiliation(s)
- Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Mohammadgholi-Beiki A, Sheibani M, Jafari-Sabet M, Motevalian M, Rahimi-Moghaddam P. Anti-inflammatory and protective effects of Aripiprazole on TNBS-Induced colitis and associated depression in rats: Role of kynurenine pathway. Int Immunopharmacol 2024; 133:112158. [PMID: 38691917 DOI: 10.1016/j.intimp.2024.112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The prevalence of depression is higher in patients with inflammatory bowel disease (IBD) than in the general population. Inflammatory cytokines and the kynurenine pathway (KP) play important roles in IBD and associated depression. Aripiprazole (ARP), an atypical antipsychotic, shows various anti-inflammatory properties and may be useful in treating major depressive disorder. This study aimed to evaluate the protective effects of ARP on TNBS-induced colitis and subsequent depression in rats, highlighting the role of the KP. MATERIAL AND METHODS Fifty-six male Wistar rats were used, and all groups except for the normal and sham groups received a single dose of intra-rectal TNBS. Three different doses of ARP and dexamethasone were injected intraperitoneally for two weeks in treatment groups. On the 15th day, behavioral tests were performed to evaluate depressive-like behaviors. Colon ulcer index and histological changes were assessed. The tissue levels of inflammatory cytokines, KP markers, lipopolysaccharide (LPS), nuclear factor-kappa-B (NF-κB), and zonula occludens (ZO-1) were evaluated in the colon and hippocampus. RESULTS TNBS effectively induced intestinal damages and subsequent depressive-like symptoms in rats. TNBS treatment significantly elevated the intestinal content of inflammatory cytokines and NF-κB expression, dysregulated the KP markers balance in both colon and hippocampus tissues, and increased the serum levels of LPS. However, treatment with ARP for 14 days successfully reversed these alterations, particularly at higher doses. CONCLUSION ARP could alleviate IBD-induced colon damage and associated depressive-like behaviors mainly via suppressing inflammatory cytokines activity, serum LPS concentration, and affecting the NF-κB/kynurenine pathway.
Collapse
Affiliation(s)
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Ma X, Cao F, Cui J, Li X, Yin Z, Wu Y, Wang Q. Orexin B protects dopaminergic neurons from 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity associated with reduced extracellular signal-regulated kinase phosphorylation. Mol Biol Rep 2024; 51:669. [PMID: 38787465 DOI: 10.1007/s11033-024-09587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is a major pathological hallmark of Parkinson's disease (PD). Orexin B (OXB) has been reported to promote the growth of DA neurons. However, the roles of OXB in the degeneration of DA neurons still remained not fully clear. METHODS An in vivo PD model was constructed by administrating 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Pole test was performed to investigate the motor function of mice and the number of DA neurons was detected by immunofluorescence (IF). A PD cell model was established by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+). OXB was added to the culture medium 2 h after MPP + treatment. Microscopic analysis was carried out to investigate the function of OXB in the cell model of PD 24 h after MPP + challenge. RNA-Seq analysis of the PD cell model was performed to explore the possible mechanisms. Western blot was used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK). RESULTS OXB significantly decreased the DA neurons death caused by MPTP, alleviated MPP+-induced neurotoxicity in SH-SY5Y cells, and robustly enhanced the weight and motor ability of PD mice. Besides, RNA-Seq analysis demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the pathology of PD. Furthermore, MPP + led to increased levels of phosphorylation of ERK (p-ERK), OXB treatment significantly decreased the levels of p-ERK in MPP+-treated SH-SY5Y cells. CONCLUSIONS This study demonstrated that OXB exerts a neuroprotective role associated with reduced ERK phosphorylation in the PD model. This suggests that OXB may have therapeutic potential for treatment of PD.
Collapse
Affiliation(s)
- Xiaodan Ma
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
| | - Fei Cao
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
- Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Jing Cui
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
| | - Xuezhi Li
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
| | - Zuojuan Yin
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yili Wu
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Qinqin Wang
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
6
|
Aghamiri H, Jafari-Sabet M, Hoormand M. Ameliorative Effect of Cannabidiol on Topiramate-Induced Memory Loss: The Role of Hippocampal and Prefrontal Cortical NMDA Receptors and CREB/BDNF Signaling Pathways in Rats. Neurochem Res 2024; 49:363-378. [PMID: 37814133 DOI: 10.1007/s11064-023-04041-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cannabidiol (CBD) is a promising neurological agent with potential beneficial effects on memory and cognitive function. The combination of CBD and topiramate in the treatment of some neurological diseases has been of great interest. Since Topiramate-induced memory loss is a major drawback of its clinical application and the overall effect of the combination of CBD and topiramate on memory is still unclear, here we investigated the effect of CBD on topiramate-induced memory loss and the underlying molecular mechanisms. A one trial step-through inhibitory test was used to evaluate memory consolidation in rats. Moreover, the role of N-methyl-D-aspartate receptors (NMDARs) in the combination of CBD and topiramate in memory consolidation was evaluated through the intra-CA1 administration of MK-801 and NMDA. Western blot analysis was used to evaluate variations in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding protein (pCREB)/CREB ratio in the prefrontal cortex (PFC) and hippocampus (HPC). While the intraperitoneal (i.p.) administration of topiramate (50, 75, and 100 mg/kg) significantly reduced inhibitory time latency, the i.p. administration of CBD (20 and 40 mg/kg) could effectively reverse these effects. Similarly, the sub-effective doses of NMDA plus CBD (10 mg/kg) could improve the topiramate-induced memory loss along with an enhancement in BDNF and pCREB expression in the PFC and HPC. Contrarily, the administration of sub-effective doses of the NMDAR antagonist (MK-801) diminished the protective effects of CBD (20 mg/kg) on topiramate-induced memory loss associated with decreased BDNF and pCREB levels in the PFC and HPC. These findings suggest that CBD can improve topiramate-induced memory impairment, partially by the NMDARs of the PFC and HPC, possibly regulated by the CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahmood Hoormand
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Sabnis RW. Sulfonamide Compounds as Orexin Receptor Agonists for Treating Sleep Disorders, Namely, Narcolepsy and Hypersomnia. ACS Med Chem Lett 2024; 15:17-18. [PMID: 38229763 PMCID: PMC10788948 DOI: 10.1021/acsmedchemlett.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 01/18/2024] Open
Abstract
Provided herein are novel sulfonamide compounds as orexin receptor agonists, their pharmaceutical compositions, the use of such compounds in treating sleep disorders, namely, narcolepsy and hypersomnia, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
8
|
Pari E, Sheibani M, Sazegar MR, Mir S, Moazam A, Khalilzadeh M, Motevalian M. Comparison of neuroprotective effects of a topiramate-loaded biocomposite based on mesoporous silica nanoparticles with pure topiramate against methylphenidate-induced neurodegeneration. Mol Biol Rep 2024; 51:65. [PMID: 38170306 DOI: 10.1007/s11033-023-09011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Methylphenidate (MPH) abuse has been criticized for its role in neurodegeneration. Also, a high risk of seizure was reported in the first month of MPH treatment. Topiramate, a broad-spectrum Antiepileptic Drug (AED), has been used as a neuroprotective agent in both aforementioned complications. Nanotechnology is introduced to increase desirable neurological treatment with minimum side effects. We aimed to investigate the potential neuroprotective activity of topiramate loaded on nanoparticles. METHODS AND RESULTS MTT assay was performed to evaluate the cellular cytotoxicity of Mesoporous Silica Nanoparticles (MSN). Male rats were randomly divided into eight groups. Rats received an intraperitoneal (i.p) MPH (10 mg/kg) injection and a daily oral dose of topiramate (TPM, 30 mg/kg), MSN with Zn core (10 and 30 mg/kg), and MSN with Cu core (10 and 30 mg/kg) for three weeks. On day 21, a seizure was induced by a single injection of pentylenetetrazole (PTZ) to evaluate the protective effects of TPM-loaded nanoparticles on seizure latency and duration following MPH-induced neurotoxicity. Moreover, the hippocampal content of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA), and the anti-oxidant enzymes (SOD, GPx, and GR) activities were assessed. Also, BAX and Bcl-2 as two main apoptotic markers were evaluated. RESULTS MPH neurotoxicity was observed as a raised duration and reduced latency in PTZ-induced seizure. However, TPM-loaded MSN with Zn species (NE) treatment reduced the duration and improved the latency time. Also, NE and, somewhat, TPM-loaded MSN with Cu species (NM) administration reduced inflammatory cytokines, MDA, and Bax levels and increased activities in the rat hippocampus. CONCLUSION TPM-loaded nanoparticles could be used as neuroprotective agents against MPH-induced neurodegeneration by improving seizure parameters and reducing inflammatory, oxidant, and apoptotic factors.
Collapse
Affiliation(s)
- Erfan Pari
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sazegar
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran.
| | - Saeedeh Mir
- Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Hakimiyeh, Tehran, Iran
| | - Ashrafsadat Moazam
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Pharmacology Department, Medical School & Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Jafari-Sabet M, Amiri S, Sheibani M, Fatahi N, Aghamiri H. Cross state-dependent memory retrieval between tramadol and ethanol: involvement of dorsal hippocampal GABAA receptors. Psychopharmacology (Berl) 2024; 241:139-152. [PMID: 37758936 DOI: 10.1007/s00213-023-06469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
RATIONALE Tramadol and ethanol, as psychoactive agents, are often abused. Discovering the molecular pathways of drug-induced memory creation may contribute to preventing drug addiction and relapse. OBJECTIVE The tramadol- and ethanol-induced state-dependent memory (SDM) and cross-SDM retrieval between tramadol and ethanol were examined in this study. Moreover, because of the confirmed involvement of GABAA receptors and GABAergic neurotransmission in memory retrieval impairment, we assessed cross-SDM retrieval between tramadol and ethanol with a specific emphasis on the role of the GABAA receptors. The first hypothesis of this study was the presence of cross-SDM between tramadol and ethanol, and the second hypothesis was related to possible role of GABAA receptors in memory retrieval impairment within the dorsal hippocampus. The cannulae were inserted into the hippocampal CA1 area of NMRI mice, and a step-down inhibitory avoidance test was used to evaluate state dependence and memory recovery. RESULTS The post-training and/or pre-test administration of tramadol (2.5 and 5 mg/kg, i.p.) and/or ethanol (0.5 and 1 g/kg, i.p.) induced amnesia, which was restored after the administration of the drugs 24 h later during the pre-test period, proposing ethanol and tramadol SDM. The pre-test injection of ethanol (0.25 and 0.5 g/kg, i.p.) with tramadol at an ineffective dose (1.25 mg/kg) enhanced tramadol SDM. Moreover, tramadol injection (1.25 and 2.5 mg/kg) with ethanol at the ineffective dose (0.25 g/kg) promoted ethanol SDM. Furthermore, the pre-test intra-CA1 injection of bicuculline (0.0625, 0.125, and 0.25 μg/mouse), a GABAA receptor antagonist, 5 min before the injection of tramadol (5 mg/kg) or ethanol (1 g/kg) inhibited tramadol- and ethanol-induced SDM dose-dependently. CONCLUSION The findings strongly confirmed cross-SDM between tramadol and ethanol and the critical role of dorsal hippocampal GABAA receptors in the cross-SDM between tramadol and ethanol.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Nkwingwa BK, Wado EK, Foyet HS, Bouvourne P, Jugha VT, Mambou AHMY, Bila RB, Taiwe GS. Ameliorative effects of Albizia adianthifolia aqueous extract against pentylenetetrazole-induced epilepsy and associated memory loss in mice: Role of GABAergic, antioxidant defense and anti-inflammatory systems. Biomed Pharmacother 2023; 165:115093. [PMID: 37392651 DOI: 10.1016/j.biopha.2023.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Albizia adianthifolia (Schumach.) (Fabaceae) is a medicinal herb used for the treatment of epilepsy and memory impairment. This study aims to investigate the anticonvulsant effects of Albizia adianthifolia aqueous extract against pentylenetetrazole (PTZ)-induced spontaneous convulsions in mice; and determine whether the extract could mitigate memory impairment, oxidative/nitrergic stress, GABA depletion and neuroinflammation. Ultra-high performance liquid chromatography/mass spectrometry analysis was done to identify active compounds from the extract. Mice were injected with PTZ once every 48 h until kindling was developed. Animals received distilled water for the normal group and negative control groups, doses of extract (40, 80, or 160 mg/kg) for the test groups and sodium valproate (300 mg/kg) for the positive control group. Memory was measured using Y maze, novel object recognition (NOR) and open field paradigms, while the oxidative/nitrosative stresses (MDA, GSH, CAT, SOD and NO), GABAergic transmission (GABA, GABA-T and GAD) and neuro-inflammation (TNF-α, IFN-γ, IL- 1β, and IL-6) were determined. Brain photomicrograph was also studied. Apigenin, murrayanine and safranal were identified in the extract. The extract (80-160 mg/kg) significantly protected mice against seizures and mortality induced by PTZ. The extract significantly increased the spontaneous alternation and the discrimination index in the Y maze and NOR tests, respectively. PTZ kindling induced oxidative/nitrosative stress, GABA depletion, neuroinflammation and neuronal cells death was strongly reversed by the extract. The results suggest that the anticonvulsant activity of Albizia adianthifolia extract is accompanied by its anti-amnesic property, and may be supported by the amelioration of oxidative stress, GABAergic transmission and neuroinflammation.
Collapse
Affiliation(s)
- Balbine Kamleu Nkwingwa
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Eglantine Keugong Wado
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Parfait Bouvourne
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Vanessa Tita Jugha
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Alain Hart Mann Youbi Mambou
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Raymond Bess Bila
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| |
Collapse
|
11
|
Najib J, Toderika Y, Dima L. Daridorexant, an Orexin Receptor Antagonist for the Management of Insomnia. Am J Ther 2023; 30:e360-e368. [PMID: 37449930 DOI: 10.1097/mjt.0000000000001647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Insomnia is a common sleep disorder that is diagnosed primarily by patients' subjective reported symptoms. Daridorexant is a new dual orexin receptor antagonist that was recently approved by Food and Drug Administration for insomnia characterized by difficulty falling asleep and/or maintaining sleep. MECHANISM OF ACTION, PHARMACODYNAMICS, AND PHARMACOKINETICS The orexin neuropeptide signaling system plays a role in wakefulness, and blocking the wake-promoting neuropeptides results in diminished wake signaling, thus exerting a sedative effect using an entirely different mechanism of action than the classical sleep promoting agents. The drug has quick onset of action, high volume of distribution, and high protein binding. Pharmacokinetics and pharmacodynamic parameters were similar in patients of different sex and age and were not significantly affected by race, body size, or mild-to-moderate kidney impairment. Dose limitation to 25 mg in moderate liver impairment and no use in severe liver impairment are recommended. The drug undergoes hepatic CYP3A4 metabolism; thus, caution with strong CYP3A4 inhibitors and inducers is warranted. CLINICAL TRIALS The drug was approved based on phase 3 trials involving study 1 and study 2. Study 1 noted daridorexant at doses of 25 and 50 mg demonstrated a statistically significant improvement in wake time after sleep onset, latency to persistent sleep, and self-reported total sleep time against placebo at months 1 and 3. Similarly in study 2, compared with placebo, the 25 mg dose demonstrated statistically significant improvement in wake time after sleep onset, latency to persistent sleep, and self-reported total sleep time at months 1 and 3. Treatment-emergent adverse events were similar for daridorexant and placebo, with nasopharyngitis and headache most frequently reported. THERAPEUTIC ADVANCE Daridorexant is a novel agent with demonstrated efficacy in sleep onset and maintenance and decrease in daytime sedation. Preliminary results from a 1-year extension study note similar incidences of mild-to-moderate side effects as noted in previous trials. Further studies are needed to establish its place in the pharmacological treatment of insomnia.
Collapse
Affiliation(s)
- Jadwiga Najib
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY; and
| | - Yuliana Toderika
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY; and
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|
12
|
Chen L, Liu C, Xue Y, Chen XY. Several neuropeptides involved in parkinsonian neuroprotection modulate the firing properties of nigral dopaminergic neurons. Neuropeptides 2023; 99:102337. [PMID: 37087783 DOI: 10.1016/j.npep.2023.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Parkinson's disease is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. The surviving nigral dopaminergic neurons display altered spontaneous firing activity in Parkinson's disease. The firing rate of nigral dopaminergic neurons decreases long before complete neuronal death and the appearance of parkinsonian symptoms. A mild stimulation could rescue dopaminergic neurons from death and in turn play neuroprotective effects. Several neuropeptides, including cholecystokinin (CCK), ghrelin, neurotensin, orexin, tachykinins and apelin, within the substantia nigra pars compacta play important roles in the modulation of spontaneous firing activity of dopaminergic neurons and therefore involve motor control and motor disorders. Here, we review neuropeptide-induced modulation of the firing properties of nigral dopaminergic neurons. This review may provide a background to guide further investigations into the involvement of neuropeptides in movement control by modulating firing activity of nigral dopaminergic neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Cui Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xin-Yi Chen
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|