1
|
Wang XL, Zhang RN, Pan YL, Li ZM, Li HQ, Lei YT, Zhao FF, Hao XX, Ma WW, Yu CP, Yao HW, Wang XY, Lv JJ, Wu YH, Wang SY. Reduction of eEF2 kinase alleviates the learning and memory impairment caused by acrylamide. Cell Biosci 2024; 14:106. [PMID: 39180059 PMCID: PMC11344312 DOI: 10.1186/s13578-024-01285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The impact of acrylamide (ACR) on learning and memory has garnered considerable attention. However, the targets and mechanisms are still unclear. RESULTS Elongation factor 2 (eEF2) was significantly upregulated in the results of serum proteomics. Results from in vitro and in vivo experiments indicated a notable upregulation of Eukaryotic elongation factor 2 kinase (eEF2K), the sole kinase responsible for eEF2 phosphorylation, following exposure to ACR (P < 0.05). Subsequent in vitro experiments using eEF2K siRNA and in vivo experiments with eEF2K-knockout mice demonstrated significant improvements in abnormal indicators related to ACR-induced learning and memory deficits (P < 0.05). Proteomic analysis of the hippocampus revealed Lpcat1 as a crucial downstream protein regulated by eEF2K. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that eEF2K may play a role in the process of ACR-induced learning and memory impairment by affecting ether lipid metabolism. CONCLUSIONS In summary, eEF2K as a pivotal treatment target in the mechanisms underlying ACR-induced learning and memory impairment, and studies have shown that it provides robust evidence for potential clinical interventions targeting ACR-induced impairments.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Ru-Nan Zhang
- Department of Nutrition and Food Hygiene, National Key Discipline, Harbin Medical University, Harbin, People's Republic of China
| | - Yu-Lin Pan
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Zhi-Ming Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Hong-Qiu Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Ya-Ting Lei
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Fang-Fang Zhao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Xiao-Xiao Hao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Wei-Wei Ma
- Harbin Railway Center for Disease Control and Prevention, Harbin, People's Republic of China
| | - Cui-Ping Yu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Hong-Wei Yao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Xin-Yu Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Jun-Jie Lv
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China.
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, 150086, Harbin, People's Republic of China.
| |
Collapse
|
2
|
Yuan Y, Bulloch G, Zhang S, Chen Y, Yang S, Wang W, Zhu Z, He M. Consumption of Coffee and Tea Is Associated with Macular Retinal Nerve Fiber Layer Thickness: Results from the UK Biobank. Nutrients 2023; 15:nu15051196. [PMID: 36904194 PMCID: PMC10005476 DOI: 10.3390/nu15051196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Coffee and tea drinking are thought to be protective for the development and progression of neurodegenerative disorders. This study aims to investigate associations between coffee and tea consumption with macular retinal nerve fiber layer (mRNFL) thickness, a marker of neurodegeneration. After quality control and eligibility screening, 35,557 out of 67,321 United Kingdom (UK) Biobank participants from six assessment centers were included in this cross-sectional study. In the touchscreen questionnaire, participants were asked how many cups of coffee and tea were consumed daily on average over the last year. Self-reported coffee and tea consumption were divided into four categories including 0 cup/day, 0.5-1 cups/day, 2-3 cups/day, and ≥4 cups/day, respectively. The mRNFL thickness was measured by the optical coherence tomography (Topcon 3D OCT-1000 Mark II) and automatically analyzed by segmentation algorithms. After adjusting for covariates, coffee consumption was significantly associated with an increased mRNFL thickness (β = 0.13, 95% CI = 0.01~0.25), which was more prominent in those who drank 2~3 cups coffee per day (β = 0.16, 95% CI = 0.03~0.30). The mRNFL thickness was also significantly increased in tea drinkers (β = 0.13, 95% CI = 0.01~0.26), especially for those who drank more than 4 cups of tea per day (β = 0.15, 95% CI = 0.01~0.29). The positive associations with mRNFL thickness, indicating that both coffee and tea consumptions had likely neuroprotective potentials. Causal links and underlying mechanisms for these associations should be explored further.
Collapse
Affiliation(s)
- Yixiong Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Gabriella Bulloch
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
| | - Shiran Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yanping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Shaopeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
- Correspondence: (W.W.); (Z.Z.)
| | - Zhuoting Zhu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Correspondence: (W.W.); (Z.Z.)
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
3
|
Palliative effect of Moringa olifera-mediated zinc oxide nanoparticles against acrylamide-induced neurotoxicity in rats. Food Chem Toxicol 2022; 171:113537. [PMID: 36442736 DOI: 10.1016/j.fct.2022.113537] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Repeated acrylamide (ACR) exposure in experimental animals and humans causes variable degrees of neuronal damage. Because of its unique features, several green synthesized nanomaterials are explored for neuromodulatory activity. Hence, this study investigated the effect of green synthesized zinc oxide nanoparticles using Moriga olifera leaves extract (MO-ZnONP) against acrylamide (ACR)-induced neurobehavioral and neurotoxic impacts in rat. Forty male Sprague Dawley rats were distributed into four groups orally given distilled water, MO-ZnONP (10 mg/kg b.wt), ACR (20 mg/kg b.wt), or MO-ZnONP + ACR for 60 days. Gait quality and muscular, motor, and sensory function were assessed. Acetylcholinesterase (AChE), dopamine, catalase, malondialdehyde (MDA), and Zn brain contents were determined. Brain histopathology and immunohistochemical localization of the amyloid-β protein and abnormal Tau were performed. The results revealed that MO-ZnONP significantly reduced ACR-induced sensory dysfunctions, hind limb abnormality, and motor deficits. Additionally, the ACR-induced increase in dopamine and AChE were significantly supressed by MO-ZnONP. Besides, MO-ZnONP significantly restored catalase and Zn content but reduced increased MDA brain content resulting from ACR. Furthermore, the ACR-induced neurodegenerative changes and increased amyloid-β and phosphorylated Tau immunoexpression was significantly abolished by MO-ZnONP. Conclusively, MO-ZnONP could be used as a biologically effective compound for mitigating ACR's neurotoxic and neurobehavioral effects.
Collapse
|
4
|
Lauvås AJ, Lislien M, Holme JA, Dirven H, Paulsen RE, Alm IM, Andersen JM, Skarpen E, Sørensen V, Macko P, Pistollato F, Duale N, Myhre O. Developmental neurotoxicity of acrylamide and its metabolite glycidamide in a human mixed culture of neurons and astrocytes undergoing differentiation in concentrations relevant for human exposure. Neurotoxicology 2022; 92:33-48. [PMID: 35835329 DOI: 10.1016/j.neuro.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022]
Abstract
Neural stem cells (NSCs) derived from human induced pluripotent stem cells were used to investigate effects of exposure to the food contaminant acrylamide (AA) and its main metabolite glycidamide (GA) on key neurodevelopmental processes. Diet is an important source of human AA exposure for pregnant women, and AA is known to pass the placenta and the newborn may also be exposed through breast feeding after birth. The NSCs were exposed to AA and GA (1 ×10-8 - 3 ×10-3 M) under 7 days of proliferation and up to 28 days of differentiation towards a mixed culture of neurons and astrocytes. Effects on cell viability was measured using Alamar Blue™ cell viability assay, alterations in gene expression were assessed using real time PCR and RNA sequencing, and protein levels were quantified using immunocytochemistry and high content imaging. Effects of AA and GA on neurodevelopmental processes were evaluated using endpoints linked to common key events identified in the existing developmental neurotoxicity adverse outcome pathways (AOPs). Our results suggest that AA and GA at low concentrations (1 ×10-7 - 1 ×10-8 M) increased cell viability and markers of proliferation both in proliferating NSCs (7 days) and in maturing neurons after 14-28 days of differentiation. IC50 for cell death of AA and GA was 5.2 × 10-3 M and 5.8 × 10-4 M, respectively, showing about ten times higher potency for GA. Increased expression of brain derived neurotrophic factor (BDNF) concomitant with decreased synaptogenesis were observed for GA exposure (10-7 M) only at later differentiation stages, and an increased number of astrocytes (up to 3-fold) at 14 and 21 days of differentiation. Also, AA exposure gave tendency towards decreased differentiation (increased percent Nestin positive cells). After 28 days, neurite branch points and number of neurites per neuron measured by microtubule-associated protein 2 (Map2) staining decreased, while the same neurite features measured by βIII-Tubulin increased, indicating perturbation of neuronal differentiation and maturation.
Collapse
Affiliation(s)
- Anna Jacobsen Lauvås
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Malene Lislien
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Jørn Andreas Holme
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Hubert Dirven
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Inger Margit Alm
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Jill Mari Andersen
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Ellen Skarpen
- Core Facility for Advanced Light Microscopy, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Vigdis Sørensen
- Core Facility for Advanced Light Microscopy, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Peter Macko
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Nur Duale
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Oddvar Myhre
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway.
| |
Collapse
|
5
|
Wang F, Fan B, Chen C, Zhang W. Acrylamide causes neurotoxicity by inhibiting glycolysis and causing the accumulation of carbonyl compounds in BV2 microglial cells. Food Chem Toxicol 2022; 163:112982. [DOI: 10.1016/j.fct.2022.112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
6
|
Zhang H, Shan L, Aniagu S, Jiang Y, Chen T. Paternal acrylamide exposure induces transgenerational effects on sperm parameters and learning capability in mice. Food Chem Toxicol 2022; 161:112817. [PMID: 35032568 DOI: 10.1016/j.fct.2022.112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022]
Abstract
Acrylamide (AA) has been shown to have neurological and reproductive toxicities, but little is known about transgenerational effects of AA. In this study, male C57BL/6 mice were exposed to AA (0.01, 1, 10 μg/mL) and its metabolite glycidamide (GA, 10 μg/mL) in drinking water, which were then mated with unexposed female mice to produce F1 and F2 generations. We found that both AA and GA at high concentrations decreased sperm motility in F0 mice and increased sperm malformation rates in mice from all the three generations. In addition, AA and GA increased sperm reactive oxygen species as well as decreased serum testosterone levels, and increased the escape latency time in exposed mice and their offspring. We further found that AA-induced mRNA expression changes in the hippocampus of F0 mice persist to the F2 generation. In the sperm of F0 mice, AA induced significant DNA methylation changes in genes involved in neural and reproduction; the mRNA expression levels of Dnmt3b, a DNA methyltransferase, were dramatically decreased in the testes of F0 and F1 mice. In conclusion, our study indicates that paternal AA exposure leads to DNA methylation-mediated transgenerational adverse effects on sperm parameters and leaning capability in mice.
Collapse
Affiliation(s)
- Hang Zhang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Lidong Shan
- Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015, Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Lindeman B, Johansson Y, Andreassen M, Husøy T, Dirven H, Hofer T, Knutsen HK, Caspersen IH, Vejrup K, Paulsen RE, Alexander J, Forsby A, Myhre O. Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps. Reprod Toxicol 2021; 101:93-114. [PMID: 33617935 DOI: 10.1016/j.reprotox.2021.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022]
Abstract
There is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs. AA is a known human neurotoxicant that can reach the developing foetus via placental transfer and breast milk. Although adverse neurodevelopmental effects have been observed after prenatal AA exposure in rodents, adverse effects of AA on the developing brain has so far not been studied in humans. However, epidemiological studies indicate that gestational exposure to AA impair foetal growth and AA exposure has been associated with reduced head circumference of the neonate. Thus, there is an urgent need for further research to elucidate whether pre- and perinatal AA exposure in humans might impair neurodevelopment and adversely affect neuronal function postnatally. Here, we review the literature with emphasis on the identification of critical knowledge gaps in relation to neurodevelopmental toxicity of AA and its mode of action and we suggest research strategies to close these gaps to better protect the unborn child.
Collapse
Affiliation(s)
- Birgitte Lindeman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mathilda Andreassen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Trine Husøy
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tim Hofer
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle K Knutsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida H Caspersen
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine Vejrup
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Jan Alexander
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Oddvar Myhre
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
8
|
Vejdovszky K, Mihats D, Griesbacher A, Wolf J, Steinwider J, Lueckl J, Jank B, Kopacka I, Rauscher-Gabernig E. A tiered approach to cumulative risk assessment for reproductive and developmental toxicity of food contaminants for the austrian population using the modified Reference Point Index (mRPI). Food Chem Toxicol 2020; 147:111861. [PMID: 33220394 DOI: 10.1016/j.fct.2020.111861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022]
Abstract
Through our daily diet, we are exposed to a variety of food contaminants. Yet, assessing the cumulative health risk of chemical mixtures remains a challenge. Using a recently developed method, the modified Reference Point Index (mRPI), the cumulative risks posed by contaminant mixtures were assessed for their effects on reproduction and development. Since these effects can be quite diverse, a tiered approach was adopted to elucidate the risks at a more detailed level based on specific toxicological endpoints. An additional analysis was performed using the modified Maximum Cumulative Ratio (mMCR), which provides the determination of risk-dominating substances in the mixture. Our method represents a novel useful tool to screen and prioritise contaminant mixtures regarding their potential health risks. We found, that in the majority of the calculated scenarios a single substance dominates the cumulative risks. Lead was found to be the primary factor for adverse effects on reproduction and neuronal development of children. Perchlorate was identified as the most prominent risk factor for child development in generalCumulative risks of trichothecenes were dominated by deoxynivalenol. Concerning the impact on pre- and neonatal development, the co-exposure of several substances resulted in increased risks, with none of the considered contaminants dominating substantially.
Collapse
Affiliation(s)
- Katharina Vejdovszky
- Department of Risk Assessment, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Daniela Mihats
- Department of Data Management, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Antonia Griesbacher
- Department of Statistics and Analytical Epidemiolog, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Josef Wolf
- Department of Data Management, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Johann Steinwider
- Department of Risk Assessment, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Johannes Lueckl
- Department of Statistics and Analytical Epidemiolog, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Bernhard Jank
- Department of Food Safety and Consumer Protection, Federal Ministry of Social Affairs, Health, Care and Consumer Protection, Radetzkystraße 2, 1030, Vienna, Austria.
| | - Ian Kopacka
- Department of Statistics and Analytical Epidemiolog, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| | - Elke Rauscher-Gabernig
- Department of Risk Assessment, Division of Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Spargelfeldstraße 191, 1220, Vienna, Austria.
| |
Collapse
|
9
|
Glutathione S-transferase is a good biomarker in acrylamide induced neurotoxicity and genotoxicity. Interdiscip Toxicol 2019; 11:115-121. [PMID: 31719782 PMCID: PMC6829684 DOI: 10.2478/intox-2018-0007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023] Open
Abstract
Glutathione S-transferases (GSTs) are major defence enzymes of the antioxidant enzymatic system. Cytosolic GSTs are more involved in the detoxification than mitochondrial and microsomal GSTs. GSTs are localized in the cerebellum and hippocampus of the rat brain. Acrylamide (AC) is a well assessed neurotoxin of both animals and humans and it produces skeletal muscle weakness and ataxia. AC is extensively used in several industries such as cosmetic, paper, textile, in ore processing, as soil conditioners, flocculants for waste water treatment and it is present in daily consumed food products, like potato chips, French fries, bread, breakfast cereals and beverages like coffee; it is detected on tobacco smoking. GST acts as a biomarker in response to acrylamide. AC can interact with DNA and therefore generate mutations. In rats, low level expression of glutathione S-trasferase (GST) decreases both memory and life span. The major aim of this review is to provide better information on the antioxidant role of GST against AC induced neurotoxicity and genotoxicity.
Collapse
|
10
|
Goudarzi M, Mombeini MA, Fatemi I, Aminzadeh A, Kalantari H, Nesari A, Najafzadehvarzi H, Mehrzadi S. Neuroprotective effects of Ellagic acid against acrylamide-induced neurotoxicity in rats. Neurol Res 2019; 41:419-428. [DOI: 10.1080/01616412.2019.1576319] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Mombeini
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iman Fatemi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azadeh Aminzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Heibatullah Kalantari
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Nesari
- Department of Physiology, Faculty of Medicine, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Najafzadehvarzi
- Cellular and molecular biology research center, Health research Institute, Department of Pharmacology, Faculty of Medicine, Babol University of Medical sciences, Babol, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Yan D, Yao J, Liu Y, Zhang X, Wang Y, Chen X, Liu L, Shi N, Yan H. Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: Suppression by curcumin. Brain Behav Immun 2018; 71:66-80. [PMID: 29704550 DOI: 10.1016/j.bbi.2018.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 01/24/2023] Open
Abstract
Acrylamide (ACR) is an axonal toxicant that produces peripheral neuropathy in laboratory animals and humans. Epidemiological study found that diet ACR exposure was associated with a mild cognitive decline in men. However, limited information is available as regards its potential and underlying mechanism to cause memory alterations. Curcumin is a polyphenol with neuroprotective and cognitive-enhancing properties. In this study, we aimed to investigate the mechanism of ACR-induced spatial memory impairment and the beneficial effect of curcumin. ACR exposure at 10 mg/kg/d for 7 weeks caused slight gait abnormality and spatial memory deficits, which was associated with an activation of glial cells, a reduction of phosphorylated cAMP response elements binding protein (P-CREB) and an aggregation of hyperphosphorylated tau including p-tau (Ser262), AT8 (p-tau Ser202/Thr205) and PHF1 (p-tau Ser396/404) in the hippocampus and cortex. ACR markedly regulate the expression of glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase-5 (cdk5) to accelerate tau hyperphosphorylation. ACR inhibited the protein phosphatase 2A (PP2A) and lysosomal protease cathepsin D to decrease the p-tau dephosphorylation and degradation. The P-CREB and brain derived neurotrophic factor (BDNF) were significantly decreased by ACR. The upstream signalings of P-CREB, extracellular signal-related kinase (ERK) and Akt were markedly inhibited. The protein kinase RNA-like endoplasmic reticulum kinase (PERK) -eukaryotic initiation factor-2α (eIF2α) - activating transcription factor 4 (ATF4) signaling which negatively regulate memory processes by suppressing CREB was activated by ACR. Curcumin alleviated ACR-induced spatial memory impairment through reversing tau abnormalities and P-CREB reduction in the hippocampus. These results offered deeper insight into the mechanisms of and presented a potential new treatment for ACR-induced neurotoxicity.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Jianling Yao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Ying Liu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Yiqi Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Xiaoyi Chen
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Nian Shi
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, PR China.
| |
Collapse
|
12
|
Dietary acrylamide exposure was associated with mild cognition decline among non-smoking Chinese elderly men. Sci Rep 2017; 7:6395. [PMID: 28743904 PMCID: PMC5527102 DOI: 10.1038/s41598-017-06813-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of the study is to explore the longitudinal association of dietary acrylamide exposure with cognitive performance in Chinese elderly. The analysis was conducted among 2534 non-smoking elderly men and women based on a prospective study, Mr. and Ms. OS Hong Kong. Dietary acrylamide intake was assessed by food frequency questionnaires with data on local food contamination, derived from the first Hong Kong Total Diet Study. Global cognitive function was assessed by Cantonese version of Mini-Mental State Exam (MMSE) at the baseline and the 4th year of follow-up. Multivariable-adjusted linear and logistic regression models were used to assess the associations of dietary acrylamide with MMSE score changes or risk of poor cognition. The results indicated that among men with MMSE ≥ 18, each one SD increase of acrylamide decreased MMSE score by 7.698% (95%CI: -14.943%, -0.452%; p = 0.037). Logistic regression revealed an increased risk of poor cognition (MMSE ≤ 26) in men with HR of 3.356 (1.064~10.591, p = 0.039). The association became non-significance after further adjustment for telomere length. No significant association was observed in women. Dietary acrylamide exposure was associated with a mild cognitive decline or increased risk of poor cognition over a 4-year period in non-smoking Chinese elderly men.
Collapse
|
13
|
|
14
|
Krishna G. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats. Neurotoxicol Teratol 2015; 49:49-58. [PMID: 25801384 DOI: 10.1016/j.ntt.2015.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/05/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against mitochondrial dysfunction induced by ACR in both milieus. Although the precise mechanism/s by which IN supplements during pregnancy attenuate ACR induced neurotoxic impact merits further investigations, we hypothesize that it may mediate through enhanced enteric microbiota and abrogation of oxidative stress. Further, our study provides an experimental approach to explore the neuroprotective role of prebiotic oligosaccharides during pregnancy in reducing the adverse impact of developmental neurotoxicants.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore 570020, Karnataka, India
| |
Collapse
|
15
|
El-Bakry AM, Abdul-Hamid M, Allam A. Prenatal and perinatal exposure of acrylamide disrupts the development of spinal cord in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/wjns.2013.31003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
LoPachin RM, Gavin T. Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1650-7. [PMID: 23060388 PMCID: PMC3548275 DOI: 10.1289/ehp.1205432] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/24/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. OBJECTIVES In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. METHODS In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. DISCUSSION ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. CONCLUSIONS These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10467 , USA.
| | | |
Collapse
|
17
|
Structural and ultrastructural evidence of neurotoxic effects of fried potato chips on rat postnatal development. Nutrition 2012; 27:1066-75. [PMID: 21907898 DOI: 10.1016/j.nut.2011.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Acrylamide (ACR), a proved rodent carcinogen and neurotoxic agent, is present in significant quantities in commonly consumed foods such as fried potato chips (FPC) and French fries, raising a health concern worldwide. We investigated and compared the neurotoxic effects of ACR and FPC on postnatal development. METHODS Female rats were treated with ACR (30 mg/kg of body weight), fed a diet containing approximately 30% of FPC during pregnancy, or fed a standard diet (control) and their offspring were examined. RESULTS Female rats treated with ACR or fed a diet containing FPC during pregnancy gave birth to litters with delayed growth and decreased body and brain weights. Light microscopic studies of the cerebellar cortex of treated animals revealed drastic decreases in Purkinje cells and internal granular layers. Different patterns of cell death were detected in Purkinje cells and neurons in the brains of pups born to treated mothers. Ultrastructural analysis of Purkinje cells revealed changes in the endoplasmic reticulum, loss of the normal arrangement of polyribosomes, swollen mitochondria with abnormally differentiated cristae, and an abnormal Golgi apparatus. The gastrocnemius muscle in the ACR and FPC groups showed extensive degeneration of myofibrils as evidenced by poorly differentiated A, H, and Z bands. CONCLUSION The present study reveals for the first time that rat fetal exposure to ACR, as a pure compound or from a maternal diet of FPC, causes cerebellar cortical defects and myodegeneration of the gastrocnemius muscle during the postnatal development of pups. These results warrant a systematic study of the health effects of the consumption of FPC and French fries in the general population.
Collapse
|