1
|
Kudryashev JA, Madias MI, Kandell RM, Lin QX, Kwon EJ. An Activity-Based Nanosensor for Minimally-Invasive Measurement of Protease Activity in Traumatic Brain Injury. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2300218. [PMID: 37873031 PMCID: PMC10586543 DOI: 10.1002/adfm.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 10/25/2023]
Abstract
Current screening and diagnostic tools for traumatic brain injury (TBI) have limitations in sensitivity and prognostication. Aberrant protease activity is a central process that drives disease progression in TBI and is associated with worsened prognosis; thus direct measurements of protease activity could provide more diagnostic information. In this study, a nanosensor is engineered to release a measurable signal into the blood and urine in response to activity from the TBI-associated protease calpain. Readouts from the nanosensor were designed to be compatible with ELISA and lateral flow assays, clinically-relevant assay modalities. In a mouse model of TBI, the nanosensor sensitivity is enhanced when ligands that target hyaluronic acid are added. In evaluation of mice with mild or severe injuries, the nanosensor identifies mild TBI with a higher sensitivity than the biomarker GFAP. This nanosensor technology allows for measurement of TBI-associated proteases without the need to directly access brain tissue, and has the potential to complement existing TBI diagnostic tools.
Collapse
Affiliation(s)
- Julia A Kudryashev
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Marianne I Madias
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Rebecca M Kandell
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Queenie X Lin
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ester J Kwon
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Barta P, Nachtigal P, Maixnerova J, Zemankova L, Trejtnar F. Validation of Freshly Isolated Rat Renal Cells as a Tool for Preclinical Assessment of Radiolabeled Receptor-Specific Peptide Uptake in the Kidney. Pharmaceuticals (Basel) 2023; 16:ph16050696. [PMID: 37242479 DOI: 10.3390/ph16050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The synthetic analogs of regulatory peptides radiolabeled with adequate radionuclides are perspective tools in nuclear medicine. However, undesirable uptake and retention in the kidney limit their application. Specific in vitro methods are used to evaluate undesirable renal accumulation. Therefore, we investigated the usefulness of freshly isolated rat renal cells for evaluating renal cellular uptake of receptor-specific peptide analogs. Special attention was given to megalin as this transport system is an important contributor to the active renal uptake of the peptides. Freshly isolated renal cells were obtained from native rat kidneys by the collagenase method. Compounds with known accumulation in renal cells were used to verify the viability of cellular transport systems. Megalin expressions in isolated rat renal cells were compared to two other potential renal cell models by Western blotting. Specific tubular cell markers were used to confirm the presence of proximal tubular cells expressing megalin in isolated rat renal cell preparations by immunohistochemistry. Colocalization experiments on isolated rat kidney cells confirmed the presence of proximal tubular cells bearing megalin in preparations. The applicability of the method was tested by an accumulation study with several analogs of somatostatin and gastrin labeled with indium-111 or lutetium-177. Therefore, isolated rat renal cells may be an effective screening tool for in vitro analyses of renal uptake and comparative renal accumulation studies of radiolabeled peptides or other radiolabeled compounds with potential nephrotoxicity.
Collapse
Affiliation(s)
- Pavel Barta
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Lenka Zemankova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Sex-based differences in nuclear medicine imaging and therapy. Eur J Nucl Med Mol Imaging 2023; 50:971-974. [PMID: 36633615 DOI: 10.1007/s00259-023-06113-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
|
4
|
Kwon D, Zhang Z, Zeisler J, Kuo HT, Lin KS, Benard F. Reducing the Kidney Uptake of High Contrast CXCR4 PET Imaging Agents via Linker Modifications. Pharmaceutics 2022; 14:pharmaceutics14071502. [PMID: 35890397 PMCID: PMC9316317 DOI: 10.3390/pharmaceutics14071502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Purpose: The C-X-C chemokine receptor 4 (CXCR4) is highly expressed in many subtypes of cancers, notably in several kidney-based malignancies. We synthesized, labeled, and assessed a series of radiotracers based on a previous high contrast PET imaging radiopharmaceutical [68Ga]Ga-BL02, with modifications to its linker and metal chelator, in order to improve its tumor-to-kidney contrast ratio. Methods: Based on the design of BL02, a piperidine-based cationic linker (BL06) and several anionic linkers (tri-Aad (BL17); tri-D-Glu (BL20); tri-Asp (BL25); and tri-cysteic acid (BL31)) were substituted for the triglutamate linker. Additionally, the DOTA chelator was swapped for a DOTAGA chelator (BL30). Each radiotracer was labeled with 68Ga and evaluated in CXCR4-expressing Daudi xenograft mice with biodistribution and/or PET imaging studies. Results: Of all the evaluated radiotracers, [68Ga]Ga-BL31 showed the most promising biodistribution profile, with a lower kidney uptake compared to [68Ga]Ga-BL02, while retaining the high imaging contrast capabilities of [68Ga]Ga-BL02. [68Ga]Ga-BL31 also compared favorably to [68Ga]Ga-Pentixafor, with superior imaging contrast in all non-target organs. The other anionic linker-based radiotracers showed either equivocal or worse contrast ratios compared to [68Ga]Ga-BL02; however, [68Ga]Ga-BL25 also showed lower kidney uptake, as compared to that of [68Ga]Ga-BL02. Meanwhile, [68Ga]Ga-BL06 had high non-target organ uptake and relatively lower tumor uptake, while [68Ga]Ga-BL30 showed significantly increased kidney uptake and similar tumor uptake values. Conclusions: [68Ga]Ga-BL31 is an optimized CXCR4-targeting radiopharmaceutical with lower kidney retention that has clinical potential for PET imaging and radioligand therapy.
Collapse
Affiliation(s)
- Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Francois Benard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (Z.Z.); (J.Z.); (H.-T.K.); (K.-S.L.)
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence: ; Tel.: +1-604-675-8206
| |
Collapse
|
5
|
Fan W, Zhang W, Alshehri S, Garrison JC. Examination of the impact molecular charge has on NTSR1-targeted agents incorporated with cysteine protease inhibitors. Eur J Med Chem 2022; 234:114241. [PMID: 35306289 PMCID: PMC9007894 DOI: 10.1016/j.ejmech.2022.114241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023]
Abstract
Our laboratory has previously reported a strategy of employing cysteine cathepsin (CC) inhibitors as adduct forming, trapping agents to extend the tumor residence time of neurotensin receptor subtype 1 (NTSR1)-targeted radiopharmaceuticals. As a follow-up, we herein report a small library of CC trapping agent (CCTA)-incorporated, NTSR1-targeted conjugates with structural modifications that reduce the number of charged functional groups for both the CCTA and the peptide targeting sequence. These modifications were pursued to reduce the renal uptake and increase the translational potential of the CCTA-incorporated, NTSR1-targeted agents as radiotherapeutics. The biological performance of these constructs was examined using a battery of in vitro and in vivo studies employing the NTSR1-positive HT-29 human colon cancer cell line as our model. In vitro studies confirmed the ability of these constructs to target the NTSR1 and efficiently form intracellular adducts with cysteine proteases. Biodistribution studies using an HT-29 xenograft mouse model revealed that truncation (removal of Lys6-Pro7) of the NTSR1-targeted peptide (177Lu-NE2a) had the greatest (3.7-fold) effect at lowering renal recognition/uptake relative to our previously reported construct. Other charge-reducing modifications to the CCTA resulted in unexpected increases in renal uptake. All of the constructs demonstrated similar levels of in vivo NTSR1-positive tumor targeting with the highest tumor residualization resulting from the construct containing the zwitterionic CCTA (177Lu-NE2a). In vivo adduct formation of the conjugates was confirmed using autoradiographic SDS-PAGE analysis.
Collapse
Affiliation(s)
- Wei Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sameer Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jered C. Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198, United States,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198, United States,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68105, United States,Corresponding author: Tel: +01 4025593453,
| |
Collapse
|
6
|
Therapeutic efficacy of heterogeneously distributed radiolabelled peptides: Influence of radionuclide choice. Phys Med 2022; 96:90-100. [DOI: 10.1016/j.ejmp.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
|
7
|
Gastrin, via activation of PPARα, protects the kidney against hypertensive injury. Clin Sci (Lond) 2021; 135:409-427. [PMID: 33458737 DOI: 10.1042/cs20201340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Hypertensive nephropathy (HN) is a common cause of end-stage renal disease with renal fibrosis; chronic kidney disease is associated with elevated serum gastrin. However, the relationship between gastrin and renal fibrosis in HN is still unknown. We, now, report that mice with angiotensin II (Ang II)-induced HN had increased renal cholecystokinin receptor B (CCKBR) expression. Knockout of CCKBR in mice aggravated, while long-term subcutaneous infusion of gastrin ameliorated the renal injury and interstitial fibrosis in HN and unilateral ureteral obstruction (UUO). The protective effects of gastrin on renal fibrosis can be independent of its regulation of blood pressure, because in UUO, gastrin decreased renal fibrosis without affecting blood pressure. Gastrin treatment decreased Ang II-induced renal tubule cell apoptosis, reversed Ang II-mediated inhibition of macrophage efferocytosis, and reduced renal inflammation. A screening of the regulatory factors of efferocytosis showed involvement of peroxisome proliferator-activated receptor α (PPAR-α). Knockdown of PPAR-α by shRNA blocked the anti-fibrotic effect of gastrin in vitro in mouse renal proximal tubule cells and macrophages. Immunofluorescence microscopy, Western blotting, luciferase reporter, and Cut&tag-qPCR analyses showed that CCKBR may be a transcription factor of PPAR-α, because gastrin treatment induced CCKBR translocation from cytosol to nucleus, binding to the PPAR-α promoter region, and increasing PPAR-α gene transcription. In conclusion, gastrin protects against HN by normalizing blood pressure, decreasing renal tubule cell apoptosis, and increasing macrophage efferocytosis. Gastrin-mediated CCKBR nuclear translocation may make it act as a transcription factor of PPAR-α, which is a novel signaling pathway. Gastrin may be a new potential drug for HN therapy.
Collapse
|
8
|
Kaeppeli SAM, Jodal A, Gotthardt M, Schibli R, Béhé M. Exendin-4 Derivatives with an Albumin-Binding Moiety Show Decreased Renal Retention and Improved GLP-1 Receptor Targeting. Mol Pharm 2019; 16:3760-3769. [DOI: 10.1021/acs.molpharmaceut.9b00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Simon A. M. Kaeppeli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Andreas Jodal
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen 6525, The Netherlands
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen 5232, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8092, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen 5232, Switzerland
| |
Collapse
|
9
|
Fan W, Zhang W, Alshehri S, Neeley TR, Garrison JC. Enhanced tumor retention of NTSR1-targeted agents by employing a hydrophilic cysteine cathepsin inhibitor. Eur J Med Chem 2019; 177:386-400. [PMID: 31158752 DOI: 10.1016/j.ejmech.2019.05.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/09/2023]
Abstract
We explored the approach of using an analog of E-64, a well-known and hydrophilic cysteine cathepsin (CC) inhibitor, as a potent cysteine cathepsin-trapping agent (CCTA) to improve the tumor retention of low-molecular-weight, receptor-targeted radiopharmaceuticals. The synthesized hydrophilic CCTA-incorporated, NTSR1-targeted agents demonstrated a substantial increase in cellular retention upon uptake into the NTRS1-positive HT-29 human colon cancer cell line. Similarly, biodistribution studies using HT-29 xenograft mice revealed a significant and substantial increase in tumor retention for the CCTA-incorporated, NTSR1-targeted agent. The intracellular trapping mechanism of the CCTA-incorporated agents by macromolecular adduct formation was confirmed using multiple in vitro and in vivo techniques. Furthermore, utilization of the more hydrophilic CCTA greatly increased the hydrophilicity of the resulting NTSR1-targeted constructs leading to substantial decreases in most non-target tissues in contrast to our previously reported dipeptidyl acyloxymethyl ketone (AOMK) constructs. This work further confirms that the CCTA trapping approach can make significant improvements in the clinical potential of NTSR1-and other receptor-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Wei Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Sameer Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Trey R Neeley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, United States; Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, United States; Eppley Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198, United States.
| |
Collapse
|
10
|
Andersson CK, Shubbar E, Schüler E, Åkerström B, Gram M, Forssell-Aronsson EB. Recombinant α 1-Microglobulin Is a Potential Kidney Protector in 177Lu-Octreotate Treatment of Neuroendocrine Tumors. J Nucl Med 2019; 60:1600-1604. [PMID: 30926650 DOI: 10.2967/jnumed.118.225243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/19/2019] [Indexed: 12/30/2022] Open
Abstract
Treatment of neuroendocrine tumors with 177Lu-octreotate results in prolonged survival and improved quality of life for the patient. However, the treatment is today limited by side effects on kidney and bone marrow, and complete tumor remission is rarely seen. A possible way to minimize dose-limiting toxicity and to optimize this treatment method is to use radioprotectors in conjunction with radiotherapy. A recombinant form of α1-microglobulin (rA1M) was recently shown to preserve kidney structure and function after 177Lu-octreotate injection in mice and was suggested as a radioprotector in peptide receptor radionuclide therapy. The aims of this work were to investigate the influence of rA1M on the in vivo biokinetics of 177Lu-octreotate, with a focus on tumor tissue, and to study the impact of rA1M on the therapeutic response in tumor tissue subjected to 177Lu-octreotate treatment. Methods: The biodistribution of 177Lu-octreotate was examined in BALB/c nude mice with GOT2 tumors 1-168 h after injection with either 177Lu-octreotate or coadministration of 177Lu-octreotate and rA1M. The effects of rA1M on the tumor response after 177Lu-octreotate treatment were studied in BALB/c nude mice with GOT1 tumors. Three groups of mice were administered rA1M, 177Lu-octreotate, or both. Another group served as untreated controls. Tumor volume was measured to follow the treatment effects. Results: No statistically significant difference in biodistribution of 177Lu was observed between the groups receiving 177Lu-octreotate or coinjection of 177Lu-octreotate and rA1M. The therapy study showed a decrease in mean tumor volume during the first 2 wk for both the 177Lu-octreotate group and the coadministration group, followed by tumor regrowth. No statistically significant difference between the groups was found. Conclusion: rA1M did not negatively impact absorbed dose to tumor or therapeutic response in combination with 177Lu-octreotate and may be a promising kidney protector during 177Lu-octreotate treatment of patients with neuroendocrine tumors.
Collapse
Affiliation(s)
- Charlotte K Andersson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Emman Shubbar
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Emil Schüler
- Department of Radiation Oncology, Stanford School of Medicine, Stanford University, Stanford, California
| | - Bo Åkerström
- Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; and
| | - Magnus Gram
- Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; and.,A1M Pharma AB, Lund, Sweden
| | - Eva B Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Synthesis and preclinical evaluation of the 177Lu-DOTA-PSMA(inhibitor)-Lys3-bombesin heterodimer designed as a radiotheranostic probe for prostate cancer. Nucl Med Commun 2019; 40:278-286. [PMID: 30763290 DOI: 10.1097/mnm.0000000000000966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKROUND Human tumors show intrinsic heterogeneity and changes in phenotype during disease progression, which implies different expression levels of cell surface receptors. The research on new heterodimeric lutetium-177 (Lu)-radiopharmaceuticals interacting with two different targets on tumor cells is a strategy for improvement of radiotheranostic performance. This study aimed to synthesize and characterize the Lu-DOTA-PSMA(inhibitor)-Lys-bombesin (Lu-DOTA-iPSMA-Lys-BN) heterodimer and to evaluate its potential to target prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPr) overexpressed in prostate cancer. METHODS The heterodimeric conjugate was synthesized and characterized by infrarred, mass, and H-NMR spectroscopies. The ligand was labeled with Lu and the radiochemical purity was assessed by radio-high-performance liquid chromatography. PSMA/GRPr affinity and the heterobivalent effect on cell viability were evaluated in LNCaP and PC3 prostate cancer cell lines. The biodistribution profile (3 and 96 h) was assessed in athymic mice with induced prostate tumors. Using pulmonary LNCaP (PSMA-positive) and PC3 (GRPr-negative) micrometastasis models, the influence of heterobivalency and affinity on tumor uptake was quantified (micro-SPECT/CT). RESULTS Lu-iPSMA-BN (radiochemical purity>98%) showed specific recognition for PSMA and GRPr (IC50=5.62 and 3.49 nmol/l, respectively) with a significant decrease in cell viability (10.15% of cell viability in LNCaP and 40.10% in PC3 at 48 h), as well as high LNCaP and PC3 tumor uptake (5.21 and 3.21% ID/g at 96 h, respectively). Micro-SPECT/CT imaging showed the heterodimer ability to target the tumors (SUVmax of 1.93±0.30 and 1.76±0.10 in LNCaP and PC3, respectively), possibly influenced by the heterobivalent effect. Lu-DOTA-iPSMA-Lys-BN showed suitable affinity for PSMA and GRPr. CONCLUSION The results warrant further preclinical studies to establish the Lu-radiotracer theranostic efficacy.
Collapse
|
12
|
Rousseau E, Lau J, Zhang Z, Uribe CF, Kuo HT, Zhang C, Zeisler J, Colpo N, Lin KS, Bénard F. Effects of adding an albumin binder chain on [177Lu]Lu-DOTATATE. Nucl Med Biol 2018; 66:10-17. [DOI: 10.1016/j.nucmedbio.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
|
13
|
Maschauer S, Prante O. Radiopharmaceuticals for imaging and endoradiotherapy of neurotensin receptor-positive tumors. J Labelled Comp Radiopharm 2018; 61:309-325. [DOI: 10.1002/jlcr.3581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Simone Maschauer
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine; Friedrich Alexander University Erlangen-Nürnberg (FAU); Erlangen Germany
| | - Olaf Prante
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine; Friedrich Alexander University Erlangen-Nürnberg (FAU); Erlangen Germany
| |
Collapse
|
14
|
The Effect of Salt Intake and Potassium Supplementation on Serum Gastrin Levels in Chinese Adults: A Randomized Trial. Nutrients 2017; 9:nu9040389. [PMID: 28420122 PMCID: PMC5409728 DOI: 10.3390/nu9040389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/31/2017] [Accepted: 04/13/2017] [Indexed: 01/01/2023] Open
Abstract
Excess dietary salt is strongly correlated with cardiovascular disease, morbidity, and mortality. Conversely, potassium likely elicits favorable effects against cardiovascular disorders. Gastrin, which is produced by the G-cells of the stomach and duodenum, can increase renal sodium excretion and regulate blood pressure by acting on the cholecystokinin B receptor. The aim of our study was to assess the effects of altered salt and potassium supplementation on serum gastrin levels in humans. A total of 44 subjects (38–65 years old) were selected from a rural community in northern China. All subjects were sequentially maintained on a relatively low-salt diet for 7 days (3.0 g/day of NaCl), a high-salt diet for 7 days (18.0 g/day of NaCl), and then a high-salt diet supplemented with potassium for another 7 days (18.0 g/day of NaCl + 4.5 g/day of KCl). The high-salt intake significantly increased serum gastrin levels (15.3 ± 0.3 vs. 17.6 ± 0.3 pmol/L). This phenomenon was alleviated through potassium supplementation (17.6 ± 0.3 vs. 16.5 ± 0.4 pmol/L). Further analyses revealed that serum gastrin was positively correlated with 24 h urinary sodium excretion (r = 0.476, p < 0.001). By contrast, gastrin level was negatively correlated with blood pressure in all dietary interventions (r = −0.188, p = 0.031). The present study indicated that variations in dietary salt and potassium supplementation affected the serum gastrin concentrations in the Chinese subjects.
Collapse
|
15
|
Affiliation(s)
- Jian Yang
- Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Jiang X, Zhang Y, Yang Y, Yang J, Asico LD, Chen W, Felder RA, Armando I, Jose PA, Yang Z. Gastrin stimulates renal dopamine production by increasing the renal tubular uptake of l-DOPA. Am J Physiol Endocrinol Metab 2017; 312:E1-E10. [PMID: 27780818 PMCID: PMC5283882 DOI: 10.1152/ajpendo.00116.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/18/2016] [Accepted: 10/23/2016] [Indexed: 01/02/2023]
Abstract
Gastrin is a peptide hormone that is involved in the regulation of sodium balance and blood pressure. Dopamine, which is also involved in the regulation of sodium balance and blood pressure, directly or indirectly interacts with other blood pressure-regulating hormones, including gastrin. This study aimed to determine the mechanisms of the interaction between gastrin and dopamine and tested the hypothesis that gastrin produced in the kidney increases renal dopamine production to keep blood pressure within the normal range. We show that in human and mouse renal proximal tubule cells (hRPTCs and mRPTCs, respectively), gastrin stimulates renal dopamine production by increasing the cellular uptake of l-DOPA via the l-type amino acid transporter (LAT) at the plasma membrane. The uptake of l-DOPA in RPTCs from C57Bl/6J mice is lower than in RPTCs from normotensive humans. l-DOPA uptake in renal cortical slices is also lower in salt-sensitive C57Bl/6J than in salt-resistant BALB/c mice. The deficient renal cortical uptake of l-DOPA in C57Bl/6J mice may be due to decreased LAT-1 activity that is related to its decreased expression at the plasma membrane, relative to BALB/c mice. We also show that renal-selective silencing of Gast by the renal subcapsular injection of Gast siRNA in BALB/c mice decreases renal dopamine production and increases blood pressure. These results highlight the importance of renal gastrin in stimulating renal dopamine production, which may give a new perspective in the prevention and treatment of hypertension.
Collapse
MESH Headings
- Amino Acid Transport System y+L/drug effects
- Amino Acid Transport System y+L/metabolism
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cells, Cultured
- Dopamine/biosynthesis
- Dopamine/urine
- Down-Regulation
- Gastrins/genetics
- Gastrins/metabolism
- Gastrins/pharmacology
- Gene Silencing
- Humans
- Immunoblotting
- Kidney/drug effects
- Kidney/metabolism
- Kidney Cortex/drug effects
- Kidney Cortex/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Levodopa/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- RNA, Small Interfering
- Real-Time Polymerase Chain Reaction
- Receptor, Cholecystokinin B/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Xiaoliang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical, Beijing, China
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yanrong Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical, Beijing, China
| | - Yu Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Jian Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;
- Department of Cardiology, Daping Hospital, The Third Military Medical University and Chongqing Institute of Cardiology, Chongqing, China
| | - Laureano D Asico
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical, Beijing, China
| | - Robin A Felder
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Medicine, Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC; and
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical, Beijing, China;
| |
Collapse
|
17
|
Kaloudi A, Nock BA, Lymperis E, Krenning EP, de Jong M, Maina T. Improving the In Vivo Profile of Minigastrin Radiotracers: A Comparative Study Involving the Neutral Endopeptidase Inhibitor Phosphoramidon. Cancer Biother Radiopharm 2016; 31:20-8. [PMID: 26844849 DOI: 10.1089/cbr.2015.1935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Minigastrin radiotracers, such as [(111)In-DOTA]MG0 ([(111)In-DOTA-DGlu(1)]minigastrin), have been considered for diagnostic imaging and radionuclide therapy of CCK2R-positive human tumors, such as medullary thyroid carcinoma. However, the high kidney retention assigned to the pentaGlu(2-6) repeat in the peptide sequence has compromised their clinical applicability. On the other hand, truncated des(Glu)(2-6)-analogs, such as [(111)In-DOTA]MG11 ([(111)In-DOTA-DGlu(10),desGlu(2-6)]minigastrin), despite their low renal uptake, show poor bioavailability and tumor targeting. [(111)In]CP04 ([(111)In-DOTA-DGlu(1-6)]minigastrin) acquired by Glu(2-6)/DGlu(2-6) substitution showed promising tumor-to-kidney ratios in rodents. In the present study, we compare the biological profiles of [(111)In]CP04, [(111)In-DOTA]MG11, and [(111)In-DOTA]MG0 during in situ neutral endopeptidase (NEP) inhibition, recently shown to improve the bioavailability of several peptide radiotracers. After coinjection of the NEP inhibitor, phosphoramidon (PA), the stability of [(111)In]CP04 and [(111)In-DOTA]MG0 in peripheral mouse blood increased, with an exceptional >14-fold improvement monitored for [(111)In-DOTA]MG11. In line with these findings, PA treatment increased the uptake of [(111)In]CP04 (8.5 ± 0.4%ID/g to 16.0 ± 2.3%ID/g) and [(111)In-DOTA]MG0 (11.9 ± 2.2%ID/g to 17.2 ± 0.9%ID/g) in A431-CCK2R(+) tumors at 4 hours postinjection, whereas the respective increase for [(111)In-DOTA]MG11 was >6-fold (2.5 ± 0.9%ID/g to 15.1 ± 1.7%ID/g). Interestingly, kidney uptake remained lowest for [(111)In-DOTA]MG11, but unfavorably increased by PA treatment for [(111)In-DOTA]MG0. Thus, overall, the most favorable in vivo profile was displayed by [(111)In-DOTA]MG11 during NEP inhibition, highlighting the need to validate this promising concept in the clinic.
Collapse
Affiliation(s)
- Aikaterini Kaloudi
- 1 Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos ," Athens, Greece
| | - Berthold A Nock
- 1 Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos ," Athens, Greece
| | - Emmanouil Lymperis
- 1 Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos ," Athens, Greece
| | - Eric P Krenning
- 2 Department of Nuclear Medicine, Erasmus MC , Rotterdam, The Netherlands
| | - Marion de Jong
- 2 Department of Nuclear Medicine, Erasmus MC , Rotterdam, The Netherlands .,3 Department of Radiology, Erasmus MC , Rotterdam, The Netherlands
| | - Theodosia Maina
- 1 Molecular Radiopharmacy, INRASTES, National Center for Scientific Research "Demokritos ," Athens, Greece
| |
Collapse
|
18
|
Jia Y, Zhang W, Fan W, Brusnahan S, Garrison J. Investigation of the Biological Impact of Charge Distribution on a NTR1-Targeted Peptide. Bioconjug Chem 2016; 27:2658-2668. [PMID: 27661393 DOI: 10.1021/acs.bioconjchem.6b00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurotensin receptor 1 (NTR1) has been shown to be a promising target, due to its increased level of expression relative to normal tissue, for pancreatic and colon cancers. This has prompted the development of a variety of NTR1-targeted radiopharmaceuticals, based on the neurotensin (NT) peptide, for diagnostic and radiotherapeutic applications. A major obstacle for the clinical translation of NTR1-targeted radiotherapeutics would likely be nephrotoxicity due to the high levels of kidney retention. It is well-known that for many peptide-based agents, renal uptake is influenced by the overall molecular charge. Herein, we investigated the effect of charge distribution on receptor binding and kidney retention. Using the [(N-α-Me)Arg8,Dmt11,Tle12]NT(6-13) targeting vector, three peptides (177Lu-K2, 177Lu-K4, and 177Lu-K6), with the Lys moved closer (K6) or further away (K2) from the pharmacophore, were synthesized. In vitro competitive binding, internalization and efflux, and confocal microscopy studies were conducted using the NTR1-positive HT-29, human colon cancer cell line. The 177/natLu-K6 demonstrated the highest binding affinity (21.8 ± 1.2 nM) and the highest level of internalization (4.06% ± 0.20% of the total added amount). In vivo biodistribution, autoradiography, and metabolic studies of 177Lu-radiolabeled K2, K4, and K6 were examined using CF-1 mice. 177Lu-K4 and 177Lu-K6 gave the highest levels of in vivo uptake in NTR1-positive tissues, whereas 177Lu-K2 yielded nearly 2-fold higher renal uptake relative to the other radioconjugates. In conclusion, the position of the Lys (positively charged amino acid) influences the receptor binding, internalization, in vivo NTR1-targeting efficacy, and kidney retention profile of the radioconjugates. In addition, we have found that hydrophobicity likely play a role in the unique biodistribution profiles of these agents.
Collapse
Affiliation(s)
- Yinnong Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Wei Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Susan Brusnahan
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Jered Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| |
Collapse
|
19
|
Liolios CC, Xanthopoulos S, Loudos G, Varvarigou AD, Sivolapenko GB. Co-administration of succinylated gelatine with a (99m)Tc-bombesin analogue, effects on pharmacokinetics and tumor uptake. Nucl Med Biol 2016; 43:625-34. [PMID: 27497631 DOI: 10.1016/j.nucmedbio.2016.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/22/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
The bombesin analogue, [(99m)Tc-GGC]-(Ornithine)3-BN(2-14), (99m)Tc-BN-O, targeting gastrin releasing peptide receptors (GRPrs) on the surface of tumors, was pre-clinically investigated as potential imaging agent for single photon emission computed tomography (SPECT). In addition, the improvement of its pharmacokinetic profile (PK) was investigated through the co-administration of a succinylated gelatin plasma expander (Gelofusine), aiming to reduce its kidney accumulation and enhance its tumor-to-normal tissue contrast ratios. Biodistribution data were collected from normal mice and rats, and PC-3 tumor bearing mice, in reference to its PK, metabolism and tumor uptake. Imaging data were also collected from PC-3 tumor bearing mice. Biodistribution and imaging experiments showed that (99m)Tc-BN-O was able to efficiently localize the tumor (5.23 and 7.00% ID/g at 30 and 60min post injection, respectively), while at the same time it was rapidly cleared from the circulation through the kidneys. HPLC analysis of kidney samples, collected at 60min p.i. from normal mice and rats, showed that the majority of radioactivity detected was due to intact peptide i.e. 56% for mice and 73% for rats. Co-administration of (99m)Tc-BN-O with Gelo resulted in the reduction of kidney uptake in both animal models. The integrated area under the curve (AUC30-60 min) from the concentration-time plots of kidneys was decreased in both mice and rats by 25 and 50%, respectively. In PC-3 tumor bearing mice, an increase of tumor uptake (AUCtumor increased by 69%) was also observed with Gelo. An improvement in tumor-to-blood and tumor-to-normal tissue ratios was noted in all cases with the exception of the pancreas, which normally expresses GRPr. The results of this preclinical study may also be extended to other similar peptides, which are utilized in prostate cancer imaging and present similar PK profile.
Collapse
Affiliation(s)
- Christos C Liolios
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (I.N.RA.S.T.E.S.), NCSR "Demokritos", 15310, Athens, Greece; Laboratory of Pharmacokinetics, Department of Pharmacy, University of Patras, 26504, Patras, Greece; Department of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| | - Stavros Xanthopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (I.N.RA.S.T.E.S.), NCSR "Demokritos", 15310, Athens, Greece
| | - George Loudos
- Deparment of Medical Instruments Technology, Technological Educational Institute, 12210, Athens, Greece
| | - Alexandra D Varvarigou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (I.N.RA.S.T.E.S.), NCSR "Demokritos", 15310, Athens, Greece
| | - Gregory B Sivolapenko
- Laboratory of Pharmacokinetics, Department of Pharmacy, University of Patras, 26504, Patras, Greece
| |
Collapse
|
20
|
Affiliation(s)
- Pedro A Jose
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.).
| | - Robin A Felder
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Zhiwei Yang
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Chunyu Zeng
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Gilbert M Eisner
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Hypertension, which is present in about one quarter of the world's population, is responsible for about 41% of the number one cause of death - cardiovascular disease. Not included in these statistics is the effect of sodium intake on blood pressure, even though an increase or a marked decrease in sodium intake can increase blood pressure. This review deals with the interaction of gut microbiota and the kidney with genetics and epigenetics in the regulation of blood pressure and salt sensitivity. RECENT FINDINGS The abundance of the gut microbes, Firmicutes and Bacteroidetes, is associated with increased blood pressure in several models of hypertension, including the spontaneously hypertensive and Dahl salt-sensitive rats. Decreasing gut microbiota by antibiotics can increase or decrease blood pressure that is influenced by genotype. The biological function of probiotics may also be a consequence of epigenetic modification, related, in part, to microRNA. Products of the fermentation of nutrients by gut microbiota can influence blood pressure by regulating expenditure of energy, intestinal metabolism of catecholamines, and gastrointestinal and renal ion transport, and thus, salt sensitivity. SUMMARY The beneficial or deleterious effect of gut microbiota on blood pressure is a consequence of several variables, including genetics, epigenetics, lifestyle, and intake of antibiotics. These variables may influence the ultimate level of blood pressure and control of hypertension.
Collapse
|
22
|
Epstein M, Lifschitz MD. The Unappreciated Role of Extrarenal and Gut Sensors in Modulating Renal Potassium Handling: Implications for Diagnosis of Dyskalemias and Interpreting Clinical Trials. Kidney Int Rep 2016; 1:43-56. [PMID: 29142913 PMCID: PMC5678840 DOI: 10.1016/j.ekir.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the classic and well-established "feedback control" of potassium balance, increasing investigative attention has focused on a novel and not widely recognized complementary regulatory paradigm for maintaining potassium homeostasis-the "feed-forward control" of potassium balance. This regulatory mechanism, initially defined in rumen, has recently been validated in normal human subjects. Studies are being conducted to determine the location for this putative potassium sensor and to evaluate potential signals, which might increase renal potassium excretion. Awareness of this more updated integrative control mechanism for potassium homeostasis is ever more relevant today, when the medical community is increasingly focused on the challenges of managing the hyperkalemia provoked by renin-angiotensin-aldosterone system inhibitors (RAASis). Recent studies have demonstrated a wide gap between RAASi prescribing guidelines and real-world experience and have highlighted that this gap is thought to be attributable in great part to hyperkalemia. Consequently we require a greater knowledge of the complexities of the regulatory mechanisms subserving potassium homeostasis. Sodium polystyrene sulfonate has long been the mainstay for treating hyperkalemia, but its administration is fraught with challenges related to patient discomfort and colonic necrosis. The current and imminent availability of newer potassium binders with better tolerability and more predictive dose-response potassium removal should enhance the management of hyperkalemia. Consequently it is essential to better understand the intricacies of mammalian colonic K+ handling. We discuss colonic transport of K+ and review evidence for potassium (BK) channels being responsible for increased stool K+ in patients with diseases such as ulcerative colitis.
Collapse
Affiliation(s)
- Murray Epstein
- Division of Nephrology and Hypertension, University of Miami, Miller School of Medicine, South Florida Veterans Affairs Foundation for Research and Education (SFVAFRE), Miami, Florida, USA
| | - Meyer D. Lifschitz
- Adult Nephrology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
23
|
Liu T, Konkalmatt PR, Yang Y, Jose PA. Gastrin decreases Na+,K+-ATPase activity via a PI 3-kinase- and PKC-dependent pathway in human renal proximal tubule cells. Am J Physiol Endocrinol Metab 2016; 310:E565-71. [PMID: 26786777 PMCID: PMC4824137 DOI: 10.1152/ajpendo.00360.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022]
Abstract
The natriuretic effect of gastrin suggests a role in the coordinated regulation of sodium balance by the gastrointestinal tract and the kidney. The renal molecular targets and signal transduction pathways for such an effect of gastrin are largely unknown. Recently, we reported that gastrin induces NHE3 phosphorylation and internalization via phosphatidylinositol (PI) 3-kinase and PKCα. In this study, we show that gastrin induced the phosphorylation of human Na(+),K(+)-ATPase at serine 16, resulting in its endocytosis via Rab5 and Rab7 endosomes. The gastrin-stimulated phosphorylation of Na(+),K(+)-ATPase was dependent on PI 3-kinase because the phosphorylation was blocked by the PI 3-kinase inhibitor wortmannin. The phosphorylation of Na(+),K(+)-ATPase was also blocked by chelerythrine, a pan-PKC inhibitor, Gö-6976, a conventional PKC (cPKC) inhibitor, and BAPTA-AM, an intracellular calcium chelator, suggesting the importance of cPKC and intracellular calcium in the gastrin signaling pathway. The gastrin-mediated phosphorylation of Na(+),K(+)-ATPase was also inhibited by U-73122, a phospholipase C (PLC) inhibitor. These results suggest that gastrin regulates sodium hydrogen exchanger and pump in renal proximal tubule cells at the apical and basolateral membranes.
Collapse
Affiliation(s)
- Tianbing Liu
- Center for Molecular Physiology Research, Children's Research Institute, Children's National Medical Center, Washington, DC
| | - Prasad R Konkalmatt
- Departments of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland; Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC; and
| | - Yu Yang
- Center for Molecular Physiology Research, Children's Research Institute, Children's National Medical Center, Washington, DC; Departments of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
24
|
Jose PA, Yang Z, Zeng C, Felder RA. The importance of the gastrorenal axis in the control of body sodium homeostasis. Exp Physiol 2016; 101:465-70. [PMID: 26854262 DOI: 10.1113/ep085286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the topic of this review? Sensing the amount of ingested sodium is one mechanism by which sodium balance is regulated. This review describes the role of gastrin in the cross-talk between the stomach and the kidney following the ingestion of sodium. What advances does it highlight? Neural mechanisms and several gut hormones, including cholecystokinin and uroguanylin, have been suggested to mediate the natriuresis after an oral sodium load. It is proposed that gastrin produced by G-cells via its receptor, cholecystokinin B receptor, interacts with renal D1 -like dopamine receptors to increase renal sodium excretion. Hypertension develops with chronically increased sodium intake when sodium that accumulates in the body can no longer be sequestered, extracellular fluid volume is expanded, and compensatory neural, hormonal and pressure-natriuresis mechanisms fail. Sensing the amount of ingested sodium, by the stomach, is one mechanism by which sodium balance is regulated. The natriuresis following the ingestion of a certain amount of sodium may be due to an enterokine, gastrin, secreted by G-cells in the stomach and duodenum and released into the circulation. Circulating gastrin levels are 10- to 20-fold higher than those for cholecystokinin. Of all the gut hormones circulating in the plasma, gastrin is the one that is reabsorbed to the greatest extent by renal tubules. Gastrin, via its receptor, the cholecystokinin type B receptor (CCKBR), is natriuretic in mammals, including humans, by inhibition of renal sodium transport. Germline deletion of gastrin (Gast) or Cckbr gene in mice causes salt-sensitive hypertension. Selective silencing of Gast in the stomach and duodenum impairs the ability to excrete an oral sodium load and also increases blood pressure. Thus, the gastrorenal axis, mediated by gastrin, can complement pronatriuretic hormones, such as dopamine, to increase sodium excretion after an oral sodium load. These studies in mice may be translatable to humans because the chromosomal loci of CCKBR and GAST are linked to human essential hypertension. Understanding the role of genes in the regulation of renal function and blood pressure may lead to the tailoring of antihypertensive treatment based on genetic make-up.
Collapse
Affiliation(s)
- Pedro A Jose
- Department of Medicine, The George Washington University School of Medicine, Washington, DC, USA.,Department of Physiology, The George Washington University School of Medicine, Washington, DC, USA
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medicine Centre, Peking Union Medical College, Beijing, PR China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing 400042, PR China
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
25
|
Liolios C, Schäfer M, Haberkorn U, Eder M, Kopka K. Novel Bispecific PSMA/GRPr Targeting Radioligands with Optimized Pharmacokinetics for Improved PET Imaging of Prostate Cancer. Bioconjug Chem 2016; 27:737-51. [PMID: 26726823 DOI: 10.1021/acs.bioconjchem.5b00687] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new series of bispecific radioligands (BRLs) targeting prostate-specific membrane antigen (PSMA) and gastrin releasing peptide receptor (GRPr), both expressed on prostate cancer cells, was developed. Their design was based on the bombesin (BN) analogue, H2N-PEG2-[D-Tyr(6),β-Ala(11),Thi(13),Nle(14)]BN(6-14), which binds to GRPr with high affinity and specificity, and the peptidomimetic urea-based pseudoirreversible inhibitor of PSMA, Glu-ureido-Lys. The two pharmacophores were coupled through copper(I)-catalyzed azide-alkyne cycloaddition to the bis(tetrafluorophenyl) ester of the chelating agent HBED-CC via amino acid linkers made of positively charged His (H) and negatively charged Glu (E): -(HE)n- (n = 0-3). The BRLs were labeled with (68)Ga, and their preliminary pharmacological properties were evaluated in vitro (competitive and time kinetic binding assays) on prostate cancer (PC-3, LNCaP) and rat pancreatic (AR42J) cell lines and in vivo by biodistribution and small animal PET imaging studies in both normal and tumor-bearing mice. The IC50/Ki values determined for all BRLs essentially matched those of the respective monomers. The maximal cellular uptake of the BLRs was observed between 20 and 30 min. The BRLs showed a synergistic ability in vivo by targeting both PSMA (LNCaP) and GRPr (PC-3) positive tumors, whereas the charged -(HE)n- (n = 1-3) linkers significantly reduced the kidney and spleen uptake. The bispecific (PSMA and GRPr) targeting ability and optimized pharmacokinetics of the compounds developed in this study could lead to their future application in clinical practice as more sensitive radiotracers for noninvasive imaging of prostate cancer (PCa) by PET/CT and PET/MRI.
Collapse
Affiliation(s)
- C Liolios
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ) , 69120 Heidelberg, Germany
| | - M Schäfer
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ) , 69120 Heidelberg, Germany
| | - U Haberkorn
- Clinical Cooperation Unit Nuclear Medicine, University of Heidelberg , 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg, Germany
| | - M Eder
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ) , 69120 Heidelberg, Germany
| | - K Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ) , 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Jiang X, Chen W, Liu X, Wang Z, Liu Y, Felder RA, Gildea JJ, Jose PA, Qin C, Yang Z. The Synergistic Roles of Cholecystokinin B and Dopamine D5 Receptors on the Regulation of Renal Sodium Excretion. PLoS One 2016; 11:e0146641. [PMID: 26751218 PMCID: PMC4709046 DOI: 10.1371/journal.pone.0146641] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/21/2015] [Indexed: 01/07/2023] Open
Abstract
Renal dopamine D1-like receptors (D1R and D5R) and the gastrin receptor (CCKBR) are involved in the maintenance of sodium homeostasis. The D1R has been found to interact synergistically with CCKBR in renal proximal tubule (RPT) cells to promote natriuresis and diuresis. D5R, which has a higher affinity for dopamine than D1R, has some constitutive activity. Hence, we sought to investigate the interaction between D5R and CCKBR in the regulation of renal sodium excretion. In present study, we found D5R and CCKBR increase each other’s expression in a concentration- and time-dependent manner in the HK-2 cell, the specificity of which was verified in HEK293 cells heterologously expressing both human D5R and CCKBR and in RPT cells from a male normotensive human. The specificity of D5R in the D5R and CCKBR interaction was verified further using a selective D5R antagonist, LE-PM436. Also, D5R and CCKBR colocalize and co-immunoprecipitate in BALB/c mouse RPTs and human RPT cells. CCKBR protein expression in plasma membrane-enriched fractions of renal cortex (PMFs) is greater in D5R-/- mice than D5R+/+ littermates and D5R protein expression in PMFs is also greater in CCKBR-/- mice than CCKBR+/+ littermates. High salt diet, relative to normal salt diet, increased the expression of CCKBR and D5R proteins in PMFs. Disruption of CCKBR in mice caused hypertension and decreased sodium excretion. The natriuresis in salt-loaded BALB/c mice was decreased by YF476, a CCKBR antagonist and Sch23390, a D1R/D5R antagonist. Furthermore, the natriuresis caused by gastrin was blocked by Sch23390 while the natriuresis caused by fenoldopam, a D1R/D5R agonist, was blocked by YF476. Taken together, our findings indicate that CCKBR and D5R synergistically interact in the kidney, which may contribute to the maintenance of normal sodium balance following an increase in sodium intake.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
| | - Wei Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
| | - Xing Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
| | - Zihao Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
| | - Yunpeng Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
| | - Robin A. Felder
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - John J. Gildea
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Pedro A. Jose
- Division of Nephrology, Departments of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (PAJ); (CQ); (ZWY)
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
- * E-mail: (PAJ); (CQ); (ZWY)
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China
- CollaborativeInnovation Center for Cardiovascular Disorders, Beijing, P. R. China
- * E-mail: (PAJ); (CQ); (ZWY)
| |
Collapse
|
27
|
Potential Biomarkers for Radiation-Induced Renal Toxicity following 177Lu-Octreotate Administration in Mice. PLoS One 2015; 10:e0136204. [PMID: 26287527 PMCID: PMC4546116 DOI: 10.1371/journal.pone.0136204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022] Open
Abstract
The kidneys are one of the main dose-limiting organs in peptide receptor radionuclide therapy and due to large inter-individual variations in renal toxicity, biomarkers are urgently needed in order to optimize therapy and reduce renal tissue damage. The aim of this study was to investigate the transcriptional, functional, and morphological effects on renal tissue after 177Lu-octreotate administration in normal mice, and to identify biomarkers for radiation induced renal toxicity.
Collapse
|
28
|
Schüler E, Österlund A, Forssell-Aronsson E. The amount of injected 177Lu-octreotate strongly influences biodistribution and dosimetry in C57BL/6N mice. Acta Oncol 2015; 55:68-76. [PMID: 25813472 DOI: 10.3109/0284186x.2015.1027001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND (177)Lu-octreotate therapy has proven to give favorable results after treatment of patients with neuroendocrine tumors. Much focus has been on the binding and uptake of (177)Lu-octreotate in tumor tissue, but biodistribution properties in normal tissues is still not fully understood, and the effect of receptor saturation may be important. The aim of this study was to investigate the influence of the amount of (177)Lu-octreotate on the biodistribution of (177)Lu-octreotate in normal tissues in mice. MATERIAL AND METHODS C57BL/6N female mice were intravenously injected with 0.1-150 MBq (177)Lu-octreotate (0.039 μg peptide/MBq). The mice were killed 0.25 h to 14 days after injection by cardiac puncture under anesthesia. Activity concentration was determined in blood, bone marrow, kidneys, liver, lungs, pancreas, and spleen, and mean absorbed doses were calculated. RESULTS The activity concentration varied with time and amount of injected activity. At 4-8 h after injection, a local maximum in activity concentration was found for liver, lungs, pancreas, and spleen. With the exception for the lower injected activities (0.1-1 MBq), the overall highest uptake was found in the kidneys (%IA/g). Large variations were found and the activity concentration in kidneys was 11-23%IA/g at 4 h, and 0.22-1.9%IA/g at 7 days after injection. Furthermore, a clear reduction in activity concentration with increased injected activity was observed for lungs, pancreas and spleen. CONCLUSION The activity concentration in all tissues investigated was strongly influenced by the amount of (177)Lu-octreotate injected. Large differences in mean absorbed dose per unit injected activity were found between low (0.1-1 MBq, 0.0039-0.039 μg) and moderate amounts (5-45 MBq, 0.2-1.8 μg). Furthermore, the results clearly showed the need for better ways to estimate absorbed dose to bone marrow other than methods based on a single blood sample analysis. Since the absorbed dose to critical organs will limit the amount of (177)Lu-octreotate administered, these findings must be taken into consideration when optimizing this type of therapy.
Collapse
Affiliation(s)
- Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Andreas Österlund
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
29
|
The involvement of selected membrane transport mechanisms in the cellular uptake of 177Lu-labeled bombesin, somatostatin and gastrin analogues. Nucl Med Biol 2015; 42:1-7. [DOI: 10.1016/j.nucmedbio.2014.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 11/21/2022]
|
30
|
Distinct microRNA expression profiles in mouse renal cortical tissue after 177Lu-octreotate administration. PLoS One 2014; 9:e112645. [PMID: 25386939 PMCID: PMC4227842 DOI: 10.1371/journal.pone.0112645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
Aim The aim of this study was to investigate the variation of the miRNA expression levels in normal renal cortical tissue after 177Lu-octreotate administration, a radiopharmaceutical used for treatment of neuroendocrine cancers. Methods Female BALB/c nude mice were i.v. injected with 1.3, 3.6, 14, 45, or 140 MBq 177Lu-octreotate, while control animals received saline. The animals were killed at 24 h after injection and total RNA, including miRNA, was extracted from the renal cortical tissue and hybridized to the Mouse miRNA Oligo chip 4plex to identify differentially regulated miRNAs between exposed and control samples. Results In total, 57 specific miRNAs were differentially regulated in the exposed renal cortical tissues with 1, 29, 21, 27, and 31 miRNAs identified per dose-level (0.13, 0.34, 1.3, 4.3, and 13 Gy, respectively). No miRNAs were commonly regulated at all dose levels. miR-194, miR-107, miR-3090, and miR-3077 were commonly regulated at 0.34, 1.3, 4.3, and 13 Gy. Strong effects on cellular mechanisms ranging from immune response to p53 signaling and cancer-related pathways were observed at the highest absorbed dose. Thirty-nine of the 57 differentially regulated miRNAs identified in the present study have previously been associated with response to ionizing radiation, indicating common radiation responsive pathways. Conclusion In conclusion, the 177Lu-octreotate associated miRNA signatures were generally dose-specific, thereby illustrating transcriptional regulation of radiation responsive miRNAs. Taken together, these results imply the importance of miRNAs in early immunological responses in the kidneys following 177Lu-octreotate administration.
Collapse
|
31
|
Asti M, Iori M, Capponi PC, Atti G, Rubagotti S, Martin R, Brennauer A, Müller M, Bergmann R, Erba PA, Versari A. Influence of different chelators on the radiochemical properties of a 68-Gallium labelled bombesin analogue. Nucl Med Biol 2013; 41:24-35. [PMID: 24183610 DOI: 10.1016/j.nucmedbio.2013.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/05/2023]
Abstract
UNLABELLED The radiolabelled bombesin analogue AMBA shows high potential for diagnosis and treatment of prostate and breast cancer, but the influence of different chelators, which differ in terms of radiochemical reactivity and stability, have not been explored so far. In order to find the best suitable chelator for labelling of AMBA, we synthesized AMBA analogues linked to the most commonly used chelators DOTA, NOTA and NODAGA and compared their reactivity and stability after labelling with 68-Gallium. METHODS For the synthesis of DO3A-, NO2A- and NODAGA-AMBA, a solid-phase synthesis approach was used. The influence of concentration, pH and temperature on the radiolabelling was analysed. The in vitro stability of all complexes in saline, human serum, human whole blood and against transchelation and transmetallation was analysed. RESULTS The peptides were synthesised in high yield and purity. Purity and identity of products and impurities were confirmed using UHPLC coupled to ESI-MS. Radiolabelling of these peptides was optimal at elevated temperature, although room temperature labelling was reported previously for NOTA and NODAGA chelators. The highest reactivity was observed for NODAGA-AMBA. On preparation of NO2A-AMBA, the formation of a by-product was detected with HPLC. More detailed analysis revealed the formation of an isomer with the same mass to charge ratio which led to the conclusion that a coordination isomer was formed. All complexes showed high stability in saline, human serum or when challenged with DTPA, transferrin and varying metals (Fe(3+), Cu(2+), Zn(2+)). Conversely, the stability in human blood was low, and varying metabolites were detected and identified by ESI-MS. CONCLUSION All three precursors are available in high yields suitable for routine production. NODAGA-AMBA showed the most favoured features when labelled with 68-gallium, but a further comparison in vivo should be performed in order to confirm the superior features found in vitro.
Collapse
Affiliation(s)
- Mattia Asti
- Nuclear Medicine Unit, Oncology and Advanced Technologies Department, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Melicharova L, Laznickova A, Laznicek M. Preclinical evaluation of gastrin derivatives labelled with 111In: radiolabelling, affinity profile and pharmacokinetics in rats. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2013; 158:544-51. [PMID: 24108197 DOI: 10.5507/bp.2013.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 08/22/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cholecystokinin receptor subtype 2 (CCK-2) is overexpressed in various tumours like medullary thyroid carcinomas and small cell lung cancer. Radiolabelled peptides that bind with high affinity and specificity to CCK-2 receptors, thus hold great potential for visualizing such tumours. METHODS We compared four 111In labelled gastrin analogues, called minigastrins (MG), namely MG11, MG45, MG47 and MG48 linked to metal chelating DOTA in preclinical experiments. The radiolabelled peptides were tested for peptide binding in CCK-2 receptor-bearing cell line AR42J and for their pharmacokinetics in normal rats. RESULTS The experiments suggest that all gastrin analogues had similar and relatively rapid internalization into AR42J cells. Binding to CCK-2 receptors in AR42J cells was saturable for all agents but there were some differences in receptor affinity. This biodistribution study in rats showed a rapid decrease in blood radioactivity, predominantly renal clearance and saturable uptake of the radiopharmaceutical and/or its metabolites in the CCK-2 receptor-positive stomach. Higher kidney accumulation of radioactivity was only found for 111In-DOTA-minigastrin 48. CONCLUSIONS The data suggest that the 111In-DOTA-minigastrin analogues studied are promising candidates for the scintigraphy of CCK-2 receptor-expressing tumours; 111In-DOTA-MG47 and 111In-DOTA-MG11 are the most promising.
Collapse
Affiliation(s)
- Ludmila Melicharova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | | | | |
Collapse
|
33
|
Chen Y, Asico LD, Zheng S, Villar VAM, He D, Zhou L, Zeng C, Jose PA. Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis. Hypertension 2013; 62:927-33. [PMID: 24019399 DOI: 10.1161/hypertensionaha.113.01094] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oral NaCl produces a greater natriuresis and diuresis than the intravenous infusion of the same amount of NaCl. Gastrin is the major gastrointestinal hormone taken up by renal proximal tubule (RPT) cells. We hypothesized that renal gastrin and dopamine receptors interact to synergistically increase sodium excretion, an impaired interaction of which may be involved in the pathogenesis of hypertension. In Wistar-Kyoto rats, infusion of gastrin induced natriuresis and diuresis, which was abrogated in the presence of a gastrin (cholecystokinin B receptor [CCKBR]; CI-988) or a D1-like receptor antagonist (SCH23390). Similarly, the natriuretic and diuretic effects of fenoldopam, a D1-like receptor agonist, were blocked by SCH23390, as well as by CI-988. However, the natriuretic effects of gastrin and fenoldopam were not observed in spontaneously hypertensive rats. The gastrin/D1-like receptor interaction was also confirmed in RPT cells. In RPT cells from Wistar-Kyoto but not spontaneously hypertensive rats, stimulation of either D1-like receptor or gastrin receptor inhibited Na(+)-K(+)-ATPase activity, an effect that was blocked in the presence of SCH23390 or CI-988. In RPT cells from Wistar-Kyoto and spontaneously hypertensive rats, CCKBR and D1 receptor coimmunoprecipitated, which was increased after stimulation of either D1 receptor or CCKBR in RPT cells from Wistar-Kyoto rats; stimulation of one receptor increased the RPT cell membrane expression of the other receptor, effects that were not observed in spontaneously hypertensive rats. These data suggest that there is a synergism between CCKBR and D1-like receptors to increase sodium excretion. An aberrant interaction between the renal CCK BR and D1-like receptors (eg, D1 receptor) may play a role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yue Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Banday AA, Lokhandwala MF. Novel gastro-renal axis and sodium regulation during hypertension. Hypertension 2013; 62:834-5. [PMID: 24019398 DOI: 10.1161/hypertensionaha.113.01799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anees Ahmad Banday
- Professor and Executive Vice Dean for Research, 4800 Calhoun Rd, 453D SR 2 Bldg, Houston, TX 77204.
| | | |
Collapse
|
35
|
Liu T, Jose PA. Gastrin induces sodium-hydrogen exchanger 3 phosphorylation and mTOR activation via a phosphoinositide 3-kinase-/protein kinase C-dependent but AKT-independent pathway in renal proximal tubule cells derived from a normotensive male human. Endocrinology 2013; 154:865-75. [PMID: 23275470 PMCID: PMC3548178 DOI: 10.1210/en.2012-1813] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gastrin is natriuretic, but its renal molecular targets and signal transduction pathways are not fully known. In this study, we confirmed the existence of CCKBR (a gastrin receptor) in male human renal proximal tubule cells and discovered that gastrin induced S6 phosphorylation, a downstream component of the phosphatidylinositol 3 kinase (PI3 kinase)-mammalian target of rapamycin pathway. Gastrin also increased the phosphorylation of sodium-hydrogen exchanger 3 (NHE3) at serine 552, caused its internalization, and decreased its expression at the cell surface and NHE activity. The phosphorylation of NHE3 and S6 was dependent on PI3 kinases because it was blocked by 2 different PI3-kinase inhibitors, wortmannin and LY294,002. The phosphorylation of NHE3 and S6 was not affected by the protein kinase A inhibitor H-89 but was blocked by a pan-PKC (chelerythrine) and a conventional PKC (cPKC) inhibitor (Gö6976) (10 μM) and an intracellular calcium chelator, 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester, suggesting the importance of cPKC and intracellular calcium in the gastrin signaling pathway. The cPKC involved was probably PKCα because it was phosphorylated by gastrin. The gastrin-mediated phosphorylation of NHE3, S6, and PKCα was via phospholipase C because it was blocked by a phospholipase C inhibitor, U73122 (10 μM). The phosphorylation (activation) of AKT, which is usually upstream of mammalian target of rapamycin in the classic PI3 kinase-AKT-p70S6K signaling pathway, was not affected, suggesting that the gastrin-induced phosphorylation of NHE3 and S6 is dependent on both PI3 kinase and PKCα but not AKT.
Collapse
Affiliation(s)
- Tianbing Liu
- Center for Molecular Physiology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue, Washington, DC 20010, USA.
| | | |
Collapse
|
36
|
Forssell-Aronsson E, Spetz J, Ahlman H. Radionuclide therapy via SSTR: future aspects from experimental animal studies. Neuroendocrinology 2013; 97:86-98. [PMID: 22572526 DOI: 10.1159/000336086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/11/2011] [Indexed: 12/24/2022]
Abstract
There is need for better therapeutic options for neuroendocrine tumours. The aim of this review was to summarize results of experimental animal studies and raise ideas for future radionuclide therapy based on high expression of somatostatin (SS) receptors by many neuroendocrine tumours. In summary, one of the major options is individualized treatment for each patient, including choice of SS analogues, radionuclides and treatment schedules. Other options are methods to increase the treatment effect on tumour tissue (increasing tumour uptake and retention by upregulation of receptor expression and avoiding saturation of receptor binding), methods to increase the tumour tissue response (by choice of radionuclides, SS analogues or combined therapies), and methods to reduce side effects (diminished uptake and retention in critical organs and reduced normal tissue response). Furthermore, combination therapy with other radiopharmaceuticals, cytotoxic drugs or radiosensitizers can be considered to enhance the effects of radiolabelled SS analogues.
Collapse
Affiliation(s)
- Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
37
|
von Guggenberg E, Rangger C, Sosabowski J, Laverman P, Reubi JC, Virgolini IJ, Decristoforo C. Preclinical evaluation of radiolabeled DOTA-derivatized cyclic minigastrin analogs for targeting cholecystokinin receptor expressing malignancies. Mol Imaging Biol 2012; 14:366-75. [PMID: 21732165 DOI: 10.1007/s11307-011-0506-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Targeting of cholecystokinin receptor expressing malignancies such as medullary thyroid carcinoma is currently limited by low in vivo stability of radioligands. To increase the stability, we have developed and preclinically evaluated two cyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-minigastrin analogs radiolabeled with (111)In and (68)Ga. PROCEDURES Radiolabeling efficiency, in vitro characterization, cholecystokinin receptor subtype 2 (CCK-2) binding in human tumor tissues, and cell internalization on CCK-2 receptor expressing AR42J cells, as well as biodistribution and small animal imaging in two different mouse xenograft models were studied. RESULTS High receptor affinity and receptor-mediated uptake of the radioligands in AR42J cells was confirmed in vitro. (111)In-labeled cyclic DOTA-peptides showed a specific tumor uptake of ~1% ID/g in vivo, (68)Ga-labeled analogs of ~3% ID/g. Small animal SPECT imaging resulted to be superior with (111)In-DOTA-cyclo-MG2 in comparison with (111)In-DOTA-cyclo-MG1. CONCLUSIONS Cyclic DOTA-minigastrin analogs are promising candidates for gastrin receptor scintigraphy and targeted radionuclide therapy.
Collapse
Affiliation(s)
- Elisabeth von Guggenberg
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
38
|
Jiang X, Wang W, Ning B, Liu X, Gong J, Gan F, Gao X, Zhang L, Jose PA, Qin C, Yang Z. Basal and postprandial serum levels of gastrin in normotensive and hypertensive adults. Clin Exp Hypertens 2012; 35:74-8. [PMID: 22680232 DOI: 10.3109/10641963.2012.690474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gastrin is a peptide hormone, which acts not only to regulate gastric acid secretion, but also to exert physiological actions such as the regulation of sodium balance. From a case (n = 95)-control (n = 82) study in Fuyang People's Hospital, Anhui Province, China, we found that the fasting serum gastrin levels are similar in normotensive and hypertensive adults but increased to higher levels in the latter group than in the former group after a mixed meal. We suggest that gastrin is involved in the regulation of blood pressure, possibly via the regulation of sodium and water metabolism and/or renin-angiotensin-aldosterone system. However, the mechanism remains to be determined.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medicine Centre, Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Svensson J, Mölne J, Forssell-Aronsson E, Konijnenberg M, Bernhardt P. Nephrotoxicity profiles and threshold dose values for [177Lu]-DOTATATE in nude mice. Nucl Med Biol 2012; 39:756-62. [PMID: 22445743 DOI: 10.1016/j.nucmedbio.2012.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/13/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION In peptide receptor radionuclide therapy for neuroendocrine tumors the main dose-limiting tissue is found in the kidneys because of tubular reabsorption and retention of radioactivity. The aim of this study was to quantify late effects in renal cortex of nude mice exposed to high amounts of [(177)Lu]-DOTA-Tyr(3)-octreotate ([(177)Lu]-DOTATATE), and to determine whether a threshold dose value exists for these findings. METHODS Nude mice were exposed to 90, 120 or 150 MBq of [(177)Lu]-DOTATATE. Renal toxicity was evaluated up to 6 months after injection. Blood samples were collected to examine renal functional markers, and after sacrifice at 6 months changes in renal morphology were explored. Tissue damage was estimated by quantifying the relative area of the different subunits in the renal cortex using point counting. Additional morphological signs of radiation damage were also noted. The absorbed doses to the kidneys were estimated by previously determined kidney pharmacokinetics and Monte Carlo simulations for different assumptions regarding the activity distribution. RESULTS Increased serum creatinine and urea values indicated long-term renal toxicity. The tissue area occupied by proximal tubules decreased with increasing doses of [(177)Lu]-DOTATATE, whereas the other subunits in cortex slightly increased. The mean absorbed dose in the renal cortex for [(177)Lu]-DOTATATE was estimated to be 35-58 Gy for the different groups of animals. A dose-response relationship was observed for proximal tubular damage, and a threshold dose value of 24 Gy (BED 37 Gy) was determined. CONCLUSIONS Selective morphological changes in kidney cortex of nude mice were quantified and appeared in a dose dependent manner after injection of high amounts of [(177)Lu]-DOTATATE.
Collapse
Affiliation(s)
- Johanna Svensson
- Department of Oncology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Röhrich A, Bergmann R, Kretzschmann A, Noll S, Steinbach J, Pietzsch J, Stephan H. A novel tetrabranched neurotensin(8-13) cyclam derivative: synthesis, 64Cu-labeling and biological evaluation. J Inorg Biochem 2011; 105:821-32. [PMID: 21497581 DOI: 10.1016/j.jinorgbio.2011.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/21/2011] [Accepted: 02/21/2011] [Indexed: 12/11/2022]
Abstract
New macrocyclic 1,4,8,11-tetraazacyclotetradecane (cyclam) derivatives with 1, 2 and 4 neurotensin(8-13) units 4, 5 and 7 have been synthesized. Compounds 4 and 5 were prepared by the reaction of non-stabilized neurotensin(8-13) and cyclamtetrapropionic acid 2 using 1-ethyl-3-(3-dimethylaminocarbonyl)carbodiimide-hydrochloride and N-hydroxysulfosuccinimide. The tetrameric compound 7 was synthesized by Michael addition of neurotensin(8-13) acrylamide 6 and cyclam 1. The copper(II) complexation behavior of 4, 5 and 7 was investigated by UV/visible spectrophotometry and shows that the metal center resides inside the N4 chromophore with additional apical interactions established with pendant arms. The novel tetrabranched NT(8-13) cyclam 7 with nanomolar neurotensin receptor 1 binding affinity was efficiently radiolabeled with (64)Cu under mild conditions. (64)Cu⊂7 showed slow transchelation in the presence of a large amount of cyclam as competing ligand, while it completely remains intact in the presence of EDTA. The in vivo behavior of (64)Cu⊂7 was studied in rats and mice. The metabolic stability in rodent models was high with a half-life of intact (64)Cu⊂7 in plasma of 34 min in rats and 60 min in the mice, respectively. The binding affinity was high enough to demonstrate in vivo binding of (64)Cu⊂7 to NTR1 overexpressing HT-29 tumor xenotransplants in nude mice. Regarding elimination, (64)Cu⊂7 showed a substantial renal and reticuloendothelial accumulation. On the other hand, metabolization of the compound in vivo with a resulting metabolite-postulated to be the (64)Cu-cyclam-tetraarginine complex-also showed long retention in the circulating blood, preventing a better contrast of tumor imaging.
Collapse
Affiliation(s)
- Anika Röhrich
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Vegt E, Melis M, Eek A, de Visser M, Brom M, Oyen WJG, Gotthardt M, de Jong M, Boerman OC. Renal uptake of different radiolabelled peptides is mediated by megalin: SPECT and biodistribution studies in megalin-deficient mice. Eur J Nucl Med Mol Imaging 2010; 38:623-32. [PMID: 21170526 PMCID: PMC3053449 DOI: 10.1007/s00259-010-1685-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/15/2010] [Indexed: 11/27/2022]
Abstract
PURPOSE Radiolabelled peptides used for peptide receptor radionuclide therapy are excreted mainly via the kidneys and are partly reabsorbed and retained in the proximal tubular cells. The resulting high renal radiation dose can cause nephrotoxicity, limiting the maximum activity dose and the effectiveness of peptide receptor radionuclide therapy. The mechanisms of kidney reabsorption of these peptides are incompletely understood, but the scavenger receptor megalin has been shown to play a role in the reabsorption of (111)In-octreotide. In this study, the role of megalin in the renal reabsorption of various relevant radiolabelled peptides was investigated. METHODS Groups of kidney-specific megalin-deficient mice and wild-type mice were injected with (111)In-labelled somatostatin, exendin, neurotensin or minigastrin analogues. Single photon emission computed tomographic (SPECT) images of the kidneys were acquired and analysed quantitatively, or the animals were killed 3 h after injection and the activity concentration in the kidneys was measured. RESULTS Megalin-deficient mice showed significantly lower uptake of all studied radiolabelled peptides in the kidneys, ranging from 22% ((111)In-octreotide) to 65% ((111)In-exendin) of uptake in wild-type kidneys. Quantitative analysis of renal uptake by SPECT and ex vivo measurements showed a very good correlation. CONCLUSION Megalin is involved in the renal reabsorption of radiolabelled octreotide, octreotate, exendin, neurotensin and minigastrin. This knowledge may help in the design of strategies to reduce this reabsorption and the resulting nephrotoxicity in peptide receptor radionuclide therapy, enabling more effective therapy. Small-animal SPECT is an accurate tool, allowing in vivo quantification of renal uptake and serial measurements in individual mice.
Collapse
Affiliation(s)
- Erik Vegt
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Signore A, Mather SJ, Piaggio G, Malviya G, Dierckx RA. Molecular imaging of inflammation/infection: nuclear medicine and optical imaging agents and methods. Chem Rev 2010; 110:3112-45. [PMID: 20415479 DOI: 10.1021/cr900351r] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- A Signore
- Nuclear Medicine Unit, II Faculty of Medicine and Surgery, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
44
|
Vegt E, de Jong M, Wetzels JF, Masereeuw R, Melis M, Oyen WJ, Gotthardt M, Boerman OC. Renal Toxicity of Radiolabeled Peptides and Antibody Fragments: Mechanisms, Impact on Radionuclide Therapy, and Strategies for Prevention. J Nucl Med 2010; 51:1049-58. [DOI: 10.2967/jnumed.110.075101] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Brillouet S, Dorbes S, Courbon F, Picard C, Delord JP, Benoist E, Poirot M, Mestre-Voegtlé B, Silvente-Poirot S. Development of a new radioligand for cholecystokinin receptor subtype 2 scintigraphy: from molecular modeling to in vivo evaluation. Bioorg Med Chem 2010; 18:5400-12. [PMID: 20542702 DOI: 10.1016/j.bmc.2010.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 11/29/2022]
Abstract
To improve the targeting to tumors expressing the cholecystokinin receptor subtype 2 (CCK2R) with limited kidney uptake, we synthesized a novel cholecystokinin C-terminal tetrapeptide (CCK4)-based derivative conjugated to an original bipyridine-chelator (BPCA), 111In-BPCA-(Ahx)2-CCK4. To our knowledge this is the first CCK4-based radioligand that presents a high affinity for the CCK2R, a high and specific tumor uptake, a low renal accumulation and a very good visualization of tumors in vivo compared with an internal control, 111Indium-trans-cyclohexyldiethylenetriaminepenta-acetic acid-cholecystokinin octapeptide (111In-CHX-A''-DTPA-CCK8). These properties make 111In-BPCA-(Ahx)2-CCK4, a promising candidate for imaging and peptide receptor radionuclide therapy of CCK2R positive tumors.
Collapse
Affiliation(s)
- Séverine Brillouet
- INSERM 563, Equipe Marc Poirot, CPTP, Département d'Imagerie Médicale, Institut Claudius Regaud, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Melis M, Vegt E, Konijnenberg MW, de Visser M, Bijster M, Vermeij M, Krenning EP, Boerman OC, de Jong M. Nephrotoxicity in mice after repeated imaging using 111In-labeled peptides. J Nucl Med 2010; 51:973-7. [PMID: 20484435 DOI: 10.2967/jnumed.109.074310] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED We determined the renal radiation dose of a series of (111)In-labeled peptides using animal SPECT. Because the animals' health deteriorated, renal toxicity was assessed. METHODS Wild-type and megalin-deficient mice were imaged repeatedly at 3- to 6-wk intervals to quantify renal retention after injection of 40-50 MBq of (111)In-diethylenetriaminepentaacetic acid-labeled peptides (octreotide, exendin, octreotate, neurotensin, and minigastrin analogs), and the absorbed kidney radiation doses were estimated. Body weight, renal function parameters, and renal histology were determined at 16-20 wk after the first scan and compared with those in naive animals. RESULTS Because of high renal retention, (111)In-diethylenetriaminepentaacetic acid-exendin-4 scans resulted in a 70-Gy kidney radiation dose in wild-type mice. Megalin-deficient kidneys received 20-40 Gy. The other peptides resulted in much lower renal doses. Kidney function monitoring indicated renal damage in imaged animals. CONCLUSION Micro-SPECT enables longitudinal studies in 1 animal. However, long-term nephrotoxic effects may be induced after high renal radiation doses, even with (111)In-labeled radiotracers.
Collapse
Affiliation(s)
- Marleen Melis
- Department of Nuclear Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rolleman EJ, Melis M, Valkema R, Boerman OC, Krenning EP, de Jong M. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues. Eur J Nucl Med Mol Imaging 2009; 37:1018-31. [PMID: 19915842 DOI: 10.1007/s00259-009-1282-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 09/13/2009] [Indexed: 12/25/2022]
Abstract
This review focuses on the present status of kidney protection during peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues. This treatment modality for somatostatin receptor-positive tumours is limited by renal reabsorption and retention of radiolabelled peptides resulting in dose-limiting high kidney radiation doses. Radiation nephropathy has been described in several patients. Studies on the mechanism and localization demonstrate that renal uptake of radiolabelled somatostatin analogues largely depends on the megalin/cubulin system in the proximal tubule cells. Thus methods are needed that interfere with this reabsorption pathway to achieve kidney protection. Such methods include coadministration of basic amino acids, the bovine gelatin-containing solution Gelofusine or albumin fragments. Amino acids are already commonly used in the clinical setting during PRRT. Other compounds that interfere with renal reabsorption capacity (maleic acid and colchicine) are not suitable for clinical use because of potential toxicity. The safe limit for the renal radiation dose during PRRT is not exactly known. Dosimetry studies applying the principle of the biological equivalent dose (correcting for the effect of dose fractionation) suggest that a dose of about 37 Gy is the threshold for development of kidney toxicity. This threshold is lower when risk factors for development of renal damage exist: age over 60 years, hypertension, diabetes mellitus and previous chemotherapy. A still experimental pathway for kidney protection is mitigation of radiation effects, possibly achievable by cotreatment with amifostine (Ethylol), a radiation protector, or with blockers of the renin-angiotensin-aldosterone system. Future perspectives on improving kidney protection during PRRT include combinations of agents to reduce renal retention of radiolabelled peptides, eventually together with mitigating medicines. Moreover, new somatostatin analogues with lower renal retention may be developed. Furthermore, knowledge on kidney protection from radiolabelled somatostatin analogues may be expanded to other peptides.
Collapse
Affiliation(s)
- Edgar J Rolleman
- Department of Nuclear Medicine, V 220, Erasmus MC, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Alshoukr F, Rosant C, Maes V, Abdelhak J, Raguin O, Burg S, Sarda L, Barbet J, Tourwé D, Pelaprat D, Gruaz-Guyon A. Novel neurotensin analogues for radioisotope targeting to neurotensin receptor-positive tumors. Bioconjug Chem 2009; 20:1602-10. [PMID: 19610615 DOI: 10.1021/bc900151z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increased expression of the neurotensin (NT) receptor NTS1 by different cancer cells, such as pancreatic adenocarcinoma and ductal breast cancer cells, as compared to normal epithelium, offers the opportunity to target these tumors with radiolabeled neurotensin analogues for diagnostic or therapeutic purposes. The aim of the present study was to design and synthesize new neurotensin radioligands and to select a lead molecule with high in vivo tumor selectivity for further development. Two series of neurotensin analogues bearing DTPA were tested: a series of NT(8-13) analogues, with DTPA coupled to the α-NH(2), sharing the same peptide sequence with analogues previously developed for radiolabeling with technetium or rhenium, as well as an NT(6-13) series in which DTPA was coupled to the ε-NH(2) of Lys(6). Changes were introduced to stabilize the bonds between Arg(8)-Arg(9), Pro(10)-Tyr(11), and Tyr(11)-Ile(12) to provide metabolic stability. Structure-activity studies of NT analogues have shown that the attachment of DTPA induces an important loss of affinity unless the distance between the chelator and the NT(8-13) sequence, which binds to the NTS1 receptor, is increased. The doubly stabilized DTPA-NT-20.3 exhibits a high affinity and an elevated stability to enzymatic degradation. It shows specific tumor uptake and high tumor to blood, to liver, and to intestine activity uptake ratios and affords high-contrast planar and SPECT images in an animal model. The DTPA-NT-20.3 peptide is a promising candidate for imaging neurotensin receptor-positive tumors, such as pancreatic adenocarcinoma and invasive ductal breast cancer. Analogues carrying DOTA are being developed for yttrium-90 or lutetium-177 labeling.
Collapse
|
49
|
von Guggenberg E, Sallegger W, Helbok A, Ocak M, King R, Mather SJ, Decristoforo C. Cyclic Minigastrin Analogues for Gastrin Receptor Scintigraphy with Technetium-99m: Preclinical Evaluation. J Med Chem 2009; 52:4786-93. [DOI: 10.1021/jm900400w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elisabeth von Guggenberg
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Werner Sallegger
- piCHEM Research and Development GmbH, Kahngasse 20, A-8045 Graz, Austria
| | - Anna Helbok
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Meltem Ocak
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Robert King
- Centre for Molecular Oncology and Imaging, Barts and the London School of Medicine, London, EC1M 6BQ, United Kingdom
| | - Stephen J. Mather
- Centre for Molecular Oncology and Imaging, Barts and the London School of Medicine, London, EC1M 6BQ, United Kingdom
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
50
|
Schottelius M, Wester HJ. Molecular imaging targeting peptide receptors. Methods 2009; 48:161-77. [DOI: 10.1016/j.ymeth.2009.03.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/11/2009] [Indexed: 02/08/2023] Open
|