1
|
Chakraborty K, Biswas A, Mishra S, Mallick AM, Tripathi A, Jan S, Sinha Roy R. Harnessing Peptide-Functionalized Multivalent Gold Nanorods for Promoting Enhanced Gene Silencing and Managing Breast Cancer Metastasis. ACS APPLIED BIO MATERIALS 2023; 6:458-472. [PMID: 36651932 DOI: 10.1021/acsabm.2c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Small interfering RNA (siRNA) has become the cornerstone against undruggable targets and for managing metastatic breast cancer. However, an effective gene silencing approach is faced with a major challenge due to the delivery problem. In our present study, we have demonstrated efficient siRNA delivery, superior gene silencing, and inhibition of metastasis in triple-negative breast cancer cells (MDA-MB-231) using rod-shaped (aspect ratio: 4) multivalent peptide-functionalized gold nanoparticles and compared them to monovalent free peptide doses. Multivalency is a new concept in biology, and tuning the physical parameters of multivalent nanoparticles can enhance gene silencing and antitumor efficacy. We explored the effect of the multivalency of shape- and size-dependent peptide-functionalized gold nanoparticles in siRNA delivery. Our study demonstrates that peptide functionalization leads to reduced toxicity of the nanoparticles. Such designed peptide-functionalized nanorods also demonstrate antimetastatic efficacy in Notch1-silenced cells by preventing EMT progression in vitro. We have shown siRNA delivery in the hard-to-transfect primary cell line HUVEC and also demonstrated that the Notch1-silenced MDA-MB-231 cell line has failed to form nanobridge-mediated foci with the HUVEC in the co-culture of HUVEC and MDA-MB-231, which promote metastasis. This antimetastatic effect is further checked in a xenotransplant in vivo zebrafish model. In vivo studies also suggest that our designed nanoparticles mediated inhibition of micrometastasis due to silencing of the Notch1 gene. The outcome of our study highlights that the structure-activity relationship of multifunctional nanoparticles can be harnessed to modulate their biological activity.
Collapse
Affiliation(s)
- Kasturee Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Abhijit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Argha Mario Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Somnath Jan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
2
|
Wang J, Li S, Wang K, Zhu L, Yang L, Zhu Y, Zhang Z, Hu L, Yuan Y, Fan Q, Ren J, Yang G, Ding W, Zhou X, Cui J, Zhang C, Yuan Y, Huang R, Tian J, Tao X. A c-MET-Targeted Topical Fluorescent Probe cMBP-ICG Improves Oral Squamous Cell Carcinoma Detection in Humans. Ann Surg Oncol 2023; 30:641-651. [PMID: 36184713 PMCID: PMC9726820 DOI: 10.1245/s10434-022-12532-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The postoperative survival of oral squamous cell carcinoma (SCC) relies on precise detection and complete resection of original tumors. The mucosal extension of the tumor is evaluated visually during surgery, but small and flat foci are difficult to detect. Real-time fluorescence imaging may improve detection of tumor margins. MATERIALS AND METHODS In the current study, a peptide-based near-infrared (NIR) fluorescence dye, c-MET-binding peptide-indocyanine green (cMBP-ICG), which specifically targets tumor via c-MET binding, was synthetized. A prospective pilot clinical trial then was conducted with oral SCC patients and intraoperatively to assess the feasibility of cMBP-ICG used to detect tumors margins. Fluorescence was histologically correlated to determine sensitivity and specificity. RESULTS The immunohistochemistry (IHC) results demonstrated increased c-Met expression in oral SCC compared with normal mucosa. Tumor-to-background ratios ranged from 2.71 ± 0.7 to 3.11 ± 1.2 in different concentration groups. From 10 patients with oral SCC, 60 specimens were collected from tumor margins. The sensitivity and specificity of discriminative value derived from cMBP-ICG application in humans were respectively 100% and 75%. CONCLUSIONS Topical application of cMBP-ICG is feasible and safe for optimizing intraoperative visualization and tumor margin detection in oral SCC patients, which could clinically increase the probability of complete resections and improve oncologic outcomes.
Collapse
Affiliation(s)
- Jingbo Wang
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyi Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ling Zhu
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Yang
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunjing Zhu
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Longwei Hu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Yuan
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Fan
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiliang Ren
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gongxin Yang
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weilong Ding
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Zhou
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junqi Cui
- Department of Pathology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunye Zhang
- Department of Pathology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Yuan
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Huang
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Tao
- Department of Radiology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Floresta G, Abbate V. Recent progress in the imaging of c-Met aberrant cancers with positron emission tomography. Med Res Rev 2022; 42:1588-1606. [PMID: 35292998 PMCID: PMC9314990 DOI: 10.1002/med.21885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Abstract
Tyrosine-protein kinase Met-also known as c-Met or HGFR-is a membrane receptor protein with associated tyrosine kinase activity physiologically stimulated by its natural ligand, the hepatocyte growth factor (HGF), and is involved in different ways in cancer progression and tumourigenesis. Targeting c-Met with pharmaceuticals has been preclinically proved to have significant benefits for cancer treatment. Recently, evaluating the protein status during and before c-Met targeted therapy has been shown of relevant importance by different studies, demonstrating that there is a correlation between the status (e.g., aberrant activation and overexpression) of the HGFR with therapy response and clinical prognosis. Currently, clinical imaging based on positron emission tomography (PET) appears as one of the most promising tools for the in vivo real-time scanning of irregular alterations of the tyrosine-protein kinase Met and for the diagnosis of c-Met related cancers. In this study, we review the recent progress in the imaging of c-Met aberrant cancers with PET. Particular attention is directed on the development of PET probes with a range of different sizes (HGF, antibodies, anticalines, peptides, and small molecules), and radiolabeled with different radionuclides. The goal of this review is to report all the preclinical imaging studies based on PET imaging reported until now for in vivo diagnosis of c-Met in oncology to support the design of novel and more effective PET probes for in vivo evaluation of c-Met.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, Institute of Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
4
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
5
|
Tang Y, Xu H, Dai Y, Wang F, Huang W, Liu P, Gu Y. A novel peptide targeting c-Met for hepatocellular carcinoma diagnosis. J Mater Chem B 2021; 9:4577-4586. [PMID: 34047746 DOI: 10.1039/d1tb00408e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with limited diagnosis. Mesenchymal epithelial transition factor (c-Met) has become a hot target for cancer diagnosis and therapy, which is overexpressed in HCC. In this study, we labeled a novel c-Met targeting peptide YQ-M3 with a near-infrared fluorescent dye MPA and a radionuclide technetium-99m for HCC detection. YQ-M3-MPA showed high affinity for c-Met positive HepG2 tumor in vitro and higher tumor uptake and higher T/N ratio than GE137-MPA (a positive tracer for c-Met) in HepG2 tumor-bearing mice in vivo by fluorescence imaging. In addition, 99mTc-HYNIC-YQ-M3 also showed significant tumor uptake in vivo through SPECT imaging. These results indicated that c-Met positive tumors were successfully detected via fluorescence and SPECT imaging using YQ-M3-MPA and 99mTc-HYNIC-YQ-M3, respectively, and further suggested that YQ-M3-MPA and 99mTc-HYNIC-YQ-M3 have some possibly potential clinical applications for HCC diagnosis.
Collapse
Affiliation(s)
- Yongjia Tang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing 211198, China.
| | - Haoran Xu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing 211198, China.
| | - Yaxue Dai
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing 211198, China.
| | - Fang Wang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing 211198, China.
| | - Wenjing Huang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing 211198, China.
| | - Peifei Liu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing 211198, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing 211198, China.
| |
Collapse
|
6
|
Li D, Patel CB, Xu G, Iagaru A, Zhu Z, Zhang L, Cheng Z. Visualization of Diagnostic and Therapeutic Targets in Glioma With Molecular Imaging. Front Immunol 2020; 11:592389. [PMID: 33193439 PMCID: PMC7662122 DOI: 10.3389/fimmu.2020.592389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023] Open
Abstract
Gliomas, particularly high-grade gliomas including glioblastoma (GBM), represent the most common and malignant types of primary brain cancer in adults, and carry a poor prognosis. GBM has been classified into distinct subgroups over the years based on cellular morphology, clinical characteristics, biomarkers, and neuroimaging findings. Based on these classifications, differences in therapeutic response and patient outcomes have been established. Recently, the identification of complex molecular signatures of GBM has led to the development of diverse targeted therapeutic regimens and translation into multiple clinical trials. Chemical-, peptide-, antibody-, and nanoparticle-based probes have been designed to target specific molecules in gliomas and then be visualized with multimodality molecular imaging (MI) techniques including positron emission tomography (PET), single-photon emission computed tomography (SPECT), near-infrared fluorescence (NIRF), bioluminescence imaging (BLI), and magnetic resonance imaging (MRI). Thus, multiple molecules of interest can now be noninvasively imaged to guide targeted therapies with a potential survival benefit. Here, we review developments in molecular-targeted diagnosis and therapy in glioma, MI of these targets, and MI monitoring of treatment response, with a focus on the biological mechanisms of these advanced molecular probes. MI probes have the potential to noninvasively demonstrate the pathophysiologic features of glioma for diagnostic, treatment, and response assessment considerations for various targeted therapies, including immunotherapy. However, most MI tracers are in preclinical development, with only integrin αVβ3 and isocitrate dehydrogenase (IDH)-mutant MI tracers having been translated to patients. Expanded international collaborations would accelerate translational research in the field of glioma MI.
Collapse
Affiliation(s)
- Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Chirag B Patel
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States.,Division of Neuro-Oncology, Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Guofan Xu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Andrei Iagaru
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun 2020; 11:594. [PMID: 32001707 PMCID: PMC6992617 DOI: 10.1038/s41467-019-14036-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Activation of receptor tyrosine kinase (RTK) protein is frequently observed in malignant progression of gliomas. In this study, the crosstalk activation of epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) signaling pathways is demonstrated to contribute to temozolomide (TMZ) resistance, resulting in an unfavorable prognosis for patients with glioblastoma. To simultaneously mitigate EGFR and MET activation, a dual functionalized brain-targeting nanoinhibitor, BIP-MPC-NP, is developed by conjugating Inherbin3 and cMBP on the surface of NHS-PEG8-Mal modified MPC-nanoparticles. In the presence of BIP-MPC-NP, DNA damage repair is attenuated and TMZ sensitivity is enhanced via the down-regulation of E2F1 mediated by TTP in TMZ resistant glioma. In vivo magnetic resonance imaging (MRI) shows a significant repression in tumor growth and a prolonged survival of mice after injection of the BIP-MPC-NP and TMZ. These results demonstrate the promise of this nanoinhibitor as a feasible strategy overcoming TMZ resistance in glioma.
Collapse
|
8
|
Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem 2019; 179:56-77. [PMID: 31238251 DOI: 10.1016/j.ejmech.2019.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
The overexpression of peptide receptors in certain tumors as compared to endogeneous expression levels represents the molecular basis for the design of peptide-based tools for targeted nuclear imaging and therapy. Receptor targeting with radiolabelled peptides became a very important imaging and/or therapeutic approach in nuclear medicine and oncology. A great variety of peptides has been radiolabelled with clinical relevant radionuclides, such as radiometals and radiohalogens. However, to the best of our knowledge concise and updated reviews providing information about the biomedical application of radioiodinated peptides are still missing. This review outlines the synthetic efforts in the preparation of radioiodinated peptides highlighting the importance of radioiodine in nuclear medicine, giving an overview of the most relevant radioiodination strategies that have been employed and describes relevant examples of their use in the biomedical field.
Collapse
Affiliation(s)
- Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
9
|
Soares AD, Paixão L, Facure A. Determination of the dose rate constant through Monte Carlo simulations with voxel phantoms. Med Phys 2018; 45:5283-5292. [DOI: 10.1002/mp.13181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/23/2018] [Accepted: 08/31/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Abner D. Soares
- Instituto de Radioproteção e Dosimetria Avenida Salvador Allende, 9 22780‐160 Rio de Janeiro RJ Brazil
| | - Lucas Paixão
- Dep. de Anatomia e Imagem/Faculdade de Medicina Universidade Federal de Minas Gerais 30130‐100 Belo Horizonte MG Brazil
| | - Alessandro Facure
- Comissão Nacional de Energia Nuclear Rua General Severiano 90, sala 402 22294‐900 Rio de Janeiro RJ Brazil
| |
Collapse
|
10
|
Wu Y, Fan Q, Zeng F, Zhu J, Chen J, Fan D, Li X, Duan W, Guo Q, Cao Z, Briley-Saebo K, Li C, Tao X. Peptide-Functionalized Nanoinhibitor Restrains Brain Tumor Growth by Abrogating Mesenchymal-Epithelial Transition Factor (MET) Signaling. NANO LETTERS 2018; 18:5488-5498. [PMID: 30067910 DOI: 10.1021/acs.nanolett.8b01879] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Malignant gliomas are the most common primary brain tumors and are associated with aggressive growth, high morbidity, and mortality. Aberrant mesenchymal-epithelial transition factor (MET) activation occurs in approximately 30% of glioma patients and correlates with poor prognosis, elevated invasion, and increased drug resistance. Therefore, MET has emerged as an attractive target for glioma therapy. In this study, we developed a novel nanoinhibitor by conjugating MET-targeting cMBP peptides on the G4 dendrimer. Compared to the binding affinity of the free peptide ( KD = 3.96 × 10-7 M), the binding affinity of the nanoinhibitor to MET increased 3 orders of magnitude to 1.32 × 10-10 M. This nanoinhibitor efficiently reduced the proliferation and invasion of human glioblastoma U87MG cells in vitro by blocking MET signaling with remarkably attenuated levels of phosphorylated MET ( pMET) and its downstream signaling proteins, such as pAKT and pERK1/2. Although no obvious therapeutic effect was observed after treatment with free cBMP peptide, in vivo T2-weighted magnetic resonance imaging (MRI) showed a significant delay in tumor growth after intravenous injection of the nanoinhibitor. The medium survival in mouse models was extended by 59%, which is similar to the effects of PF-04217903, a small molecule MET inhibitor currently in clinical trials. Immunoblotting studies of tumor homogenate verified that the nanoinhibitor restrained glioma growth by blocking MET downstream signaling. pMET and its downstream proteins pAKT and pERK1/2, which are involved in the survival and invasion of cancer cells, decreased in the nanoinhibitor-treated group by 44.2%, 62.2%, and 32.3%, respectively, compared with those in the control group. In summary, we developed a peptide-functionalized MET nanoinhibitor that showed extremely high binding affinity to MET and effectively inhibited glioma growth by blocking MET downstream signaling. To the best of our knowledge, this is the first report of therapeutic inhibition of glioma growth by blocking MET signaling with a novel nanoinhibitor. Compared to antibodies and chemical inhibitors in clinical trials, the nanoinhibitor blocks MET signaling and provides a new approach for the treatment of glioma with the advantages of high efficiency, affordability, and, most importantly, potentially reduced drug resistance.
Collapse
Affiliation(s)
- Yingwei Wu
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| | - Qi Fan
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| | - Feng Zeng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Jinyu Zhu
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| | - Jian Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Dandan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Xinwei Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Wenjia Duan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Qinghua Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Zhonglian Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Karen Briley-Saebo
- Department of Radiology , the Ohio State University Wexner Medical Center, Wright Center of Innovation in Biomedical Imaging , Columbus , Ohio 43210 , United States
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| |
Collapse
|
11
|
Jiang H, DeGrado TR. [ 18F]Tetrafluoroborate ([ 18F]TFB) and its analogs for PET imaging of the sodium/iodide symporter. Theranostics 2018; 8:3918-3931. [PMID: 30083270 PMCID: PMC6071519 DOI: 10.7150/thno.24997] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022] Open
Abstract
Sodium/iodide symporter (NIS)-mediated iodide uptake in thyroid follicular cells is the basis of clinical utilization of radioiodines. The cloning of the NIS gene enabled applications of NIS as a reporter gene in both preclinical and translational research. Non-invasive NIS imaging with radioactive iodides and iodide analogs has gained much interest in recent years for evaluation of thyroid cancer and NIS reporter expression. Although radioiodines and [99mTc]pertechnetate ([99mTc]TcO4-) have been utilized in positron emission tomography (PET) and single photon emission computed tomography (SPECT), they may suffer from limitations of availability, undesirable decay properties or imaging sensitivity (SPECT versus PET). Recently, [18F]tetrafluoroborate ([18F]TFB or [18F]BF4-) and other fluorine-18 labeled iodide analogs have emerged as a promising iodide analog for PET imaging. These fluorine-18 labeled probes have practical radiosyntheses and biochemical properties that allow them to closely mimic iodide transport by NIS in thyroid, as well as in other NIS-expressing tissues. Unlike radioiodides, they do not undergo organification in thyroid cells, which results in an advantage of relatively lower uptake in normal thyroid tissue. Initial clinical trials of [18F]TFB have been completed in healthy human subjects and thyroid cancer patients. The excellent imaging properties of [18F]TFB for evaluation of NIS-expressing tissues indicate its bright future in PET NIS imaging. This review focuses on the recent evolution of [18F]TFB and other iodide analogs and their potential value in research and clinical practice.
Collapse
|
12
|
Levacic AK, Morys S, Kempter S, Lächelt U, Wagner E. Minicircle Versus Plasmid DNA Delivery by Receptor-Targeted Polyplexes. Hum Gene Ther 2017; 28:862-874. [DOI: 10.1089/hum.2017.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanne Kempter
- Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Nanosystems Initiative Munich, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Nanosystems Initiative Munich, Munich, Germany
| |
Collapse
|
13
|
Han Z, Wu Y, Wang K, Xiao Y, Cheng Z, Sun X, Shen B. Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: a systematic review. EJNMMI Res 2017; 7:41. [PMID: 28485003 PMCID: PMC5422222 DOI: 10.1186/s13550-017-0286-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/17/2017] [Indexed: 01/27/2023] Open
Abstract
Background Mesenchymal–epithelial transition factor also named c-MET is a receptor tyrosine kinase for the hepatocyte growth factor that plays a pivotal role in tumorigenesis. c-MET-targeted therapies have been tested in preclinical models and patients, with significant benefits for cancer treatment. In recent years, many studies have shown that the expression level and activation status of c-MET are closely correlated to c-MET-targeted therapy response and clinical prognosis, thus highlighting the importance of evaluating the c-MET status during and prior to targeted therapy. Molecular imaging allows the monitoring of abnormal alterations of c-MET in real time and in vivo. Results In this review, we initially summarize the recent advances in c-MET-targeted molecular imaging, with a special focus on the development of imaging agents ranging in size from monoclonal antibody to small molecule. The aim of this review is to report the preclinical results and clinical application of all molecular imaging studies completed until now for in vivo detection of c-MET in cancer, in order to be beneficial to development of molecular probe and the combination of molecular imaging technologies for in vivo evaluation of c-MET. Various molecular probe targeted to c-MET possesses distinctive advantages and disadvantages. For example, antibody-based probes have high binding affinity but with long metabolic cycle as well as remarkable immunogenicity. Conclusions Although studies for c-MET-targeted molecular imaging have made many important advances, most of imaging agents specifically target to extracellular area of c-MET receptor; however, it is difficult to reflect entirely activation of c-MET. Therefore, small molecule probes based on tyrosine kinase inhibitors, which could target to intracellular area of c-MET without any immunogenicity, should be paid more attention.
Collapse
Affiliation(s)
- Zhaoguo Han
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongyi Wu
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yadi Xiao
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Xilin Sun
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China. .,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China. .,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Baozhong Shen
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China. .,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
14
|
Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Shielding of pDNA Nanoparticles. Polymers (Basel) 2017; 9:polym9040142. [PMID: 30970822 PMCID: PMC6432433 DOI: 10.3390/polym9040142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Cationic polymers are promising components of the versatile platform of non-viral nucleic acid (NA) delivery agents. For a successful gene delivery system, these NA vehicles need to comprise several functionalities. This work focuses on the modification of oligoaminoamide carriers with hydrophilic oligomer blocks mediating nanoparticle shielding potential, which is necessary to prevent aggregation or dissociation of NA polyplexes in vitro, and hinder opsonization with blood components in vivo. Herein, the shielding agent polyethylene glycol (PEG) in three defined lengths (12, 24, or 48 oxyethylene repeats) is compared with two peptidic shielding blocks composed of four or eight repeats of sequential proline-alanine-serine (PAS). With both types of shielding agents, we found opposing effects of the length of hydrophilic segments on shielding and compaction of formed plasmid DNA (pDNA) nanoparticles. Two-arm oligoaminoamides with 37 cationizable nitrogens linked to 12 oxyethylene units or four PAS repeats resulted in very compact 40⁻50 nm pDNA nanoparticles, whereas longer shielding molecules destabilize the investigated polyplexes. Thus, the balance between sufficiently shielded but still compact and stable particles can be considered a critical optimization parameter for non-viral nucleic acid vehicles based on hydrophilic-cationic block oligomers.
Collapse
|
15
|
Fiacco SV, Kelderhouse LE, Hardy A, Peleg Y, Hu B, Ornelas A, Yang P, Gammon ST, Howell SM, Wang P, Takahashi TT, Millward SW, Roberts RW. Directed Evolution of Scanning Unnatural-Protease-Resistant (SUPR) Peptides for in Vivo Applications. Chembiochem 2016; 17:1643-51. [PMID: 27465925 PMCID: PMC5167532 DOI: 10.1002/cbic.201600253] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/12/2022]
Abstract
Peptides typically have poor biostabilities, and natural sequences cannot easily be converted into drug-like molecules without extensive medicinal chemistry. We have adapted mRNA display to drive the evolution of highly stable cyclic peptides while preserving target affinity. To do this, we incorporated an unnatural amino acid in an mRNA display library that was subjected to proteolysis prior to selection for function. The resulting "SUPR (scanning unnatural protease resistant) peptide" showed ≈500-fold improvement in serum stability (t1/2 =160 h) and up to 3700-fold improvement in protease resistance versus the parent sequence. We extended this approach by carrying out SUPR peptide selections against Her2-positive cells in culture. The resulting SUPR4 peptide showed low-nanomolar affinity toward Her2, excellent specificity, and selective tumor uptake in vivo. These results argue that this is a general method to design potent and stable peptides for in vivo imaging and therapy.
Collapse
Affiliation(s)
- Stephen V Fiacco
- Department of Chemistry, University of Southern California, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA
- EvoRx Technologies, 129 N. Hill Avenue, Suite 103, Pasadena, CA, 91106, USA
| | - Lindsay E Kelderhouse
- Department of Cancer Systems Imaging, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Amanda Hardy
- EvoRx Technologies, 129 N. Hill Avenue, Suite 103, Pasadena, CA, 91106, USA
| | - Yonatan Peleg
- Department of Chemistry, University of Southern California, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA
| | - Biliang Hu
- Mork Family Department of Chemical Engineering and Materials Science, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA
| | - Argentina Ornelas
- Department of Cancer Systems Imaging, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Peiying Yang
- Integrative Medicine Program, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Shannon M Howell
- Department of Chemistry, University of Southern California, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA
- University of Southern California, Norris Comprehensive Cancer Center, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA
| | - Terry T Takahashi
- Department of Chemistry, University of Southern California, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA
| | - Steven W Millward
- Department of Cancer Systems Imaging, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Richard W Roberts
- Department of Chemistry, University of Southern California, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA.
- Mork Family Department of Chemical Engineering and Materials Science, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA.
- Department of Molecular and Computational Biology, University of Southern California, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA.
- University of Southern California, Norris Comprehensive Cancer Center, 3710 McClintock Avenue, Los Angeles, CA, 90089-1211, USA.
| |
Collapse
|
16
|
Urnauer S, Morys S, Krhac Levacic A, Müller AM, Schug C, Schmohl KA, Schwenk N, Zach C, Carlsen J, Bartenstein P, Wagner E, Spitzweg C. Sequence-defined cMET/HGFR-targeted Polymers as Gene Delivery Vehicles for the Theranostic Sodium Iodide Symporter (NIS) Gene. Mol Ther 2016; 24:1395-404. [PMID: 27157666 DOI: 10.1038/mt.2016.95] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022] Open
Abstract
The sodium iodide symporter (NIS) as well-characterized theranostic gene represents an outstanding tool to target different cancer types allowing noninvasive imaging of functional NIS expression and therapeutic radioiodide application. Based on its overexpression on the surface of most cancer types, the cMET/hepatocyte growth factor receptor serves as ideal target for tumor-selective gene delivery. Sequence-defined polymers as nonviral gene delivery vehicles comprising polyethylene glycol (PEG) and cationic (oligoethanoamino) amide cores coupled with a cMET-binding peptide (cMBP2) were complexed with NIS-DNA and tested for receptor-specificity, transduction efficiency, and therapeutic efficacy in hepatocellular cancer cells HuH7. In vitro iodide uptake studies demonstrated high transduction efficiency and cMET-specificity of NIS-encoding polyplexes (cMBP2-PEG-Stp/NIS) compared to polyplexes without targeting ligand (Ala-PEG-Stp/NIS) and without coding DNA (cMBP2-PEG-Stp/Antisense-NIS). Tumor recruitment and vector biodistribution were investigated in vivo in a subcutaneous xenograft mouse model showing high tumor-selective iodide accumulation in cMBP2-PEG-Stp/NIS-treated mice (6.6 ± 1.6% ID/g (123)I, biological half-life 3 hours) by (123)I-scintigraphy. Therapy studies with three cycles of polyplexes and (131)I application resulted in significant delay in tumor growth and prolonged survival. These data demonstrate the enormous potential of cMET-targeted sequence-defined polymers combined with the unique theranostic function of NIS allowing for optimized transfection efficiency while eliminating toxicity.
Collapse
Affiliation(s)
- Sarah Urnauer
- Department of Internal Medicine II, LMU Munich, Munich, Germany
| | - Stephan Morys
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Ana Krhac Levacic
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Andrea M Müller
- Department of Internal Medicine II, LMU Munich, Munich, Germany
| | - Christina Schug
- Department of Internal Medicine II, LMU Munich, Munich, Germany
| | | | | | - Christian Zach
- Department of Nuclear Medicine, LMU Munich, Munich, Germany
| | | | | | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | | |
Collapse
|
17
|
van Leeuwen FWB, Hardwick JCH, van Erkel AR. Luminescence-based Imaging Approaches in the Field of Interventional Molecular Imaging. Radiology 2015; 276:12-29. [PMID: 26101919 DOI: 10.1148/radiol.2015132698] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Luminescence imaging-based guidance technologies are increasingly gaining interest within surgical and radiologic disciplines. Their promise to help visualize molecular features of disease in real time and with microscopic detail is considered desirable. Integrating luminescence imaging with three-dimensional radiologic- and/or nuclear medicine-based preinterventional imaging may overcome limitations such as the limited tissue penetration of luminescence signals. At the same time, the beneficial features of luminescence imaging may be used to complement the routinely used radiologic- and nuclear medicine-based modalities. To fully exploit this integrated concept, and to relate the largely experimental luminesce-based guidance approaches into perspective with routine imaging approaches, it is essential to understand the advantages and limitations of this relatively new modality. By providing an overview of the available luminescence technologies and the various clinically evaluated exogenous luminescent tracers (fluorescent, hybrid, and theranostic tracers), this review attempts to place luminescence-based interventional molecular imaging technologies into perspective to the available radiologic- and/or nuclear medicine-based imaging technologies. At the same time, the transition from anatomic to physiologic and even molecular interventional luminescence imaging is illustrated.
Collapse
Affiliation(s)
- Fijs W B van Leeuwen
- From the Department of Radiology, Interventional Molecular Imaging Laboratory and Section of Interventional Radiology (F.W.B.v.L., A.R.v.E.), and Department of Gastroenterology (J.C.H.H.), Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - James C H Hardwick
- From the Department of Radiology, Interventional Molecular Imaging Laboratory and Section of Interventional Radiology (F.W.B.v.L., A.R.v.E.), and Department of Gastroenterology (J.C.H.H.), Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Arian R van Erkel
- From the Department of Radiology, Interventional Molecular Imaging Laboratory and Section of Interventional Radiology (F.W.B.v.L., A.R.v.E.), and Department of Gastroenterology (J.C.H.H.), Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|
18
|
Jagoda EM, Bhattacharyya S, Kalen J, Riffle L, Leeder A, Histed S, Williams M, Wong KJ, Xu B, Szajek LP, Elbuluk O, Cecchi F, Raffensperger K, Golla M, Bottaro DP, Choyke P. Imaging the Met Receptor Tyrosine Kinase (Met) and Assessing Tumor Responses to a Met Tyrosine Kinase Inhibitor in Human Xenograft Mouse Models with a [
99m
Tc] (AH-113018) or CY 5** (AH-112543) Labeled Peptide. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elaine M. Jagoda
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Sibaprasad Bhattacharyya
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Joseph Kalen
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Lisa Riffle
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Avrum Leeder
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Stephanie Histed
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Mark Williams
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Karen J. Wong
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Biying Xu
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Lawrence P. Szajek
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Osama Elbuluk
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Fabiola Cecchi
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Kristen Raffensperger
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Meghana Golla
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Donald P. Bottaro
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Peter Choyke
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| |
Collapse
|
19
|
Kos P, Lächelt U, Herrmann A, Mickler FM, Döblinger M, He D, Krhač Levačić A, Morys S, Bräuchle C, Wagner E. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. NANOSCALE 2015; 7:5350-5362. [PMID: 25721131 DOI: 10.1039/c4nr06556e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor.
Collapse
Affiliation(s)
- Petra Kos
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig Maximilians University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jagoda EM, Bhattacharyya S, Kalen J, Riffle L, Leeder A, Histed S, Williams M, Wong KJ, Xu B, Szajek LP, Elbuluk O, Cecchi F, Raffensperger K, Golla M, Bottaro DP, Choyke P. Imaging the Met Receptor Tyrosine Kinase (Met) and Assessing Tumor Responses to a Met Tyrosine Kinase Inhibitor in Human Xenograft Mouse Models with a [99mTc] (AH-113018) or Cy 5** (AH-112543) Labeled Peptide. Mol Imaging 2015; 14:499-515. [PMID: 26461980 PMCID: PMC7709139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
Developing an imaging agent targeting the hepatocyte growth factor receptor protein (Met) status of cancerous lesions would aid in the diagnosis and monitoring of Met-targeted tyrosine kinase inhibitors (TKIs). A peptide targeting Met labeled with [(99m)Tc] had high affinity in vitro (Kd = 3.3 nM) and detected relative changes in Met in human cancer cell lines. In vivo [(99m)Tc]-Met peptide (AH-113018) was retained in Met-expressing tumors, and high-expressing Met tumors (MKN-45) were easily visualized and quantitated using single-photon emission computed tomography or optical imaging. In further studies, MKN-45 mouse xenografts treated with PHA 665752 (Met TKI) or vehicle were monitored weekly for tumor responses by [(99m)Tc]-Met peptide imaging and measurement of tumor volumes. Tumor uptake of [(99m)Tc]-Met peptide was significantly decreased as early as 1 week after PHA 665752 treatment, corresponding to decreases in tumor volumes. These results were comparable to Cy5**-Met peptide (AH-112543) fluorescence imaging using the same treatment model. [(99m)Tc] or Cy5**-Met peptide tumor uptake was further validated by histologic (necrosis, apoptosis) and immunoassay (total Met, p Met, and plasma shed Met) assessments in imaged and nonimaged cohorts. These data suggest that [(99m)Tc] or Cy5**-Met peptide imaging may have clinical diagnostic, prognostic, and therapeutic monitoring applications.
Collapse
|
21
|
Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 2014; 76:2-20. [PMID: 25086372 DOI: 10.1016/j.addr.2014.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients.
Collapse
|
22
|
Keunen O, Taxt T, Grüner R, Lund-Johansen M, Tonn JC, Pavlin T, Bjerkvig R, Niclou SP, Thorsen F. Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies. Adv Drug Deliv Rev 2014; 76:98-115. [PMID: 25078721 DOI: 10.1016/j.addr.2014.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/18/2023]
Abstract
The vast majority of malignant gliomas relapse after surgery and standard radio-chemotherapy. Novel molecular and cellular therapies are thus being developed, targeting specific aspects of tumor growth. While histopathology remains the gold standard for tumor classification, neuroimaging has over the years taken a central role in the diagnosis and treatment follow up of brain tumors. It is used to detect and localize lesions, define the target area for biopsies, plan surgical and radiation interventions and assess tumor progression and treatment outcome. In recent years the application of novel drugs including anti-angiogenic agents that affect the tumor vasculature, has drastically modulated the outcome of brain tumor imaging. To properly evaluate the effects of emerging experimental therapies and successfully support treatment decisions, neuroimaging will have to evolve. Multi-modal imaging systems with existing and new contrast agents, molecular tracers, technological advances and advanced data analysis can all contribute to the establishment of disease relevant biomarkers that will improve disease management and patient care. In this review, we address the challenges of glioma imaging in the context of novel molecular and cellular therapies, and take a prospective look at emerging experimental and pre-clinical imaging techniques that bear the promise of meeting these challenges.
Collapse
|
23
|
Simultaneous imaging and restoration of cell function using cell permeable peptide probe. Biomaterials 2014; 35:6287-98. [DOI: 10.1016/j.biomaterials.2014.04.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/14/2014] [Indexed: 11/20/2022]
|
24
|
Terwisscha van Scheltinga AG, Lub-de Hooge MN, Hinner MJ, Verheijen RB, Allersdorfer A, Hülsmeyer M, Nagengast WB, Schröder CP, Kosterink JG, de Vries EG, Audoly L, Olwill SA. In Vivo Visualization of MET Tumor Expression and Anticalin Biodistribution with the MET-Specific Anticalin 89Zr-PRS-110 PET Tracer. J Nucl Med 2014; 55:665-71. [DOI: 10.2967/jnumed.113.124941] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Jacobson O, Chen X. Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol Rev 2013; 65:1214-56. [PMID: 24064460 DOI: 10.1124/pr.113.007625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [(18)F]fluorodeoxyglucose ([(18)F]FDG), which measures glucose metabolism. However, [(18)F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[(18)F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD.
| | | |
Collapse
|
26
|
Lee CM, Cheong SJ, Kim EM, Lim ST, Jeong YY, Sohn MH, Jeong HJ. Nonpolymeric surface-coated iron oxide nanoparticles for in vivo molecular imaging: biodegradation, biocompatibility, and multiplatform. J Nucl Med 2013; 54:1974-80. [PMID: 24050935 DOI: 10.2967/jnumed.113.122267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED A new approach to the surface engineering of superparamagnetic iron oxide nanoparticles (SPIONs) may encourage their development for clinical use. In this study, we demonstrated that nonpolymeric surface modification of SPIONs has the potential to be an advanced biocompatible contrast agent for biomedical applications, including diagnostic imaging in vivo. METHODS Adenosine triphosphate (ATP), which is an innate biomaterial derived from the body, was coated onto the surface of SPIONs. An in vivo degradation study of ATP-coated SPIONs (ATP@SPIONs) was performed for 28 d. To diminish phagocytosis, ATP@SPIONs were surface-modified with gluconic acid. We next studied the ability of the SPIONs to serve as a specific targeted contrast agent after conjugation of cMet-binding peptide. The SPIONs were conjugated with Cy5.5 and labeled with (125)I for multimodality imaging. In vivo and in vitro tumor-targeted binding studies were performed on U87MG cells or a U87MG tumor model using animal SPECT/CT, an optical imaging system, and a 1.5-T clinical MR scanner. RESULTS ATP@SPIONs showed rapid degradation in vivo and in vitro, compared with ferumoxides. ATP@SPIONs modified with gluconic acid reduced phagocytic uptake, showed improved biodistribution, and provided good targetability in vivo. The gluconic acid-conjugated ATP@SPIONs, when conjugated with cMet-binding peptide, were successfully visualized on the U87MG tumors implanted in mice via multimodality imaging. CONCLUSION We suggest that ATP@SPIONs can be used as a multiplatform to target a region of interest in molecular imaging. When we consider the biocompatibility of contrast agents in vivo, ATP@SPIONs are superior to polymeric surface-modified SPIONs.
Collapse
Affiliation(s)
- Chang-Moon Lee
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012; 92:897-965. [PMID: 22535898 DOI: 10.1152/physrev.00049.2010] [Citation(s) in RCA: 702] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular imaging is revolutionizing the way we study the inner workings of the human body, diagnose diseases, approach drug design, and assess therapies. The field as a whole is making possible the visualization of complex biochemical processes involved in normal physiology and disease states, in real time, in living cells, tissues, and intact subjects. In this review, we focus specifically on molecular imaging of intact living subjects. We provide a basic primer for those who are new to molecular imaging, and a resource for those involved in the field. We begin by describing classical molecular imaging techniques together with their key strengths and limitations, after which we introduce some of the latest emerging imaging modalities. We provide an overview of the main classes of molecular imaging agents (i.e., small molecules, peptides, aptamers, engineered proteins, and nanoparticles) and cite examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics (therapy combined with diagnostics). A step-by-step guide to answering biological and/or clinical questions using the tools of molecular imaging is also provided. We conclude by discussing the grand challenges of the field, its future directions, and enormous potential for further impacting how we approach research and medicine.
Collapse
Affiliation(s)
- Michelle L James
- Molecular Imaging Program, Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
28
|
Jeong MH, Kim K, Kim EM, Cheong SJ, Lee CM, Jeong HJ, Kim DW, Lim ST, Sohn MH, Chung J. In vivo and in vitro evaluation of Cy5.5 conjugated epidermal growth factor receptor binding peptide. Nucl Med Biol 2012; 39:805-12. [PMID: 22421431 DOI: 10.1016/j.nucmedbio.2012.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/19/2011] [Accepted: 01/07/2012] [Indexed: 01/14/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor and plays an important role in carcinogenesis. In this study, the epidermal growth factor receptor binding peptide (EGBP) was identified using a phage display method and evaluated in U87MG cells in order to investigate the possibility to target the EGFR using an optical imaging system. Cyanine dye 5.5 (Cy5.5) was conjugated with EGBP-GGG-SC, EGBP-AOC-SC, and EGBP-AM2BA-SC. Cellular binding study of EGBP-Linker-Cy5.5 conjugates or (125)I-EGBP-Linker compounds was performed in U87MG cells. Optical imaging studies were performed in U87MG bearing mice. Three of seven clones from the 12-mer peptide library showed a specific binding affinity to rhEGFR, and they encoded the same 12 amino acid peptide sequence, FPMFNHWEQWPP. Confocal images show that the fluorescent signal of EGBP-Linker-Cy5.5 conjugates was decreased in the order: EGBP-AOC-Cy5.5≫EGBP-AM2BA-Cy5.5>EGBP-GGG-Cy5.5. EGBP-AOC-Cy5.5 appeared in cell cytoplasm and surface, and it was inhibited by free EGBP apparently. The cellular binding of EGBP-AOC-Cy5.5 exhibited a higher average radiance value than EGBP-GGG-Cy5.5 and EGBP-AM2BA-Cy5.5. Among various (125)I-EGBP-Linker compounds, EGBP-GGG showed a higher binding than other compounds. However, uptake of (125)I-EGBP-AOC was clearly inhibited by free EGBP in inhibition study. In an in vivo study, the fluorescent signal of EGBP-AOC-Cy5.5 treated mouse was mainly detected in the tumor and kidney. Among the three derivatives, EGBP-AOC-Cy5.5 was the optimized optical imaging agent for U87MG EGFR positive tumors in the animal model. This study demonstrated the EGBP-Linker-Cy5.5 conjugates may be useful as a potential EGFR target optical probe.
Collapse
Affiliation(s)
- Min-Hee Jeong
- Department of Nuclear Medicine, Research Institute of Clinical Medicine, Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim EM, Jeong MH, Kim DW, Jeong HJ, Lim ST, Sohn MH. Iodine 125-labeled mesenchymal-epithelial transition factor binding peptide-click-cRGDyk heterodimer for glioma imaging. Cancer Sci 2011; 102:1516-21. [PMID: 21575108 PMCID: PMC11158580 DOI: 10.1111/j.1349-7006.2011.01983.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In our previous study, mesenchymal-epithelial transition factor (c-Met)-binding peptides (cMBP) had been readily radiolabeled with radioactive iodide for glioma imaging because of five histidine amino acids. However, iodinated cMBP showed relatively unfavorable in vivo kinetics. For this reason, we tried to design dual peptide ligands that would be advantageous in recognizing both c-Met receptor and integrin α(v) β(3) . A cMBP-click-cRGDyk (cyclic Arg-Gly-Asp-Tyr-Lys) heterodimer was synthesized from mini polyethylene glycol-conjugated cMBP-3 glycine (GGG)-a single name of amino acids (SC) (Ser-Cys) and cRGDyk through a click (1 + 3 cycloaddition), and then labeled with iodine 125 (I-125) via histidine in the cMBP and tyrosine in the cRGDyk. The receptor-binding characteristics and tumor-targeting efficacy of cMBP-click-cRGDyk were tested in vitro and in vivo. A cMBP-click-cRGDyk had comparable integrin α(v) β(3) -binding affinity with cRGDyk. The results of the biodistribution of (125) I-cMBP-click-cRGDyk at 4 h showed higher tumor-to-blood, tumor-to-liver, and tumor-to-muscle ratios: 10.07, 6.76, and 11.12, compared to 2.34, 1.99, and 5.18 of (125) I-cMBP-GGG-SC, respectively. U87MG tumor xenografts could be visualized by single photon emission computed tomography (SPECT)/CT using (125) I-cMBP-click-cRGDyk and also image contrast and overall quality were improved compared to (125) I-cMBP-GGG-SC. As the results of in vivo inhibition using free cRGDyk or cMBP-GGG-SC indicated, the tumoral uptake of (125) I-cMBP-click-cRGDyk decreased. This finding means that (125) I-cMBP-click-cRGDyk was specifically uptaken by integrin α(v) β(3) and the c-Met receptor. Although imaging quality was improved, additional experiments are needed to acquire significant image-quality improvement.
Collapse
Affiliation(s)
- Eun-Mi Kim
- Department of Nuclear Medicine, Research Institute of Clinical Medicine, Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonbuk, South Korea
| | | | | | | | | | | |
Collapse
|
30
|
Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivosmall animal imaging: Current status and future prospects. Med Phys 2010; 37:6421-42. [DOI: 10.1118/1.3515456] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
31
|
Kim EM, Joung MH, Lee CM, Jeong HJ, Lim ST, Sohn MH, Kim DW. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent. Bioorg Med Chem Lett 2010; 20:4240-3. [PMID: 20538463 DOI: 10.1016/j.bmcl.2010.05.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 05/06/2010] [Accepted: 05/12/2010] [Indexed: 11/15/2022]
Abstract
The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the 'click-to-chelate' protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12, [(99m)Tc(CO)(3)]13, and [(99m)Tc(CO)(3)]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)(3)]12, [Re(CO)(3)]13, and [Re(CO)(3)]14, were shown to have high binding affinities (0.13 microM, 0.06 microM, and 0.16 microM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12-14) to c-Met receptor positive U87MG cells.
Collapse
Affiliation(s)
- Eun-Mi Kim
- Department of Nuclear Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-712, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|