1
|
Ytterbrink C, Shubbar E, Parris TZ, Langen B, Druid M, Schüler E, Strand SE, Åkerström B, Gram M, Helou K, Forssell-Aronsson E. Effects of Recombinant α 1-Microglobulin on Early Proteomic Response in Risk Organs after Exposure to 177Lu-Octreotate. Int J Mol Sci 2024; 25:7480. [PMID: 39000587 PMCID: PMC11242497 DOI: 10.3390/ijms25137480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Recombinant α1-microglobulin (A1M) is proposed as a protector during 177Lu-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of 177Lu-octreotate and A1M could result in a more effective treatment by protecting healthy tissue, but the radioprotective action of A1M is not fully understood. The aim of this study was to examine the proteomic response of kidneys and bone marrow early after 177Lu-octreotate and/or A1M administration. Mice were injected with 177Lu-octreotate and/or A1M, while control mice received saline or A1M vehicle solution. Bone marrow, kidney medulla, and kidney cortex were sampled after 24 h or 7 d. The differential protein expression was analyzed with tandem mass spectrometry. The dosimetric estimation was based on 177Lu activity in the kidney. PHLDA3 was the most prominent radiation-responsive protein in kidney tissue. In general, no statistically significant difference in the expression of radiation-related proteins was observed between the irradiated groups. Most canonical pathways were identified in bone marrow from the 177Lu-octreotate+A1M group. Altogether, a tissue-dependent proteomic response followed exposure to 177Lu-octreotate alone or together with A1M. Combining 177Lu-octreotate with A1M did not inhibit the radiation-induced protein expression early after exposure, and late effects should be further studied.
Collapse
Affiliation(s)
- Charlotte Ytterbrink
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
| | - Emman Shubbar
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
| | - Toshima Z. Parris
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Britta Langen
- Section of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Malin Druid
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sven-Erik Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, 221 00 Lund, Sweden;
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, 221 00 Lund, Sweden;
| | - Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 221 00 Lund, Sweden;
- Department of Neonatology, Skåne University Hospital, 222 42 Lund, Sweden
- Biofilms—Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Khalil Helou
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
2
|
Smith TAD. Gene Abnormalities and Modulated Gene Expression Associated with Radionuclide Treatment: Towards Predictive Biomarkers of Response. Genes (Basel) 2024; 15:688. [PMID: 38927624 PMCID: PMC11202453 DOI: 10.3390/genes15060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Molecular radiotherapy (MRT), also known as radioimmunotherapy or targeted radiotherapy, is the delivery of radionuclides to tumours by targeting receptors overexpressed on the cancer cell. Currently it is used in the treatment of a few cancer types including lymphoma, neuroendocrine, and prostate cancer. Recently reported outcomes demonstrating improvements in patient survival have led to an upsurge in interest in MRT particularly for the treatment of prostate cancer. Unfortunately, between 30% and 40% of patients do not respond. Further normal tissue exposure, especially kidney and salivary gland due to receptor expression, result in toxicity, including dry mouth. Predictive biomarkers to select patients who will benefit from MRT are crucial. Whilst pre-treatment imaging with imaging versions of the therapeutic agents is useful in demonstrating tumour binding and potentially organ toxicity, they do not necessarily predict patient benefit, which is dependent on tumour radiosensitivity. Transcript-based biomarkers have proven useful in tailoring external beam radiotherapy and adjuvant treatment. However, few studies have attempted to derive signatures for MRT response prediction. Here, transcriptomic studies that have identified genes associated with clinical radionuclide exposure have been reviewed. These studies will provide potential features for seeding multi-component biomarkers of MRT response.
Collapse
Affiliation(s)
- Tim A D Smith
- Nuclear Futures Institute, School of Computer Science and Engineering, Bangor University, Dean Street, Bangor LL57 1UT, UK
| |
Collapse
|
3
|
Andersson B, Langen B, Liu P, Dávila López M. Development of a machine learning framework for radiation biomarker discovery and absorbed dose prediction. Front Oncol 2023; 13:1156009. [PMID: 37256187 PMCID: PMC10225714 DOI: 10.3389/fonc.2023.1156009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Background Molecular radiation biomarkers are an emerging tool in radiation research with applications for cancer radiotherapy, radiation risk assessment, and even human space travel. However, biomarker screening in genome-wide expression datasets using conventional tools is time-consuming and underlies analyst (human) bias. Machine Learning (ML) methods can improve the sensitivity and specificity of biomarker identification, increase analytical speed, and avoid multicollinearity and human bias. Aim To develop a resource-efficient ML framework for radiation biomarker discovery using gene expression data from irradiated normal tissues. Further, to identify biomarker panels predicting radiation dose with tissue specificity. Methods A strategic search in the Gene Expression Omnibus database identified a transcriptomic dataset (GSE44762) for normal tissues radiation responses (murine kidney cortex and medulla) suited for biomarker discovery using an ML approach. The dataset was pre-processed in R and separated into train and test data subsets. High computational cost of Genetic Algorithm/k-Nearest Neighbor (GA/KNN) mandated optimization and 13 ML models were tested using the caret package in R. Biomarker performance was evaluated and visualized via Principal Component Analysis (PCA) and dose regression. The novelty of ML-identified biomarker panels was evaluated by literature search. Results Caret-based feature selection and ML methods vastly improved processing time over the GA approach. The KNN method yielded overall best performance values on train and test data and was implemented into the framework. The top-ranking genes were Cdkn1a, Gria3, Mdm2 and Plk2 in cortex, and Brf2, Ccng1, Cdkn1a, Ddit4l, and Gria3 in medulla. These candidates successfully categorized dose groups and tissues in PCA. Regression analysis showed that correlation between predicted and true dose was high with R2 of 0.97 and 0.99 for cortex and medulla, respectively. Conclusion The caret framework is a powerful tool for radiation biomarker discovery optimizing performance with resource-efficiency for broad implementation in the field. The KNN-based approach identified Brf2, Ddit4l, and Gria3 mRNA as novel candidates that have been uncharacterized as radiation biomarkers to date. The biomarker panel showed good performance in dose and tissue separation and dose regression. Further training with larger cohorts is warranted to improve accuracy, especially for lower doses.
Collapse
Affiliation(s)
- Björn Andersson
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Oncology, Division of Molecular Radiation Biology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Peidi Liu
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcela Dávila López
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Aerts A, Eberlein U, Holm S, Hustinx R, Konijnenberg M, Strigari L, van Leeuwen FWB, Glatting G, Lassmann M. EANM position paper on the role of radiobiology in nuclear medicine. Eur J Nucl Med Mol Imaging 2021; 48:3365-3377. [PMID: 33912987 PMCID: PMC8440244 DOI: 10.1007/s00259-021-05345-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
Abstract
With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.
Collapse
Affiliation(s)
- An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Sören Holm
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, GIGA-CRC in vivo Imaging, University of Liège, Liège, Belgium
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Lidia Strigari
- Medical Physics Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Langen B, Helou K, Forssell-Aronsson E. The IRI-DICE hypothesis: ionizing radiation-induced DSBs may have a functional role for non-deterministic responses at low doses. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:349-355. [PMID: 32583290 PMCID: PMC7368863 DOI: 10.1007/s00411-020-00854-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Low-dose ionizing radiation (IR) responses remain an unresolved issue in radiation biology and risk assessment. Accurate knowledge of low-dose responses is important for estimation of normal tissue risk in cancer radiotherapy or health risks from occupational or hazard exposure. Cellular responses to low-dose IR appear diverse and stochastic in nature and to date no model has been proposed to explain the underlying mechanisms. Here, we propose a hypothesis on IR-induced double-strand break (DSB)-induced cis effects (IRI-DICE) and introduce DNA sequence functionality as a submicron-scale target site with functional outcome on gene expression: DSB induction in a certain genetic target site such as promotor, regulatory element, or gene core would lead to changes in transcript expression, which may range from suppression to overexpression depending on which functional element was damaged. The DNA damage recognition and repair machinery depicts threshold behavior requiring a certain number of DSBs for induction. Stochastically distributed persistent disruption of gene expression may explain-in part-the diverse nature of low-dose responses until the repair machinery is initiated at increased absorbed dose. Radiation quality and complexity of DSB lesions are also discussed. Currently, there are no technologies available to irradiate specific genetic sites to test the IRI-DICE hypothesis directly. However, supportive evidence may be achieved by developing a computational model that combines radiation transport codes with a genomic DNA model that includes sequence functionality and transcription to simulate expression changes in an irradiated cell population. To the best of our knowledge, IRI-DICE is the first hypothesis that includes sequence functionality of different genetic elements in the radiation response and provides a model for the diversity of radiation responses in the (very) low dose regimen.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
6
|
Spetz J, Langen B, Rudqvist NP, Parris TZ, Shubbar E, Dalmo J, Wängberg B, Nilsson O, Helou K, Forssell-Aronsson E. Transcriptional effects of 177Lu-octreotate therapy using a priming treatment schedule on GOT1 tumor in nude mice. EJNMMI Res 2019; 9:28. [PMID: 30895393 PMCID: PMC6426909 DOI: 10.1186/s13550-019-0500-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND 177Lu-octreotate is used for therapy of somatostatin receptor expressing neuroendocrine tumors with promising results, although complete tumor remission is rarely seen. Previous studies on nude mice bearing the human small intestine neuroendocrine tumor, GOT1, have shown that a priming injection of 177Lu-octreotate 24 h before the main injection of 177Lu-octreotate resulted in higher 177Lu concentration in tumor, resulting in increased absorbed dose, volume reduction, and time to regrowth. To our knowledge, the cellular effects of a priming treatment schedule have not yet been studied. The aim of this study was to identify transcriptional changes contributing to the enhanced therapeutic response of GOT1 tumors in nude mice to 177Lu-octreotate therapy with priming, compared with non-curative monotherapy. RESULTS RNA microarray analysis was performed on tumor samples from GOT1-bearing BALB/c nude mice treated with a 5 MBq priming injection of 177Lu-octreotate followed by a second injection of 10 MBq of 177Lu-octreotate after 24 h and killed after 1, 3, 7, and 41 days after the last injection. Administered activity amounts were chosen to be non-curative, in order to facilitate the study of tumor regression and regrowth. Differentially regulated transcripts (RNA samples from treated vs. untreated animals) were identified (change ≥ 1.5-fold; adjusted p value < 0.01) using Nexus Expression 3.0. Analysis of the biological effects of transcriptional regulation was performed using the Gene Ontology database and Ingenuity Pathway Analysis. Transcriptional analysis of the tumors revealed two stages of pathway regulation for the priming schedule (up to 1 week and around 1 month) which differed distinctly from cellular responses observed after monotherapy. Induction of cell cycle arrest and apoptotic pathways (intrinsic and extrinsic) was found at early time points after treatment start, while downregulation of pro-proliferative genes were found at a late time point. CONCLUSIONS The present study indicates increased cellular stress responses in the tumors treated with a priming treatment schedule compared with those seen after conventional 177Lu-octreotate monotherapy, resulting in a more profound initiation of cell cycle arrest followed by apoptosis, as well as effects on PI3K/AKT-signaling and unfolded protein response.
Collapse
Affiliation(s)
- Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.,Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Nils-Petter Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emman Shubbar
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Johanna Dalmo
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ola Nilsson
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Langen B, Rudqvist N, Spetz J, Helou K, Forssell-Aronsson E. Deconvolution of expression microarray data reveals 131I-induced responses otherwise undetected in thyroid tissue. PLoS One 2018; 13:e0197911. [PMID: 30001320 PMCID: PMC6042689 DOI: 10.1371/journal.pone.0197911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/10/2018] [Indexed: 01/19/2023] Open
Abstract
High-throughput gene expression analysis is increasingly used in radiation research for discovery of damage-related or absorbed dose-dependent biomarkers. In tissue samples, cell type-specific responses can be masked in expression data due to mixed cell populations which can preclude biomarker discovery. In this study, we deconvolved microarray data from thyroid tissue in order to assess possible bias from mixed cell type data. Transcript expression data [GSE66303] from mouse thyroid that received 5.9 Gy from 131I over 24 h (or 0 Gy from mock treatment) were deconvolved by cell frequency of follicular cells and C-cells using csSAM and R and processed with Nexus Expression. Literature-based signature genes were used to assess the relative impact from ionizing radiation (IR) or thyroid hormones (TH). Regulation of cellular functions was inferred by enriched biological processes according to Gene Ontology terms. We found that deconvolution increased the detection rate of significantly regulated transcripts including the biomarker candidate family of kallikrein transcripts. Detection of IR-associated and TH-responding signature genes was also increased in deconvolved data, while the dominating trend of TH-responding genes was reproduced. Importantly, responses in biological processes for DNA integrity, gene expression integrity, and cellular stress were not detected in convoluted data–which was in disagreement with expected dose-response relationships–but upon deconvolution in follicular cells and C-cells. In conclusion, previously reported trends of 131I-induced transcriptional responses in thyroid were reproduced with deconvolved data and usually with a higher detection rate. Deconvolution also resolved an issue with detecting damage and stress responses in enriched data, and may reduce false negatives in other contexts as well. These findings indicate that deconvolution can optimize microarray data analysis of heterogeneous sample material for biomarker screening or other clinical applications.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
- * E-mail:
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
8
|
Rudqvist N, Spetz J, Schüler E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Transcriptional response to 131I exposure of rat thyroid gland. PLoS One 2017; 12:e0171797. [PMID: 28222107 PMCID: PMC5319760 DOI: 10.1371/journal.pone.0171797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 01/26/2017] [Indexed: 12/25/2022] Open
Abstract
Humans are exposed to 131I in medical diagnostics and treatment but also from nuclear accidents, and better knowledge of the molecular response in thyroid is needed. The aim of the study was to examine the transcriptional response in thyroid tissue 24 h after 131I administration in rats. The exposure levels were chosen to simulate both the clinical situation and the case of nuclear fallout. Thirty-six male rats were i.v. injected with 0–4700 kBq 131I, and killed at 24 h after injection (Dthyroid = 0.0058–3.0 Gy). Total RNA was extracted from individual thyroid tissue samples and mRNA levels were determined using oligonucleotide microarray technique. Differentially expressed transcripts were determined using Nexus Expression 3.0. Hierarchical clustering was performed in the R statistical computing environment. Pathway analysis was performed using the Ingenuity Pathway Analysis tool and the Gene Ontology database. T4 and TSH plasma concentrations were measured using ELISA. Totally, 429 differentially regulated transcripts were identified. Downregulation of thyroid hormone biosynthesis associated genes (e.g. thyroglobulin, thyroid peroxidase, the sodium-iodine symporter) was identified in some groups, and an impact on thyroid function was supported by the pathway analysis. Recurring downregulation of Dbp and Slc47a2 was found. Dbp exhibited a pattern with monotonous reduction of downregulation with absorbed dose at 0.0058–0.22 Gy. T4 plasma levels were increased and decreased in rats whose thyroids were exposed to 0.057 and 0.22 Gy, respectively. Different amounts of injected 131I gave distinct transcriptional responses in the rat thyroid. Transcriptional response related to thyroid function and changes in T4 plasma levels were found already at very low absorbed doses to thyroid.
Collapse
Affiliation(s)
- Nils Rudqvist
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Spetz
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emil Schüler
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z. Parris
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Britta Langen
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
9
|
Potential Biomarkers for Radiation-Induced Renal Toxicity following 177Lu-Octreotate Administration in Mice. PLoS One 2015; 10:e0136204. [PMID: 26287527 PMCID: PMC4546116 DOI: 10.1371/journal.pone.0136204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022] Open
Abstract
The kidneys are one of the main dose-limiting organs in peptide receptor radionuclide therapy and due to large inter-individual variations in renal toxicity, biomarkers are urgently needed in order to optimize therapy and reduce renal tissue damage. The aim of this study was to investigate the transcriptional, functional, and morphological effects on renal tissue after 177Lu-octreotate administration in normal mice, and to identify biomarkers for radiation induced renal toxicity.
Collapse
|
10
|
Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration. PLoS One 2015; 10:e0131686. [PMID: 26177204 PMCID: PMC4503762 DOI: 10.1371/journal.pone.0131686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/04/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland. METHODS BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value <0.01 and fold change >1.5, and p-value <0.05, respectively. RESULTS In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy).
Collapse
|
11
|
Ghandhi SA, Smilenov LB, Elliston CD, Chowdhury M, Amundson SA. Radiation dose-rate effects on gene expression for human biodosimetry. BMC Med Genomics 2015; 8:22. [PMID: 25963628 PMCID: PMC4472181 DOI: 10.1186/s12920-015-0097-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022] Open
Abstract
Background The effects of dose-rate and its implications on radiation biodosimetry methods are not well studied in the context of large-scale radiological scenarios. There are significant health risks to individuals exposed to an acute dose, but a realistic scenario would include exposure to both high and low dose-rates, from both external and internal radioactivity. It is important therefore, to understand the biological response to prolonged exposure; and further, discover biomarkers that can be used to estimate damage from low-dose rate exposures and propose appropriate clinical treatment. Methods We irradiated human whole blood ex vivo to three doses, 0.56 Gy, 2.23 Gy and 4.45 Gy, using two dose rates: acute, 1.03 Gy/min and a low dose-rate, 3.1 mGy/min. After 24 h, we isolated RNA from blood cells and these were hybridized to Agilent Whole Human genome microarrays. We validated the microarray results using qRT-PCR. Results Microarray results showed that there were 454 significantly differentially expressed genes after prolonged exposure to all doses. After acute exposure, 598 genes were differentially expressed in response to all doses. Gene ontology terms enriched in both sets of genes were related to immune processes and B-cell mediated immunity. Genes responding to acute exposure were also enriched in functions related to natural killer cell activation and cell-to-cell signaling. As expected, the p53 pathway was found to be significantly enriched at all doses and by both dose-rates of radiation. A support vectors machine classifier was able to distinguish between dose-rates with 100 % accuracy using leave-one-out cross-validation. Conclusions In this study we found that low dose-rate exposure can result in distinctive gene expression patterns compared with acute exposures. We were able to successfully distinguish low dose-rate exposed samples from acute dose exposed samples at 24 h, using a gene expression-based classifier. These genes are candidates for further testing as markers to classify exposure based on dose-rate. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0097-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanaz A Ghandhi
- Center for Radiological Research, Columbia University, VC11-237, 630 West 168th Street, New York, NY, 10032, USA.
| | - Lubomir B Smilenov
- Center for Radiological Research, Columbia University, VC11-237, 630 West 168th Street, New York, NY, 10032, USA.
| | - Carl D Elliston
- Center for Radiological Research, Columbia University, VC11-237, 630 West 168th Street, New York, NY, 10032, USA.
| | - Mashkura Chowdhury
- Center for Radiological Research, Columbia University, VC11-237, 630 West 168th Street, New York, NY, 10032, USA.
| | - Sally A Amundson
- Center for Radiological Research, Columbia University, VC11-237, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Schüler E, Österlund A, Forssell-Aronsson E. The amount of injected 177Lu-octreotate strongly influences biodistribution and dosimetry in C57BL/6N mice. Acta Oncol 2015; 55:68-76. [PMID: 25813472 DOI: 10.3109/0284186x.2015.1027001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND (177)Lu-octreotate therapy has proven to give favorable results after treatment of patients with neuroendocrine tumors. Much focus has been on the binding and uptake of (177)Lu-octreotate in tumor tissue, but biodistribution properties in normal tissues is still not fully understood, and the effect of receptor saturation may be important. The aim of this study was to investigate the influence of the amount of (177)Lu-octreotate on the biodistribution of (177)Lu-octreotate in normal tissues in mice. MATERIAL AND METHODS C57BL/6N female mice were intravenously injected with 0.1-150 MBq (177)Lu-octreotate (0.039 μg peptide/MBq). The mice were killed 0.25 h to 14 days after injection by cardiac puncture under anesthesia. Activity concentration was determined in blood, bone marrow, kidneys, liver, lungs, pancreas, and spleen, and mean absorbed doses were calculated. RESULTS The activity concentration varied with time and amount of injected activity. At 4-8 h after injection, a local maximum in activity concentration was found for liver, lungs, pancreas, and spleen. With the exception for the lower injected activities (0.1-1 MBq), the overall highest uptake was found in the kidneys (%IA/g). Large variations were found and the activity concentration in kidneys was 11-23%IA/g at 4 h, and 0.22-1.9%IA/g at 7 days after injection. Furthermore, a clear reduction in activity concentration with increased injected activity was observed for lungs, pancreas and spleen. CONCLUSION The activity concentration in all tissues investigated was strongly influenced by the amount of (177)Lu-octreotate injected. Large differences in mean absorbed dose per unit injected activity were found between low (0.1-1 MBq, 0.0039-0.039 μg) and moderate amounts (5-45 MBq, 0.2-1.8 μg). Furthermore, the results clearly showed the need for better ways to estimate absorbed dose to bone marrow other than methods based on a single blood sample analysis. Since the absorbed dose to critical organs will limit the amount of (177)Lu-octreotate administered, these findings must be taken into consideration when optimizing this type of therapy.
Collapse
Affiliation(s)
- Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Andreas Österlund
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
13
|
Rudqvist N, Schüler E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration. Nucl Med Biol 2014; 42:263-8. [PMID: 25496975 DOI: 10.1016/j.nucmedbio.2014.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION In the present investigation, microarray analysis was used to monitor transcriptional activity in thyroids in mice 24 h after (131)I exposure. The aims of this study were to 1) assess the transcriptional patterns associated with (131)I exposure in normal mouse thyroid tissue and 2) propose biomarkers for (131)I exposure of the thyroid. METHODS Adult BALB/c nude mice were i.v. injected with 13, 130 or 260 kBq of (131)I and killed 24h after injection (absorbed dose to thyroid: 0.85, 8.5, or 17 Gy). Mock-treated mice were used as controls. Total RNA was extracted from thyroids and processed using the Illumina platform. RESULTS In total, 497, 546, and 90 transcripts were regulated (fold change ≥1.5) in the thyroid after 0.85, 8.5, and 17 Gy, respectively. These were involved in several biological functions, e.g. oxygen access, inflammation and immune response, and apoptosis/anti-apoptosis. Approximately 50% of the involved transcripts at each absorbed dose level were dose-specific, and 18 transcripts were commonly detected at all absorbed dose levels. The Agpat9, Plau, Prf1, and S100a8 gene expression displayed a monotone decrease in regulation with absorbed dose, and further studies need to be performed to evaluate if they may be useful as dose-related biomarkers for 131I exposure. CONCLUSION Distinct and substantial differences in gene expression and affected biological functions were detected at the different absorbed dose levels. The transcriptional profiles were specific for the different absorbed dose levels. We propose that the Agpat9, Plau, Prf1, and S100a8 genes might be novel potential absorbed dose-related biomarkers to (131)I exposure of thyroid. ADVANCES IN KNOWLEDGE During the recent years, genomic techniques have been developed; however, they have not been fully utilized in nuclear medicine and radiation biology. We have used RNA microarrays to investigate genome-wide transcriptional regulations in thyroid tissue in mice after low, intermediate, and high absorbed doses from (131)I exposure in vivo. Using this approach, we have identified novel biological responses and potential absorbed dose-related biomarkers to (131)I exposure. Our research shows the importance of embracing technological advances and multi-disciplinary collaboration in order to apply them in radiation therapy, nuclear medicine, and radiation biology. IMPLICATIONS ON PATIENT CARE This work may contribute with new knowledge of potential normal tissue effects or complications that may occur after exposure to ionizing radiation in diagnostic and therapeutic nuclear medicine, and due to radioactive fallout or accident with radionuclide spread.
Collapse
Affiliation(s)
- Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden.
| | - Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; Department of Medical Physics and Medical Bioengineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
14
|
Distinct microRNA expression profiles in mouse renal cortical tissue after 177Lu-octreotate administration. PLoS One 2014; 9:e112645. [PMID: 25386939 PMCID: PMC4227842 DOI: 10.1371/journal.pone.0112645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
Aim The aim of this study was to investigate the variation of the miRNA expression levels in normal renal cortical tissue after 177Lu-octreotate administration, a radiopharmaceutical used for treatment of neuroendocrine cancers. Methods Female BALB/c nude mice were i.v. injected with 1.3, 3.6, 14, 45, or 140 MBq 177Lu-octreotate, while control animals received saline. The animals were killed at 24 h after injection and total RNA, including miRNA, was extracted from the renal cortical tissue and hybridized to the Mouse miRNA Oligo chip 4plex to identify differentially regulated miRNAs between exposed and control samples. Results In total, 57 specific miRNAs were differentially regulated in the exposed renal cortical tissues with 1, 29, 21, 27, and 31 miRNAs identified per dose-level (0.13, 0.34, 1.3, 4.3, and 13 Gy, respectively). No miRNAs were commonly regulated at all dose levels. miR-194, miR-107, miR-3090, and miR-3077 were commonly regulated at 0.34, 1.3, 4.3, and 13 Gy. Strong effects on cellular mechanisms ranging from immune response to p53 signaling and cancer-related pathways were observed at the highest absorbed dose. Thirty-nine of the 57 differentially regulated miRNAs identified in the present study have previously been associated with response to ionizing radiation, indicating common radiation responsive pathways. Conclusion In conclusion, the 177Lu-octreotate associated miRNA signatures were generally dose-specific, thereby illustrating transcriptional regulation of radiation responsive miRNAs. Taken together, these results imply the importance of miRNAs in early immunological responses in the kidneys following 177Lu-octreotate administration.
Collapse
|
15
|
Schüler E, Rudqvist N, Parris TZ, Langen B, Spetz J, Helou K, Forssell-Aronsson E. Time- and dose rate-related effects of internal (177)Lu exposure on gene expression in mouse kidney tissue. Nucl Med Biol 2014; 41:825-32. [PMID: 25156037 DOI: 10.1016/j.nucmedbio.2014.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The kidneys are the dose-limiting organs in some radionuclide therapy regimens. However, the biological impact of internal exposure from radionuclides is still not fully understood. The aim of this study was to examine the effects of dose rate and time after i.v. injection of (177)LuCl3 on changes in transcriptional patterns in mouse kidney tissue. METHODS To investigate the effect of dose rate, female Balb/c nude mice were i.v. injected with 11, 5.6, 1.6, 0.8, 0.30, and 0 MBq of (177)LuCl3, and killed at 3, 6, 24, 48, 168, and 24 hours after injection, respectively. Furthermore, the effect of time after onset of exposure was analysed using mice injected with 0.26, 2.4, and 8.2 MBq of (177)LuCl3, and killed at 45, 90, and 140 days after injection. Global transcription patterns of irradiated kidney cortex and medulla were assessed and enriched biological processes were determined from the regulated gene sets using Gene Ontology terms. RESULTS The average dose rates investigated were 1.6, 0.84, 0.23, 0.11 and 0.028 mGy/min, with an absorbed dose of 0.3 Gy. At 45, 90 and 140 days, the absorbed doses were estimated to 0.3, 3, and 10 Gy. In general, the number of differentially regulated transcripts increased with time after injection, and decreased with absorbed dose for both kidney cortex and medulla. Differentially regulated transcripts were predominantly involved in metabolic and stress response-related processes dependent on dose rate, as well as transcripts associated with metabolic and cellular integrity at later time points. CONCLUSION The observed transcriptional response in kidney tissue was diverse due to difference in absorbed dose, dose rate and time after exposure. Nevertheless, several transcripts were significantly regulated in all groups despite differences in exposure parameters, which may indicate potential biomarkers for exposure of kidney tissue.
Collapse
Affiliation(s)
- Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|