1
|
Kelsall NC, Sanchez SE, Rondon MB, Valeri L, Juvinao-Quintero D, Kirschbaum C, Koenen KC, Gelaye B. Association between trauma exposure and glucocorticosteroid concentration in hair during pregnancy. Psychoneuroendocrinology 2023; 151:106072. [PMID: 36893558 PMCID: PMC10095305 DOI: 10.1016/j.psyneuen.2023.106072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Traumatic events, including child abuse and intimate partner violence, are highly prevalent among women of child-bearing age. These traumatic experiences may impact maternal and offspring physical and mental health. A proposed mechanism for these effects is maternal hypothalamic-pituitary-adrenal (HPA) axis dysregulation which can be measured using hair corticosteroid levels. AIMS This study aims to examine the association of child abuse and intimate partner violence exposure with HPA axis functioning, as measured by hair corticosteroid levels in a cohort of pregnant women. METHODS We included data from 1822 pregnant women (mean gestational age 17 weeks) attending a prenatal clinic in Lima, Peru. We extracted cortisol and cortisone concentrations from hair samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Each participant provided 6-cm hair samples: 3 cm hair segment closest to the scalp reflecting HCC in early pregnancy (first three months), and 3-6 cm from the scalp reflecting HCC in pre-pregnancy (three months prior to conception). Multivariable linear regression procedures were used to assess the association between maternal trauma exposure and hair corticosteroid levels. RESULTS Overall, women who experienced child abuse on average had higher levels of cortisol (p < 0.01) and cortisone (p < 0.0001) after adjustment for age, race, adult access to basic foods and hair treatments. For the hair segment reflecting early pregnancy, presence of child abuse was associated with a 0.120 log unit increase in cortisol and a 0.260 log unit increase in cortisone (p < 0.001). For the hair segment reflecting pre-pregnancy, a history of child abuse was associated with a 0.100 log unit increase in cortisol and a 0.180 log unit increase in cortisone (p < 0.01). Results also suggested an impact of intimate partner violence on HPA regulation; however, associations were not statistically significant after controlling for child abuse. CONCLUSIONS These results underscore the long-lasting impacts of exposure to adversity and trauma during early life. Our study findings will have implications for research investigating HPA axis function and long-term effects of violence on corticosteroid regulation.
Collapse
Affiliation(s)
- Nora Clancy Kelsall
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Sixto E Sanchez
- Universidad de San Martin de Porres, Facultad de Medicina Humana, Instituto de Investigación, Lima, Peru; Asociaciòn Civil Proyectos en Salud, Lima, Peru
| | | | - Linda Valeri
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | | | | | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Chester M. Pierce, M.D. Division of Global Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Fan Z, Bian Z, Huang H, Liu T, Ren R, Chen X, Zhang X, Wang Y, Deng B, Zhang L. Dietary Strategies for Relieving Stress in Pet Dogs and Cats. Antioxidants (Basel) 2023; 12:545. [PMID: 36978793 PMCID: PMC10045725 DOI: 10.3390/antiox12030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
A variety of physical, emotional, and mental factors can induce a stress response in pet dogs and cats. During this process, hypothalamus-pituitary-adrenal (HPA) and sympathetic-adrenal medulla (SAM) axes are activated to produce a series of adaptive short-term reactions to the aversive situations. Meanwhile, oxidative stress is induced where there is an imbalance between the production and scavenging of reactive oxygen species (ROS). Oxidative damage is also incorporated in sustained stress response causing a series of chronic problems, such as cardiovascular and gastrointestinal diseases, immune dysfunction, and development of abnormal behaviors. In this review, the effects and mechanisms of dietary regulation strategies (e.g., antioxidants, anxiolytic agents, and probiotics) on relieving stress in pet dogs and cats are summarized and discussed. We aim to shed light on future studies in the field of pet food and nutrition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baichuan Deng
- Laboratory of Companion Animal Science, Department of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingna Zhang
- Laboratory of Companion Animal Science, Department of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Ba L, Huang L, He Z, Deng S, Xie Y, Zhang M, Jacob C, Antonecchia E, Liu Y, Xiao W, Xie Q, Huang Z, Yi C, D'Ascenzo N, Ding F. Does Chronic Sleep Fragmentation Lead to Alzheimer's Disease in Young Wild-Type Mice? Front Aging Neurosci 2022; 13:759983. [PMID: 34992526 PMCID: PMC8724697 DOI: 10.3389/fnagi.2021.759983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic sleep insufficiency is becoming a common issue in the young population nowadays, mostly due to life habits and work stress. Studies in animal models of neurological diseases reported that it would accelerate neurodegeneration progression and exacerbate interstitial metabolic waste accumulation in the brain. In this paper, we study whether chronic sleep insufficiency leads to neurodegenerative diseases in young wild-type animals without a genetic pre-disposition. To this aim, we modeled chronic sleep fragmentation (SF) in young wild-type mice. We detected pathological hyperphosphorylated-tau (Ser396/Tau5) and gliosis in the SF hippocampus. 18F-labeled fluorodeoxyglucose positron emission tomography scan (18F-FDG-PET) further revealed a significant increase in brain glucose metabolism, especially in the hypothalamus, hippocampus and amygdala. Hippocampal RNAseq indicated that immunological and inflammatory pathways were significantly altered in 1.5-month SF mice. More interestingly, differential expression gene lists from stress mouse models showed differential expression patterns between 1.5-month SF and control mice, while Alzheimer's disease, normal aging, and APOEε4 mutation mouse models did not exhibit any significant pattern. In summary, 1.5-month sleep fragmentation could generate AD-like pathological changes including tauopathy and gliosis, mainly linked to stress, as the incremented glucose metabolism observed with PET imaging suggested. Further investigation will show whether SF could eventually lead to chronic neurodegeneration if the stress condition is prolonged in time.
Collapse
Affiliation(s)
- Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lifang Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyu He
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saiyue Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cornelius Jacob
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Emanuele Antonecchia
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo Neuromed Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Pozzilli, Italy
| | - Yuqing Liu
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Xiao
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qingguo Xie
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo Neuromed Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Pozzilli, Italy.,Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Zhili Huang
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenju Yi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Nicola D'Ascenzo
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo Neuromed Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Pozzilli, Italy
| | - Fengfei Ding
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Neurochemical regulators of food behavior for pharmacological treatment of obesity: current status and future prospects. Future Med Chem 2020; 12:1865-1884. [PMID: 33040605 DOI: 10.4155/fmc-2019-0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent decades, obesity has become a pandemic disease and appears to be an ultimate medical and social problem. Existing antiobesity drugs show low efficiency and a wide variety of side effects. In this review, we discuss possible mechanisms underlying brain-gut-adipose tissue axis, as well as molecular biochemical characteristics of various neurochemical regulators of body weight and appetite. Multiple brain regions are responsible for eating behavior, hedonic eating and food addiction. The existing pharmacological targets for treatment of obesity were reviewed as well.
Collapse
|
5
|
Brem C, Lutz J, Vollmar C, Feuerecker M, Strewe C, Nichiporuk I, Vassilieva G, Schelling G, Choukér A. Changes of brain DTI in healthy human subjects after 520 days isolation and confinement on a simulated mission to Mars. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:83-90. [PMID: 31987482 DOI: 10.1016/j.lssr.2019.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Long-term confinement is known to be a stressful experience with multiple psycho-physiological effects. In the MARS500 project, a real-time simulation of a space-flight to Mars conducted in a hermetically isolated habitat, effects of long-term confinement could be investigated in a unique manner. The aim of this study was to evaluate effects of long-term-confinement on brain cytoarchitecture. MATERIAL & METHODS The participants of the MARS500 project underwent 3T-MR imaging including a dedicated DTI-sequence before the isolation, right after ending of confinement and 6 months after the experiment. Voxelwise statistical analysis of the DTI data was carried out using tract-based-spatial statistics, comparing an age-matched control group. RESULTS At all three sessions, significant lower fractional anisotropy (FA) than in controls was found in the anterior parts of the callosal body of the participants. Furthermore, after ending of confinement a wide-spread FA reduction could be seen in the right hemisphere culminating in the temporo-parietal-junction-zone. All these areas with decreased FA predominantly showed an elevated radial diffusivity and mean diffusivity while axial diffusivity was less correlated. DISCUSSION Long-term confinement does have measurable effects on the microstructure of the brain white matter. We assume effects of sensory deprivation to account for the regional FA reductions seen in the right TPJ. The differences in the Corpus callosum were interpreted as due to preliminary conditions, e.g. personality traits or training effects. FA and radial diffusivity were the predominant DTI parameters with significant changes, suggesting underlying processes of myelin plasticity.
Collapse
Affiliation(s)
- Christian Brem
- Department of Neuroradiology, Hospital of the University of Munich (LMU), Marchioninistrasse 15, D-81377, Munich, Germany
| | - Jürgen Lutz
- Radiologisches Zentrum München-Pasing, Pippinger Str. 25, D-81245 Munich, Germany
| | - Christian Vollmar
- Department of Neurology, Hospital of the University of Munich (LMU), Marchioninistrasse 15, D-81377, Munich, Germany
| | - Matthias Feuerecker
- Department of Anaesthesiology & Laboratory of Translational Research "Stress and Immunity" at the Department of Anaesthesiology, Hospital of the University of Munich (LMU), Marchioninstraße 15, 81377 München, Munich, Germany
| | - Claudia Strewe
- Department of Anaesthesiology & Laboratory of Translational Research "Stress and Immunity" at the Department of Anaesthesiology, Hospital of the University of Munich (LMU), Marchioninstraße 15, 81377 München, Munich, Germany
| | - Igor Nichiporuk
- Institute for Biomedical Problems, Moscow, Russian Federation
| | | | - Gustav Schelling
- Department of Anaesthesiology & Laboratory of Translational Research "Stress and Immunity" at the Department of Anaesthesiology, Hospital of the University of Munich (LMU), Marchioninstraße 15, 81377 München, Munich, Germany
| | - Alexander Choukér
- Department of Anaesthesiology & Laboratory of Translational Research "Stress and Immunity" at the Department of Anaesthesiology, Hospital of the University of Munich (LMU), Marchioninstraße 15, 81377 München, Munich, Germany.
| |
Collapse
|
6
|
Zoubovsky SP, Hoseus S, Tumukuntala S, Schulkin JO, Williams MT, Vorhees CV, Muglia LJ. Chronic psychosocial stress during pregnancy affects maternal behavior and neuroendocrine function and modulates hypothalamic CRH and nuclear steroid receptor expression. Transl Psychiatry 2020; 10:6. [PMID: 32066677 PMCID: PMC7026416 DOI: 10.1038/s41398-020-0704-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Postpartum depression (PPD) affects up to 20% of mothers and has negative consequences for both mother and child. Although exposure to psychosocial stress during pregnancy and abnormalities in the hypothalamic pituitary adrenal (HPA) axis have been linked to PPD, molecular changes in the brain that contribute to this disease remain unknown. This study utilized a novel chronic psychosocial stress paradigm during pregnancy (CGS) to investigate the effects of psychosocial stress on maternal behavior, neuroendocrine function, and gene expression changes in molecular regulators of the HPA axis in the early postpartum period. Postpartum female mice exposed to CGS display abnormalities in maternal behavior, including fragmented and erratic maternal care patterns, and the emergence of depression and anxiety-like phenotypes. Dysregulation in postpartum HPA axis function, evidenced by blunted circadian peak and elevation of stress-induced corticosterone levels, was accompanied by increased CRH mRNA expression and a reduction in CRH receptor 1 in the paraventricular nucleus of the hypothalamus (PVN). We further observed decreased PVN expression of nuclear steroid hormone receptors associated with CRH transcription, suggesting these molecular changes could underlie abnormalities in postpartum HPA axis and behavior observed. Overall, our study demonstrates that psychosocial stress during pregnancy induces changes in neuroendocrine function and maternal behavior in the early postpartum period and introduces our CGS paradigm as a viable model that can be used to further dissect the molecular defects that lead to PPD.
Collapse
Affiliation(s)
- Sandra P Zoubovsky
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah Hoseus
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shivani Tumukuntala
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jay O Schulkin
- Department of Neuroscience, Georgetown University, Washington, DC, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Louis J Muglia
- Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Klimov E, Tretiakov A, Rudko O, Soboleva A, Danilin I, Korsunskaya I, Sobolev V. Psychodermatology: a molecular link between psoriasis and anxiety disorder. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2018. [DOI: 10.15570/actaapa.2018.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Imaging neuropeptide effects on human brain function. Cell Tissue Res 2018; 375:279-286. [PMID: 30069597 DOI: 10.1007/s00441-018-2899-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The discovery of prosocial effects of oxytocin (OT) opened new directions for studying neuropeptide effects on the human brain. However, despite obvious effects of OT on neural responses as reported in numerous studies, other peptides have received less attention. Therefore, we will only briefly summarize evidence of OT effects on human functional magnetic resonance imaging (fMRI) and primarily focus on OT's sister neuropeptide arginine-vasopressin by presenting our own coordinated-based activation likelihood estimation meta-analysis. In addition, we will recapitulate rather limited data on few other neuropeptides, including pharmacological and genetic fMRI studies. Finally, we will review experiments with external neuropeptide administration to patients afflicted with mental disorders, such as autism or schizophrenia. In conclusion, despite remaining uncertainty regarding the penetrance of exogenous neuropeptides through the blood-brain barrier, it is evident that neuropeptides simultaneously influence the activity of limbic and cortical areas, indicating that these systems have a good potential for therapeutic drug development. Hence, this calls for further systematic studies of a wide spectrum of known and less known neuropeptides to understand their normal function in the brain and, subsequently, to tackle their potential contribution for pathophysiological mechanisms of mental disorders.
Collapse
|
9
|
Association between stress pathway gene (CRHR1⧹CRHBP) polymorphisms and heroin dependence. J Clin Neurosci 2018; 54:33-38. [PMID: 29853227 DOI: 10.1016/j.jocn.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/04/2018] [Accepted: 05/17/2018] [Indexed: 11/23/2022]
Abstract
Stress could increase risk of heroin addiction and relapse. Genetic factors that associated with stress may be involved in this process. To explore the relationship between stress pathway gene (CRHR1⧹CRHBP) polymorphisms and heroin dependence, nine tag single nucleotide polymorphisms (CRHR1 rs12953076, rs4458044, rs242924, rs17689966; CRHBP rs1715751, rs3792738, rs32897, rs10062367, rs1875999) of stress related genes were genotyped by TaqMan SNP genotyping assay for 524 heroin-dependent patients who were abstinent and 489 normal controls. The patients were followed up for 5 years to determine whether relapse or not. Life stress was assessed by Perceived Stress Scale (PSS) at baseline and within 12 months just discharged. No differences were found in the frequencies of genotypes and alleles in nine loci of stress pathway genes between case and control groups (p > 0.05), but there were significant discrepancy in perceived stress scores in genotype distributions. Multivariate regression analysis revealed that CRHBP gene polymorphism rs3792738 had interactions with life stress during predicting the risk of heroin relapse. It was concluded that the predictive value of a genetic interaction with the stress axis for the risk of heroin relapse may be useful for future preventive and individualized therapeutic strategies.
Collapse
|
10
|
Yang Y, Yang K, Hao T, Zhu G, Ling R, Zhou X, Li P. Prediction of Molecular Mechanisms for LianXia NingXin Formula: A Network Pharmacology Study. Front Physiol 2018; 9:489. [PMID: 29867541 PMCID: PMC5952186 DOI: 10.3389/fphys.2018.00489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022] Open
Abstract
Objectives: Network pharmacological methods were used to investigate the underlying molecular mechanisms of LianXia NingXin (LXNX) formula, a Chinese prescription, to treat coronary heart disease (CHD) and disease phenotypes (CHD related diseases and symptoms). Methods: The different seed gene lists associated with the herbs of LXNX formula, the CHD co-morbid diseases and symptoms which were relieved by the LXNX formula (co-morbid diseases and symptoms) were curated manually from biomedical databases and published biomedical literatures. Module enrichment analysis was used to identify CHD-related disease modules in the protein–protein interaction (PPI) network which were also associated to the targets of LXNX formula (LXNX formula’s CHD modules). The molecular characteristics of LXNX formula’s CHD modules were investigated via functional enrichment analysis in terms of gene ontology and pathways. We performed shortest path analysis to explore the interactions between the drug targets of LXNX formula and CHD related disease phenotypes (e.g., co-morbid diseases and symptoms). Results: We identified two significant CHD related disease modules (i.e., M146 and M203), which were targeted by the herbs of LXNX formula. Pathway and GO term functional analysis results indicated that G-protein coupled receptor signaling pathways (GPCR) of M146 and cellular protein metabolic process of M203 are important functional pathways for the respective module. This is further confirmed by the shortest path analysis between the drug targets of LXNX formula and the aforementioned disease modules. In addition, corticotropin releasing hormone (CRH) and natriuretic peptide precursor A (NPPA) are the only two LXNX formula target proteins with the low shortest path length (on average shorter than 3) to their respective CHD module and co-morbid disease and symptom gene groups. Conclusion: G-protein coupled receptor signaling pathway and cellular protein metabolic process are the key LXNX formula’s pathways to treat CHD disease phenotypes, in which CRH and NPPA are the two key drug targets of LXNX formula. Further evidences from Chinese herb pharmacological databases indicate that Pinellia ternata (Banxia) has relatively strong adjustive functions on the two key targets.
Collapse
Affiliation(s)
- Yang Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kuo Yang
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Teng Hao
- Department of Psychiatry, Beijing ChaoYang Hospital of Traditional Chinese Medicine, Beijing, China
| | - Guodong Zhu
- Department of Cardiovascular, Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing, China
| | - Ruby Ling
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuezhong Zhou
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Ping Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Jee C, Goncalves JF, LeBoeuf B, Garcia LR. CRF-like receptor SEB-3 in sex-common interneurons potentiates stress handling and reproductive drive in C. elegans. Nat Commun 2016; 7:11957. [PMID: 27321013 PMCID: PMC4915151 DOI: 10.1038/ncomms11957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/13/2016] [Indexed: 02/08/2023] Open
Abstract
Environmental conditions can modulate innate behaviours. Although male Caenorhabditis elegans copulation can be perturbed in the presence of stress, the mechanisms underlying its decision to sustain copulation are unclear. Here we describe a mating interference assay, which quantifies the persistence of male C. elegans copulation in noxious blue light. We show that between copulations, the male escapes from blue light illumination at intensities over 370 μW mm−2. This response is attenuated in mutants with constitutive activation of the corticotropin-releasing factor receptor family homologue SEB-3. We show that activation of this receptor causes sex-common glutamatergic lumbar ganglion interneurons (LUA) to potentiate downstream male-specific reproduction circuits, allowing copulatory behaviours to partially override the light-induced escape responses in the male. SEB-3 activation in LUA also potentiates copulation during mild starvation. We suggest that SEB-3 activation allows C. elegans to acclimate to the environment and thus continue to execute innate behaviours even under non-optimal conditions. Innate animal behaviours can be negatively regulated by environmental stressors. Jee et al. show that suppression of male C. elegans copulation behaviour by noxious light can be overcome by activation of SEB-3, a homologue of the stress-associated mammalian corticotropin-releasing factor receptor family.
Collapse
Affiliation(s)
- Changhoon Jee
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - Jimmy F Goncalves
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - Brigitte LeBoeuf
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - L Rene Garcia
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| |
Collapse
|