1
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Zhao X, Jakobsson V, Tao Y, Zhao T, Wang J, Khong PL, Chen X, Zhang J. Targeted Radionuclide Therapy in Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042829 DOI: 10.1021/acsami.4c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite the development of various novel therapies, glioblastoma (GBM) remains a devastating disease, with a median survival of less than 15 months. Recently, targeted radionuclide therapy has shown significant progress in treating solid tumors, with the approval of Lutathera for neuroendocrine tumors and Pluvicto for prostate cancer by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This achievement has shed light on the potential of targeted radionuclide therapy for other solid tumors, including GBM. This review presents the current status of targeted radionuclide therapy in GBM, highlighting the commonly used therapeutic radionuclides emitting alpha, beta particles, and Auger electrons that could induce potent molecular and cellular damage to treat GBM. We then explore a range of targeting vectors, including small molecules, peptides, and antibodies, which selectively target antigen-expressing tumor cells with minimal or no binding to healthy tissues. Considering that radiopharmaceuticals for GBM are often administered locoregionally to bypass the blood-brain barrier (BBB), we review prominent delivery methods such as convection-enhanced delivery, local implantation, and stereotactic injections. Finally, we address the challenges of this therapeutic approach for GBM and propose potential solutions.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yucen Tao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingyan Wang
- Xiamen University, School of Public Health, Xiang'an South Road, Xiamen 361102, China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Departments of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
3
|
Chan CY, Chen Z, Guibbal F, Dias G, Destro G, O'Neill E, Veal M, Lau D, Mosley M, Wilson TC, Gouverneur V, Cornelissen B. [ 123I]CC1: A PARP-Targeting, Auger Electron-Emitting Radiopharmaceutical for Radionuclide Therapy of Cancer. J Nucl Med 2023; 64:1965-1971. [PMID: 37770109 PMCID: PMC10690119 DOI: 10.2967/jnumed.123.265429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Poly(adenosine diphosphate ribose) polymerase (PARP) has emerged as an effective therapeutic strategy against cancer that targets the DNA damage repair enzyme. PARP-targeting compounds radiolabeled with an Auger electron-emitting radionuclide can be trapped close to damaged DNA in tumor tissue, where high ionizing potential and short range lead Auger electrons to kill cancer cells through the creation of complex DNA damage, with minimal damage to surrounding normal tissue. Here, we report on [123I]CC1, an 123I-labeled PARP inhibitor for radioligand therapy of cancer. Methods: Copper-mediated 123I iododeboronation of a boronic pinacol ester precursor afforded [123I]CC1. The level and specificity of cell uptake and the therapeutic efficacy of [123I]CC1 were determined in human breast carcinoma, pancreatic adenocarcinoma, and glioblastoma cells. Tumor uptake and tumor growth inhibition of [123I]CC1 were assessed in mice bearing human cancer xenografts (MDA-MB-231, PSN1, and U87MG). Results: In vitro and in vivo studies showed selective uptake of [123I]CC1 in all models. Significantly reduced clonogenicity, a proxy for tumor growth inhibition by ionizing radiation in vivo, was observed in vitro after treatment with as little as 10 Bq [123I]CC1. Biodistribution at 1 h after intravenous administration showed PSN1 tumor xenograft uptake of 0.9 ± 0.06 percentage injected dose per gram of tissue. Intravenous administration of a relatively low amount of [123I]CC1 (3 MBq) was able to significantly inhibit PSN1 xenograft tumor growth but was less effective in xenografts that expressed less PARP. [123I]CC1 did not cause significant toxicity to normal tissues. Conclusion: Taken together, these results show the potential of [123I]CC1 as a radioligand therapy for PARP-expressing cancers.
Collapse
Affiliation(s)
- Chung Ying Chan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zijun Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Florian Guibbal
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Gemma Dias
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Gianluca Destro
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mathew Veal
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Doreen Lau
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Thomas C Wilson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom;
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Tong J, Chen B, Tan PW, Kurpiewski S, Cai Z. Poly (ADP-ribose) polymerases as PET imaging targets for central nervous system diseases. Front Med (Lausanne) 2022; 9:1062432. [PMID: 36438061 PMCID: PMC9685622 DOI: 10.3389/fmed.2022.1062432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute of 17 members that are associated with divergent cellular processes and play a crucial role in DNA repair, chromatin organization, genome integrity, apoptosis, and inflammation. Multiple lines of evidence have shown that activated PARP1 is associated with intense DNA damage and irritating inflammatory responses, which are in turn related to etiologies of various neurological disorders. PARP1/2 as plausible therapeutic targets have attracted considerable interests, and multitudes of PARP1/2 inhibitors have emerged for treating cancer, metabolic, inflammatory, and neurological disorders. Furthermore, PARP1/2 as imaging targets have been shown to detect, delineate, and predict therapeutic responses in many diseases by locating and quantifying the expression levels of PARP1/2. PARP1/2-directed noninvasive positron emission tomography (PET) has potential in diagnosing and prognosing neurological diseases. However, quantitative PARP PET imaging in the central nervous system (CNS) has evaded us due to the challenges of developing blood-brain barrier (BBB) penetrable PARP radioligands. Here, we review PARP1/2's relevance in CNS diseases, summarize the recent progress on PARP PET and discuss the possibilities of developing novel PARP radiotracers for CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
5
|
Differences between water-soluble and water-insoluble melanin derived from Inonotus hispidus mushroom. Food Chem X 2022; 16:100498. [DOI: 10.1016/j.fochx.2022.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
|
6
|
Chan CY, Chen Z, Destro G, Veal M, Lau D, O’Neill E, Dias G, Mosley M, Kersemans V, Guibbal F, Gouverneur V, Cornelissen B. Imaging PARP with [ 18F]rucaparib in pancreatic cancer models. Eur J Nucl Med Mol Imaging 2022; 49:3668-3678. [PMID: 35614267 PMCID: PMC9399069 DOI: 10.1007/s00259-022-05835-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/08/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Rucaparib, an FDA-approved PARP inhibitor, is used as a single agent in maintenance therapy to provide promising treatment efficacy with an acceptable safety profile in various types of BRCA-mutated cancers. However, not all patients receive the same benefit from rucaparib-maintenance therapy. A predictive biomarker to help with patient selection for rucaparib treatment and predict clinical benefit is therefore warranted. With this aim, we developed [18F]rucaparib, an 18F-labelled isotopologue of rucaparib, and employed it as a PARP-targeting agent for cancer imaging with PET. Here, we report the in vitro and in vivo evaluation of [18F]rucaparib in human pancreatic cancer models. METHOD We incorporated the positron-emitting 18F isotope into rucaparib, enabling its use as a PET imaging agent. [18F]rucaparib binds to the DNA damage repair enzyme, PARP, allowing direct visualisation and measurement of PARP in cancerous models before and after PARP inhibition or other genotoxic cancer therapies, providing critical information for cancer diagnosis and therapy. Proof-of-concept evaluations were determined in pancreatic cancer models. RESULTS Uptake of [18F]rucaparib was found to be mainly dependent on PARP1 expression. Induction of DNA damage increased PARP expression, thereby increasing uptake of [18F]rucaparib. In vivo studies revealed relatively fast blood clearance of [18F]rucaparib in PSN1 tumour-bearing mice, with a tumour uptake of 5.5 ± 0.5%ID/g (1 h after i.v. administration). In vitro and in vivo studies showed significant reduction of [18F]rucaparib uptake by addition of different PARP inhibitors, indicating PARP-selective binding. CONCLUSION Taken together, we demonstrate the potential of [18F]rucaparib as a non-invasive PARP-targeting imaging agent for pancreatic cancers.
Collapse
Affiliation(s)
- Chung Ying Chan
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Zijun Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Gianluca Destro
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Mathew Veal
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Doreen Lau
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Edward O’Neill
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Gemma Dias
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Michael Mosley
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Veerle Kersemans
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Florian Guibbal
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Véronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Bart Cornelissen
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Wang Q, Zhang J. Current status and progress in using radiolabelled PARP-1 inhibitors for imaging PARP-1 expression in tumours. Eur J Med Chem 2022; 242:114690. [PMID: 36041258 DOI: 10.1016/j.ejmech.2022.114690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a key enzyme in the DNA repair process, and the overexpression of PARP-1 in several tumours makes this enzyme a promising molecular target. Recently, several PARP-1 inhibitors, such as olaparib, rucaparib, niraparib and talazoparib, have been clinically approved as anticancer drugs. Several of these inhibitors have been radiolabelled for noninvasive imaging of PARP-1 expression in several types of tumours. In this review, the background and progress for using various radiolabelled PARP-1 inhibitors for cancer diagnosis are discussed and future development directions are proposed.
Collapse
Affiliation(s)
- Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
8
|
Zhao Q, Ma P, Fu P, Wang J, Wang K, Chen L, Yang Y. Myelodysplastic Syndrome/Acute Myeloid Leukemia Following the Use of Poly-ADP Ribose Polymerase (PARP) Inhibitors: A Real-World Analysis of Postmarketing Surveillance Data. Front Pharmacol 2022; 13:912256. [PMID: 35784751 PMCID: PMC9240214 DOI: 10.3389/fphar.2022.912256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose: poly-ADP ribose polymerase (PARP) inhibitors show impressive efficacy in a range of tumors. However, concerns about rare and fatal adverse events, including myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML) have arisen. The aim of this study was to excavate and evaluate the risk of PARP inhibitors causing MDS and AML based on real-world data from two international pharmacovigilance databases. Methods: We analyzed adverse event (AE) reports of four PARP inhibitors (olaparib, niraparib, rucaparib and talazoparib) associated with MDS and AML from the United States Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) and EudraVigilance (EV) databases between 1 October 2014, and 30 September 2021, including demographic characteristics, fatality and times to onset. Three different data mining algorithms were used to detect the signals of PARP inhibitors associated with MDS and AML. Results: In total, 16,710 and 11,937 PARP inhibitor AE reports were found in the FAERS and EV databases, of which 332 and 349 were associated with MDS and AML, respectively. The median latencies of MDS and AML associated with PARP inhibitors were 211 [interquartile range (IQR) 93.5–491.25] days and 355 (IQR 72.00–483.50) days, respectively. The average fatality rates of MDS and AML caused by the four PARP inhibitors were 39.23 and 45.39%, respectively, in the FAERS database, while those in the EV database were 32.32 and 34.94%, respectively. Based on the criteria used for the three algorithms, a significant disproportionate association was found between PARP inhibitors as a drug class and MDS/AML. Notably, the risk of MDS was much higher than that of AML. Olaparib appeared to have a stronger association with MDS and AML than did other PARP inhibitors. Conclusion: In the real world, PARP inhibitors increase the risk of MDS and AML, which can result in high mortality and tend to occur during long-term use. Our findings provide objective evidence for the postmarketing safety of PARP inhibitors.
Collapse
Affiliation(s)
- Quanfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Pan Ma
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Peishu Fu
- Department of Pharmacy, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayu Wang
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
| | - Kejing Wang
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Kejing Wang, ; Lin Chen, ; Yang Yang,
| | - Lin Chen
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Kejing Wang, ; Lin Chen, ; Yang Yang,
| | - Yang Yang
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Kejing Wang, ; Lin Chen, ; Yang Yang,
| |
Collapse
|
9
|
Ying Z, Qi D, Chaoran W, Min H, Miao W, Qin L. PARP inhibitors rising as an epoch-making strategy in first-line maintenance therapy of ovarian cancer: A systematic review and meta-analysis. Cancer Invest 2022; 40:889-900. [PMID: 35686725 DOI: 10.1080/07357907.2022.2088780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Background To illustrate the accurate location of PARP inhibitor (PARPi) as the first-line maintenance therapy in advanced ovarian cancer (AOC).Methods Search for eligible studies and calculate clinical outcomes.Results PARPi as a first-line maintenance treatment significantly prolonged the BRCAmut population and the HRD positive population.Conclusion PARPi as first-line maintenance therapy significantly improves the PFS in AOC, especially in the BRCAmut and HRD positive populations. PARPi has been becoming the standard first-line maintenance therapy for AOC.
Collapse
Affiliation(s)
- Zhang Ying
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Du Qi
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wang Chaoran
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hu Min
- Biochemistry and Molecular Biology, Basic Medicine College, Shanxi Medical University, Taiyuan, 050001, China
| | - Wang Miao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Li Qin
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
10
|
Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma. Cancers (Basel) 2022; 14:cancers14071821. [PMID: 35406593 PMCID: PMC8997380 DOI: 10.3390/cancers14071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The current routine treatment for glioblastoma (GB), the most lethal high-grade brain tumor in adults, aims to induce DNA damage in the tumor. However, the tumor cells might be able to repair that damage, which leads to therapy resistance. Fortunately, DNA repair defects are common in GB cells, and their survival is often based on a sole backup repair pathway. Hence, targeted drugs inhibiting essential proteins of the DNA damage response have gained momentum and are being introduced in the clinic. This review gives a perspective on the use of radiopharmaceuticals targeting DDR kinases for imaging in order to determine the DNA repair phenotype of GB, as well as for effective radionuclide therapy. Finally, four new promising radiopharmaceuticals are suggested with the potential to lead to a more personalized GB therapy. Abstract Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB) remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation. However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and analyzing the structural characteristics of the DDRi, four drugs with the potential to become new therapeutic GB radiopharmaceuticals are suggested.
Collapse
|
11
|
Nguyen NT, Pacelli A, Nader M, Kossatz S. DNA Repair Enzyme Poly(ADP-Ribose) Polymerase 1/2 (PARP1/2)-Targeted Nuclear Imaging and Radiotherapy. Cancers (Basel) 2022; 14:cancers14051129. [PMID: 35267438 PMCID: PMC8909184 DOI: 10.3390/cancers14051129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In parallel to the successful clinical implementation of PARP1/2 inhibitors as anti-cancer drugs, which interfere with the DNA repair machinery, these small molecule agents have also gained attention as vehicles for molecular imaging and radiotherapy. In this review article, we summarize the development and preclinical evaluation of radioactively-labelled PARP inhibitors for positron emission tomography (PET) for many applications, such as selecting patients for PARP inhibitor treatment, response prediction or monitoring, and diagnosis of tumors. We report on early clinical studies that show safety and feasibility of PARP-imaging in humans. In addition, we summarize the latest developments in the field of PARP-targeted radiotherapy, where PARP inhibitors are studied as vehicles to deposit highly cytotoxic radioisotopes in close proximity to the DNA of tumor cells. Lastly, we look at synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation. Abstract Since it was discovered that many tumor types are vulnerable to inhibition of the DNA repair machinery, research towards efficient and selective inhibitors has accelerated. Amongst other enzymes, poly(ADP-ribose)-polymerase 1 (PARP1) was identified as a key player in this process, which resulted in the development of selective PARP inhibitors (PARPi) as anti-cancer drugs. Most small molecule PARPi’s exhibit high affinity for both PARP1 and PARP2. PARPi are under clinical investigation for mono- and combination therapy in several cancer types and five PARPi are now clinically approved. In parallel, radiolabeled PARPi have emerged for non-invasive imaging of PARP1 expression. PARP imaging agents have been suggested as companion diagnostics, patient selection, and treatment monitoring tools to improve the outcome of PARPi therapy, but also as stand-alone diagnostics. We give a comprehensive overview over the preclinical development of PARP imaging agents, which are mostly based on the PARPi olaparib, rucaparib, and recently also talazoparib. We also report on the current status of clinical translation, which involves a growing number of early phase trials. Additionally, this work provides an insight into promising approaches of PARP-targeted radiotherapy based on Auger and α-emitting isotopes. Furthermore, the review covers synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation.
Collapse
Affiliation(s)
- Nghia T. Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany;
| | - Anna Pacelli
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen, 45147 Essen, Germany; (A.P.); (M.N.)
| | - Michael Nader
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen, 45147 Essen, Germany; (A.P.); (M.N.)
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany;
- Correspondence:
| |
Collapse
|
12
|
Lee HS, Schwarz SW, Schubert EK, Chen DL, Doot RK, Makvandi M, Lin LL, McDonald ES, Mankoff DA, Mach RH. The Development of 18F Fluorthanatrace: A PET Radiotracer for Imaging Poly (ADP-Ribose) Polymerase-1. Radiol Imaging Cancer 2022; 4:e210070. [PMID: 35089089 PMCID: PMC8830434 DOI: 10.1148/rycan.210070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorine 18 (18F) fluorthanatrace (18F-FTT) is a PET radiotracer for imaging poly (adenosine diphosphate-ribose) polymerase-1 (PARP-1), an important target for a class of drugs known as PARP inhibitors, or PARPi. This article describes the stepwise development of this radiotracer from its design and preclinical evaluation to the first-in-human imaging studies and the initial validation of 18F-FTT as an imaging-based biomarker for measuring PARP-1 expression levels in patients with breast and ovarian cancer. A detailed discussion on the preparation and submission of an exploratory investigational new drug application to the Food and Drug Administration is also provided. Additionally, this review highlights the need and future plans for identifying a commercialization strategy to overcome the major financial barriers that exist when conducting the multicenter clinical trials needed for approval in the new drug application process. The goal of this article is to provide a road map that scientists and clinicians can follow for the successful clinical translation of a PET radiotracer developed in an academic setting. Keywords: Molecular Imaging-Cancer, PET, Breast, Genital/Reproductive, Chemistry, Radiotracer Development, PARPi, 18F-FTT, Investigational New Drug © RSNA, 2022.
Collapse
|
13
|
Puentes LN, Makvandi M, Mach RH. Molecular Imaging: PARP-1 and Beyond. J Nucl Med 2021; 62:765-770. [PMID: 33579802 DOI: 10.2967/jnumed.120.243287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/27/2021] [Indexed: 01/28/2023] Open
Abstract
The genetic code to life is balanced on a string of DNA that is under constant metabolic and physical stress from environmental forces. Nearly all diseases have a genetic component caused by or resulting in DNA damage that alters biology to drive pathogenesis. Recent advancements in DNA repair biology have led to the development of imaging tools that target DNA damage response and repair proteins. PET has been used for early detection of oncogenic processes and monitoring of tumor response to chemotherapeutics that target the DNA repair machinery. In the field of precision medicine, imaging tools provide a unique opportunity for patient stratification by directly measuring drug target expression or monitoring therapy to identify early responders. This overview discusses the state of the art on molecular imaging of DNA damage and repair from the past 5 years, with an emphasis on poly[adenosine diphosphate ribose]polymerase-1 as an imaging target and predictive biomarker of response to therapy.
Collapse
Affiliation(s)
- Laura N Puentes
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Mehran Makvandi
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Chan CY, Tan KV, Cornelissen B. PARP Inhibitors in Cancer Diagnosis and Therapy. Clin Cancer Res 2021; 27:1585-1594. [PMID: 33082213 DOI: 10.1158/1078-0432.ccr-20-2766] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022]
Abstract
Targeting of PARP enzymes has emerged as an effective therapeutic strategy to selectively target cancer cells with deficiencies in homologous recombination signaling. Currently used to treat BRCA-mutated cancers, PARP inhibitors (PARPi) have demonstrated improved outcome in various cancer types as single agents. Ongoing efforts have seen the exploitation of PARPi combination therapies, boosting patient responses as a result of drug synergisms. Despite great successes using PARPi therapy, selecting those patients who will benefit from single agent or combination therapy remains one of the major challenges. Numerous reports have demonstrated that the presence of a BRCA mutation does not always result in synthetic lethality with PARPi therapy in treatment-naïve tumors. Cancer cells can also develop resistance to PARPi therapy. Hence, combination therapy may significantly affect the treatment outcomes. In this review, we discuss the development and utilization of PARPi in different cancer types from preclinical models to clinical trials, provide a current overview of the potential uses of PARP imaging agents in cancer therapy, and discuss the use of radiolabeled PARPi as radionuclide therapies.
Collapse
Affiliation(s)
- Chung Ying Chan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Kel Vin Tan
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
15
|
Ambur Sankaranarayanan R, Kossatz S, Weber W, Beheshti M, Morgenroth A, Mottaghy FM. Advancements in PARP1 Targeted Nuclear Imaging and Theranostic Probes. J Clin Med 2020; 9:E2130. [PMID: 32640708 PMCID: PMC7408801 DOI: 10.3390/jcm9072130] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023] Open
Abstract
The central paradigm of novel therapeutic approaches in cancer therapy is identifying and targeting molecular biomarkers. One such target is the nuclear DNA repair enzyme Poly-(ADP ribose) polymerase 1 (PARP1). Sensitivity to PARP inhibition in certain cancers such as gBRCAmut breast and ovarian cancers has led to its exploitation as a target. The overexpression of PARP1 in several types of cancer further evoked interest in its use as an imaging target. While PARP1-targeted inhibitors have fast developed and approved in this past decade, determination of PARP1 expression might help to predict the response to PARP inhibitor treatment. This has the potential of improving prognosis and moving towards tailored therapy options and/or dosages. This review summarizes the recent pre-clinical advancements in imaging and theranostic PARP1 targeted tracers. To assess PARP1 levels, several imaging probes with fluorescent or beta/gamma emitting radionuclides have been proposed and three have advanced to ongoing clinical evaluation. Apart from its diagnostic value in detection of primary tumors as well as metastases, this shall also help in delivering therapeutic radionuclides to PARP1 overexpressing tumors. Henceforth nuclear medicine has now advanced towards conjugating theranostic radionuclides to PARP1 inhibitors. This paves the way for a future of PARP1-targeted theranostics and personalized therapy.
Collapse
Affiliation(s)
- Ramya Ambur Sankaranarayanan
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (R.A.S.); (M.B.); (A.M.)
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany; (S.K.); (W.W.)
- Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, 81675 Munich, Germany
- Department of Chemistry, Technical University of Munich, 85748 Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany; (S.K.); (W.W.)
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (R.A.S.); (M.B.); (A.M.)
- Department of Nuclear Medicine and Endocrinology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (R.A.S.); (M.B.); (A.M.)
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (R.A.S.); (M.B.); (A.M.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202 Maastricht, The Netherlands
| |
Collapse
|
16
|
Pirovano G, Jannetti SA, Carter LM, Sadique A, Kossatz S, Guru N, Demétrio De Souza França P, Maeda M, Zeglis BM, Lewis JS, Humm JL, Reiner T. Targeted Brain Tumor Radiotherapy Using an Auger Emitter. Clin Cancer Res 2020; 26:2871-2881. [PMID: 32066626 PMCID: PMC7299758 DOI: 10.1158/1078-0432.ccr-19-2440] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Glioblastoma multiforme is a highly aggressive form of brain cancer whose location, tendency to infiltrate healthy surrounding tissue, and heterogeneity significantly limit survival, with scant progress having been made in recent decades. EXPERIMENTAL DESIGN 123I-MAPi (Iodine-123 Meitner-Auger PARP1 inhibitor) is a precise therapeutic tool composed of a PARP1 inhibitor radiolabeled with an Auger- and gamma-emitting iodine isotope. Here, the PARP inhibitor, which binds to the DNA repair enzyme PARP1, specifically targets cancer cells, sparing healthy tissue, and carries a radioactive payload within reach of the cancer cells' DNA. RESULTS The high relative biological efficacy of Auger electrons within their short range of action is leveraged to inflict DNA damage and cell death with high precision. The gamma ray emission of 123I-MAPi allows for the imaging of tumor progression and therapy response, and for patient dosimetry calculation. Here we demonstrated the efficacy and specificity of this small-molecule radiotheranostic in a complex preclinical model. In vitro and in vivo studies demonstrate high tumor uptake and a prolonged survival in mice treated with 123I-MAPi when compared with vehicle controls. Different methods of drug delivery were investigated to develop this technology for clinical applications, including convection enhanced delivery and intrathecal injection. CONCLUSIONS Taken together, these results represent the first full characterization of an Auger-emitting PARP inhibitor which demonstrate a survival benefit in mouse models of GBM and confirm the high potential of 123I-MAPi for clinical translation.
Collapse
Affiliation(s)
- Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen A Jannetti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biochemistry, Hunter College, The City University of New York (CUNY), New York, New York
- PhD Program in Biochemistry, The Graduate Center, The City University of New York (CUNY), New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmad Sadique
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Masatomo Maeda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Chemistry, Hunter College, The City University of New York (CUNY), New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- PhD Program in Chemistry, The Graduate Center, The City University of New York (CUNY), New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
The beginning of the end for conventional RECIST - novel therapies require novel imaging approaches. Nat Rev Clin Oncol 2019; 16:442-458. [PMID: 30718844 DOI: 10.1038/s41571-019-0169-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to improvements in our understanding of the biological principles of tumour initiation and progression, a wide variety of novel targeted therapies have been developed. Developments in biomedical imaging, however, have not kept pace with these improvements and are still mainly designed to determine lesion size alone, which is reflected in the Response Evaluation Criteria in Solid Tumors (RECIST). Imaging approaches currently used for the evaluation of treatment responses in patients with solid tumours, therefore, often fail to detect successful responses to novel targeted agents and might even falsely suggest disease progression, a scenario known as pseudoprogression. The ability to differentiate between responders and nonresponders early in the course of treatment is essential to allowing the early adjustment of treatment regimens. Various imaging approaches targeting a single dedicated tumour feature, as described in the hallmarks of cancer, have been successful in preclinical investigations, and some have been evaluated in pilot clinical trials. However, these approaches have largely not been implemented in clinical practice. In this Review, we describe current biomedical imaging approaches used to monitor responses to treatment in patients receiving novel targeted therapies, including a summary of the most promising future approaches and how these might improve clinical practice.
Collapse
|
18
|
Laird J, Lok BH, Carney B, Kossatz S, de Stanchina E, Reiner T, Poirier JT, Rudin CM. Positron-Emission Tomographic Imaging of a Fluorine 18-Radiolabeled Poly(ADP-Ribose) Polymerase 1 Inhibitor Monitors the Therapeutic Efficacy of Talazoparib in SCLC Patient-Derived Xenografts. J Thorac Oncol 2019; 14:1743-1752. [PMID: 31195178 DOI: 10.1016/j.jtho.2019.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Inhibitors of poly-(ADP)-ribose polymerase (PARP) are promising therapeutics for SCLC. We tested whether PARP inhibitor (PARPi) target engagement as measured by a fluorine 18-radiolabeled PARPi ([18F]PARPi) has the potential to predict drug efficacy in vivo. METHODS Tumor growth inhibition during daily talazoparib treatment was evaluated in mice engrafted with SCLC patient-derived xenografts to evaluate talazoparib efficacy at multiple doses. Mice were intravenously injected with [18F]PARPi radiotracer at multiple timepoints after single doses of oral talazoparib to quantitatively assess the extent to which talazoparib could reduce tumor radiotracer uptake and positron-emission tomographic (PET)/computer tomographic activity. Tumors were harvested and tumor poly-(ADP) ribose level was measured by enzyme-linked immunosorbent assay. RESULTS A dose range of talazoparib with differential therapeutic efficacy was established, with significant delay in time to reach 1000 mm3 for tumors treated with 0.3 mg/kg (p = 0.02) but not 0.1 mg/kg talazoparib. On PET/computed tomography with [18F]PARPi, reduction in [18F]PARPi uptake after talazoparib dosing was consistent with talazoparib clearance, with reduction in PET activity attenuating over 24 hours. Talazoparib target engagement, measured by maximum tumor PET uptake, increased in a dose-dependent manner (3.9% versus 2.1% injected dose/g for 0.1 and 0.3 mg/kg at 3 hours post-talazoparib, p = 0.003) and correlated with PARP enzymatic activity among individual tumors as measured by total tumor poly-(ADP) ribose (p = 0.04, R = 0.62 at 1 hour post-talazoparib). CONCLUSIONS PET imaging using [18F]PARPi has the potential to be a powerful tool in treatment monitoring by assessing PARPi target engagement in real-time.
Collapse
Affiliation(s)
- James Laird
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; New York University School of Medicine, New York, New York
| | - Benjamin H Lok
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon Carney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Chemistry, Hunter College and PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Radiology, Weill Cornell Medical College, New York, New York; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John T Poirier
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
19
|
Wilson TC, Xavier MA, Knight J, Verhoog S, Torres JB, Mosley M, Hopkins SL, Wallington S, Allen PD, Kersemans V, Hueting R, Smart S, Gouverneur V, Cornelissen B. PET Imaging of PARP Expression Using 18F-Olaparib. J Nucl Med 2019; 60:504-510. [PMID: 30389822 PMCID: PMC6448459 DOI: 10.2967/jnumed.118.213223] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/22/2018] [Indexed: 12/24/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors are increasingly being studied as cancer drugs, as single agents, or as a part of combination therapies. Imaging of PARP using a radiolabeled inhibitor has been proposed for patient selection, outcome prediction, dose optimization, genotoxic therapy evaluation, and target engagement imaging of novel PARP-targeting agents. Methods: Here, via the copper-mediated 18F-radiofluorination of aryl boronic esters, we accessed, for the first time (to our knowledge), the 18F-radiolabeled isotopolog of the Food and Drug Administration-approved PARP inhibitor olaparib. The use of the 18F-labeled equivalent of olaparib allows direct prediction of the distribution of olaparib, given its exact structural likeness to the native, nonradiolabeled drug. Results:18F-olaparib was taken up selectively in vitro in PARP-1-expressing cells. Irradiation increased PARP-1 expression and 18F-olaparib uptake in a radiation-dose-dependent fashion. PET imaging in mice showed specific uptake of 18F-olaparib in tumors expressing PARP-1 (3.2% ± 0.36% of the injected dose per gram of tissue in PSN-1 xenografts), correlating linearly with PARP-1 expression. Two hours after irradiation of the tumor (10 Gy), uptake of 18F-olaparib increased by 70% (P = 0.025). Conclusion: Taken together, we show that 18F-olaparib has great potential for noninvasive tumor imaging and monitoring of radiation damage.
Collapse
Affiliation(s)
- Thomas C. Wilson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Mary-Ann Xavier
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Knight
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stefan Verhoog
- Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Julia Baguña Torres
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha L. Hopkins
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sheena Wallington
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Phillip D. Allen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Veerle Kersemans
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Rebekka Hueting
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Gonzales J, Kossatz S, Roberts S, Pirovano G, Brand C, Pérez-Medina C, Donabedian P, de la Cruz MJ, Mulder WJM, Reiner T. Nanoemulsion-Based Delivery of Fluorescent PARP Inhibitors in Mouse Models of Small Cell Lung Cancer. Bioconjug Chem 2018; 29:3776-3782. [PMID: 30354077 DOI: 10.1021/acs.bioconjchem.8b00640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The preclinical potential of many diagnostic and therapeutic small molecules is limited by their rapid washout kinetics and consequently modest pharmacological performances. In several cases, these could be improved by loading the small molecules into nanoparticulates, improving blood half-life, in vivo uptake and overall pharmacodynamics. In this study, we report a nanoemulsion (NE) encapsulated form of PARPi-FL. As a proof of concept, we used PARPi-FL, which is a fluorescently labeled sensor for olaparib, a FDA-approved small molecule inhibitor of the nuclear enzyme poly(ADP-ribose)polymerase 1 (PARP1). Encapsulated PARPi-FL showed increased blood half-life, and delineated subcutaneous xenografts of small cell lung cancer (SCLC), a fast-progressing disease where efficient treatment options remain an unmet clinical need. Our study demonstrates an effective method for expanding the circulation time of a fluorescent PARP inhibitor, highlighting the pharmacokinetic benefits of nanoemulsions as nanocarriers and confirming the value of PARPi-FL as an imaging agent targeting PARP1 in small cell lung cancer.
Collapse
Affiliation(s)
- Junior Gonzales
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Susanne Kossatz
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Sheryl Roberts
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Giacomo Pirovano
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Christian Brand
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Department of Radiology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Patrick Donabedian
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - M Jason de la Cruz
- Structural Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , Eindhoven , The Netherlands
| | - Thomas Reiner
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Department of Radiology , Weill Cornell Medical College , New York , New York 10065 , United States
| |
Collapse
|
21
|
Zhou D, Xu J, Mpoy C, Chu W, Kim SH, Li H, Rogers BE, Katzenellenbogen JA. Preliminary evaluation of a novel 18F-labeled PARP-1 ligand for PET imaging of PARP-1 expression in prostate cancer. Nucl Med Biol 2018; 66:26-31. [PMID: 30195072 DOI: 10.1016/j.nucmedbio.2018.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/01/2018] [Accepted: 08/19/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Poly (ADP-ribose) polymerase-1 (PARP-1) plays many roles in prostate cancer (PC), such as mediating DNA damage repair, transcriptional regulation and nuclear hormone receptor signaling. Because of this, PARP-1 has been targeted for therapy in PC, and non-invasive imaging of PARP-1 could help predict which patients are likely to respond to such therapy. Several PARP-1 positron emission tomography (PET) imaging agents have been developed and show promise for imaging PARP-1 expression in breast, brain, and lung cancer in small animals, but not as yet in prostate cancer. [18F]WC-DZ-F is an analogue of [18F]FluorThanatrace (FTT) and [125I]KX1, which are well-established PARP-1 ligands for measuring PARP-1 expression. Herein, we evaluated the potential of [18F]WC-DZ-F for the imaging PARP-1 expression in PC. METHODS [18F]WC-DZ-F was synthesized by a two-step sequence. [18F]WC-DZ-F was evaluated by in vitro uptake studies in PC-3 cells and by in vivo biodistribution and microPET imaging using PC-3 tumor xenografts. Ex vivo autoradiography of PC-3 tumors after microPET imaging was also performed. RESULTS [18F]WC-DZ-F has high, PARP-1-specific uptake in PC-3 cells. In the microPET imaging study, [18F]WC-DZ-F accumulated in PC-3 xenograft tumors over 2 h, and the uptake was significantly reduced by blocking with olaparib. PC-3 tumors were clearly visualized in microPET images, and the imaging results were further confirmed by autoradiography of PC-3 tumors ex vivo. In the biodistribution study [18F]WC-DZ-F washed out quickly from most tissues within 2 h, except for the liver in which the uptake was not blockable by olaparib. CONCLUSIONS We synthesized a novel PARP-1 radioligand, [18F]WC-DZ-F. The preliminary evaluation of [18F]WC-DZ-F indicates that it is a suitable PET imaging agent for measuring PARP-1 expression in prostate cancer and should be applicable to other types of cancers.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, United States of America.
| | - Jinbin Xu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, United States of America
| | - Cedric Mpoy
- Radiation Oncology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, United States of America
| | - Wenhua Chu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, United States of America
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801, United States of America
| | - Huifangjie Li
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, United States of America
| | - Buck E Rogers
- Radiation Oncology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, United States of America
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801, United States of America
| |
Collapse
|
22
|
Jannetti SA, Carlucci G, Carney B, Kossatz S, Shenker L, Carter LM, Salinas B, Brand C, Sadique A, Donabedian PL, Cunanan KM, Gönen M, Ponomarev V, Zeglis BM, Souweidane MM, Lewis JS, Weber WA, Humm JL, Reiner T. PARP-1-Targeted Radiotherapy in Mouse Models of Glioblastoma. J Nucl Med 2018; 59:1225-1233. [PMID: 29572254 DOI: 10.2967/jnumed.117.205054] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
The DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is overexpressed in glioblastoma, with overall low expression in healthy brain tissue. Paired with the availability of specific small molecule inhibitors, PARP-1 is a near-ideal target to develop novel radiotherapeutics to induce DNA damage and apoptosis in cancer cells, while sparing healthy brain tissue. Methods: We synthesized an 131I-labeled PARP-1 therapeutic and investigated its pharmacology in vitro and in vivo. A subcutaneous tumor model was used to quantify retention times and therapeutic efficacy. A potential clinical scenario, intratumoral convection-enhanced delivery, was mimicked using an orthotopic glioblastoma model combined with an implanted osmotic pump system to study local administration of 131I-PARPi (PARPi is PARP inhibitor). Results:131I-PARPi is a 1(2H)-phthalazinone, similar in structure to the Food and Drug Administration-approved PARP inhibitor AZD-2281. In vitro studies have shown that 131I-PARPi and AZD-2281 share similar pharmacologic profiles. 131I-PARPi delivered 134.1 cGy/MBq intratumoral injected activity. Doses to nontarget tissues, including liver and kidney, were significantly lower. Radiation damage and cell death in treated tumors were shown by p53 activation in U87-MG cells transfected with a p53-bioluminescent reporter. Treated mice showed significantly longer survival than mice receiving vehicle (29 vs. 22 d, P < 0.005) in a subcutaneous model. Convection-enhanced delivery demonstrated efficient retention of 131I-PARPi in orthotopic brain tumors, while quickly clearing from healthy brain tissue. Conclusion: Our results demonstrate 131I-PARPi's high potential as a therapeutic and highlight PARP's relevance as a target for radionuclide therapy. Radiation plays an integral role in brain tumor therapy, and radiolabeled PARP therapeutics could ultimately lead to improvements in the standard of care.
Collapse
Affiliation(s)
- Stephen A Jannetti
- Department of Biochemistry, Hunter College-The City University of New York, New York, New York.,Department of Biochemistry, The Graduate Center, The City University of New York, New York, New York.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Giuseppe Carlucci
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, New York, New York
| | - Brandon Carney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Chemistry, The Graduate Center, The City University of New York, New York, New York.,Department of Chemistry, Hunter College-The City University of New York, New York, New York
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Larissa Shenker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Beatriz Salinas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmad Sadique
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick L Donabedian
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen M Cunanan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian M Zeglis
- Department of Biochemistry, Hunter College-The City University of New York, New York, New York.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill-Cornell Medical College, New York, New York.,Department of Radiology, Weill-Cornell Medical College, New York, New York
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill-Cornell Medical College, New York, New York.,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill-Cornell Medical College, New York, New York.,Department of Radiology, Weill-Cornell Medical College, New York, New York
| | - Wolfgang A Weber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill-Cornell Medical College, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
23
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
24
|
Knight JC, Koustoulidou S, Cornelissen B. Imaging the DNA damage response with PET and SPECT. Eur J Nucl Med Mol Imaging 2017; 44:1065-1078. [PMID: 28058462 PMCID: PMC5397662 DOI: 10.1007/s00259-016-3604-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023]
Abstract
DNA integrity is constantly challenged by endogenous and exogenous factors that can alter the DNA sequence, leading to mutagenesis, aberrant transcriptional activity, and cytotoxicity. Left unrepaired, damaged DNA can ultimately lead to the development of cancer. To overcome this threat, a series of complex mechanisms collectively known as the DNA damage response (DDR) are able to detect the various types of DNA damage that can occur and stimulate the appropriate repair process. Each DNA damage repair pathway leads to the recruitment, upregulation, or activation of specific proteins within the nucleus, which, in some cases, can represent attractive targets for molecular imaging. Given the well-established involvement of DDR during tumorigenesis and cancer therapy, the ability to monitor these repair processes non-invasively using nuclear imaging techniques may facilitate the earlier detection of cancer and may also assist in monitoring response to DNA damaging treatment. This review article aims to provide an overview of recent efforts to develop PET and SPECT radiotracers for imaging of DNA damage repair proteins.
Collapse
Affiliation(s)
- James C Knight
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ, UK
| | - Sofia Koustoulidou
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ, UK
| | - Bart Cornelissen
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ, UK.
| |
Collapse
|
25
|
Huang T, Hu P, Banizs AB, He J. Initial evaluation of Cu-64 labeled PARPi-DOTA PET imaging in mice with mesothelioma. Bioorg Med Chem Lett 2017; 27:3472-3476. [PMID: 28587822 DOI: 10.1016/j.bmcl.2017.05.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) has emerged as an important molecular target for the treatment of several oncological diseases. A couple of molecular probes based on Olaparib scaffold have been developed by incorporation of F-18 or fluorophore for positron emission tomography (PET) or optical imaging in several types of tumor. PARP has been reported overexpressed in mesothelioma. We hereby synthesized an analogue of Olaparib containing DOTA moiety and radiolabeled it with Cu-64 to evaluate its utility of PET tracer for mesothelioma. The Cu-64 labeling was conveniently achieved at 90% yield with final compound at >99% radiochemistry purity. The biodistribution and PET imaging were performed at 0.5, 1, 2 and 18h to confirm the in vivo tumor targeting. The tumor uptake in study group was significant higher than that in control group (3.45±0.47% ID/g vs 2.26±0.30% ID/g) and tumor were clearly detected by PET imaging. These results suggest the feasibility to develop an Olaparib-based theranostic agent for mesothelioma.
Collapse
Affiliation(s)
- Tao Huang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, United States
| | - Pengcheng Hu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, United States; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Anna B Banizs
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, United States
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
26
|
Carney B, Kossatz S, Reiner T. Molecular Imaging of PARP. J Nucl Med 2017; 58:1025-1030. [PMID: 28473593 DOI: 10.2967/jnumed.117.189936] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022] Open
Abstract
The poly(adenosine diphosphate-ribose)polymerase (PARP) family of enzymes is an important factor in the cellular DNA damage response and has gained much attention for its role in many diseases, particularly cancer. Targeted molecular imaging of PARP using fluorescent or radiolabeled tags has followed on the success of therapeutic inhibitors and gained momentum over the past few years. This review covers PARP imaging from the very first imaging agents up to the current state of the technology, with a focus on the clinical applications made possible by these agents.
Collapse
Affiliation(s)
- Brandon Carney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Chemistry, Hunter College, and PhD Program in Chemistry, Graduate Center of City University of New York, New York, New York; and
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|