1
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J. Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K. Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A. Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W. Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
2
|
Nonnekens J, Pouget JP, Cornelissen B, Terry SYA. Status of radiobiology in molecular radionuclide therapy - Hope for the future. Nucl Med Biol 2022; 110-111:45-46. [PMID: 35561638 DOI: 10.1016/j.nucmedbio.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Julie Nonnekens
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, France
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
3
|
Sarnelli A, Belli ML, Azzali I, Loi E, Severi S, Strigari L. Alpha-Emitter Radiopharmaceuticals and External Beam Radiotherapy: A Radiobiological Model for the Combined Treatment. Cancers (Basel) 2022; 14:cancers14041077. [PMID: 35205825 PMCID: PMC8870677 DOI: 10.3390/cancers14041077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Previously published studies combined external beam radiotherapy (EBRT) treatments with different activities of 223Ra. The data of two-year overall survival (2y-OS) and neutropenia (TOX) incidence when combining EBRT and 223Ra are not homogeneous in literature. We adapted the linear-quadratic model (LQ) to 223Ra therapy using brachytherapy formalism for a mixture of radionuclides, considering the contribution of all daughter isotopes in the decay chain. A virtual cohort of patients undergoing 223Ra therapy was derived using data from the literature. The doses delivered using 223Ra and EBRT were converted into biologically equivalent doses. Fixed-effect logistic regression models were derived for both the 2y-OS and TOX and compared with available literature. Based on the literature search, four studies were identified to have reported the 223Ra injection activity levels varying from the placebo (0) to 80 kBq/kg, associated or not with EBRT. Logistic regression models revealed a dose-dependent increase in both the 2y-OS (intercept = -1.364; slope = 0.006; p-value ≤ 0.05) and TOX (-5.035; 0.018; ≤0.05) using the EBRT schedule of 8 Gy in 1 fr. Similar results were obtained for other schedules. Discrepancies between our TOX model and those derived for EBRT combined with chemotherapy are discussed. Radiobiological models allow us to estimate dose-dependent relationships, to predict the OS and TOX following combined 223Ra + EBRT treatment, which will guide future treatment optimization.
Collapse
Affiliation(s)
- Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.S.); (E.L.)
| | - Maria Luisa Belli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.S.); (E.L.)
- Correspondence:
| | - Irene Azzali
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Emiliano Loi
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.S.); (E.L.)
| | - Stefano Severi
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
4
|
Abbott EM, Falzone N, Lenzo N, Vallis KA. Combining External Beam Radiation and Radionuclide Therapies: Rationale, Radiobiology, Results and Roadblocks. Clin Oncol (R Coll Radiol) 2021; 33:735-743. [PMID: 34544640 DOI: 10.1016/j.clon.2021.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022]
Abstract
The emergence of effective radionuclide therapeutics, such as radium-223 dichloride, [177Lu]Lu-DOTA-TATE and [177Lu]Lu-PSMA ligands, over the last 10 years is driving a rapid expansion in molecular radiotherapy (MRT) research. Clinical trials that are underway will help to define optimal dosing protocols and identify groups of patients who are likely to benefit from this form of treatment. Clinical investigations are also being conducted to combine new MRT agents with other anticancer drugs, with particular emphasis on DNA repair inhibitors and immunotherapeutics. In this review, the case is presented for combining MRT with external beam radiotherapy (EBRT). The technical and dosimetric challenges of combining two radiotherapeutic modalities have impeded progress in the past. However, the need for research into the specific radiobiological effects of radionuclide therapy, which has lagged behind that for EBRT, has been recognised. This, together with innovations in imaging technology, MRT dosimetry tools and EBRT hardware, will facilitate the future use of this important combination of treatments.
Collapse
Affiliation(s)
- E M Abbott
- MIM Software Inc., Cleveland, Ohio, USA.
| | - N Falzone
- GenesisCare, Alexandria, New South Wales, Australia.
| | - N Lenzo
- GenesisCare Theranostics, St John of God Murdoch Cancer Centre, Murdoch, Western Australia, Australia; Department of Medicine, Notre Dame University Australia, Fremantle, Western Australia, Australia
| | - K A Vallis
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|