1
|
Momeni N, Mousavi SN, Chiti H, Heidarzadeh S. A maternal sweet diet is associated with the gut dysbiosis in the first trimester of pregnancy. BMC Nutr 2024; 10:162. [PMID: 39695908 DOI: 10.1186/s40795-024-00972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The composition of maternal gut phylum in each trimester of pregnancy has been associated with fetal development, separately. Diet is a main effective factor on the gut composition of phylum. However, associations between dietary glycemic index (GI), load (GL) and total antioxidant capacity (TAC) not studied with the gut population of phylum in mothers at the first trimester of pregnancy. MATERIALS AND METHODS Ninety healthy pregnant women aged 18-40 yrs, in the first trimester, were participated. Stool samples were gathered in a fasting state. Population of dominant phylum was determined after DNA extraction based on the 16SrRNA expression, as a housekeeping gene. Dietary intake was collected by a validated food frequency questionnaire and dietary indices were computed. RESULTS The Proteobacteria population was significantly higher in the gut of pregnant mothers than the other phylum (p < 0.001). Participants in the highest level of dietary GI had lower Bacteroidetes (p < 0.001) and Actinobacteria (p = 0.04) in their gut compared to the lowest level. Participants in the lowest level of dietary GL had higher Bacteroidetes (p < 0.001) and lower proteobacteria (p = 0.04) in their gut than the highest level. Dietary selenium showed a significant negative effect on the Firmicutes (p = 0.04) and Proteobacteria (p = 0.04), however positively affected the Actinobacteria (p = 0.01) population. Dietary zinc and manganese showed a negative effect on the Firmicutes population (p = 0.01 and p = 0.003). Zinc and vitamin E showed a negative effect on the Proteobacteria population (p = 0.04 and p = 0.03). CONCLUSIONS A maternal diet with high GI and GL have been associated with the gut dysbiosis, however dietary intake of selenium, zinc, manganese and vitamin E act in favor of the intestinal eubiosis in the first trimester of pregnancy.
Collapse
Affiliation(s)
- Navid Momeni
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Parvin Etesami St, Azadi Square, Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Parvin Etesami St, Azadi Square, Zanjan, Iran.
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Parvin Etesami St, Azadi Square, Zanjan, Iran.
| | - Siamak Heidarzadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Howard A, Carroll-Portillo A, Alcock J, Lin HC. Dietary Effects on the Gut Phageome. Int J Mol Sci 2024; 25:8690. [PMID: 39201374 PMCID: PMC11354428 DOI: 10.3390/ijms25168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
As knowledge of the gut microbiome has expanded our understanding of the symbiotic and dysbiotic relationships between the human host and its microbial constituents, the influence of gastrointestinal (GI) microbes both locally and beyond the intestine has become evident. Shifts in bacterial populations have now been associated with several conditions including Crohn's disease (CD), Ulcerative Colitis (UC), irritable bowel syndrome (IBS), Alzheimer's disease, Parkinson's Disease, liver diseases, obesity, metabolic syndrome, anxiety, depression, and cancers. As the bacteria in our gut thrive on the food we eat, diet plays a critical role in the functional aspects of our gut microbiome, influencing not only health but also the development of disease. While the bacterial microbiome in the context of disease is well studied, the associated gut phageome-bacteriophages living amongst and within our bacterial microbiome-is less well understood. With growing evidence that fluctuations in the phageome also correlate with dysbiosis, how diet influences this population needs to be better understood. This review surveys the current understanding of the effects of diet on the gut phageome.
Collapse
Affiliation(s)
- Andrea Howard
- School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
3
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
4
|
Zhang YW, Song PR, Wang SC, Liu H, Shi ZM, Su JC. Diets intervene osteoporosis via gut-bone axis. Gut Microbes 2024; 16:2295432. [PMID: 38174650 PMCID: PMC10773645 DOI: 10.1080/19490976.2023.2295432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease that seriously endangers the health of middle-aged and older adults. Recently, with the continuous deepening of research, an increasing number of studies have revealed gut microbiota as a potential target for osteoporosis, and the research concept of the gut-bone axis has gradually emerged. Additionally, the intake of dietary nutrients and the adoption of dietary patterns may affect the gut microbiota, and alterations in the gut microbiota might also influence the metabolic status of the host, thus adjusting bone metabolism. Based on the gut-bone axis, dietary intake can also participate in the modulation of bone metabolism by altering abundance, diversity, and composition of gut microbiota. Herein, combined with emerging literatures and relevant studies, this review is aimed to summarize the impacts of different dietary components and patterns on osteoporosis by acting on gut microbiota, as well as underlying mechanisms and proper dietary recommendations.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Pei-Ran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Zhong-Min Shi
- Department of Orthopaedics, Sixth People’s Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Rad ZA, Mousavi SN, Chiti H. A low-carb diet increases fecal short-chain fatty acids in feces of obese women following a weight-loss program: randomized feeding trial. Sci Rep 2023; 13:18146. [PMID: 37875472 PMCID: PMC10598010 DOI: 10.1038/s41598-023-45054-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023] Open
Abstract
To compare fecal level of short-chain fatty acid (SCFA) and some serum inflammatory markers between the low-carbohydrate (LCD) and the habitual (HD) diet, subjects were enrolled from our previous study on the effect of LCD vs. HD on gut microbiota in obese women following an energy-restricted diet. Serum interleukin-6 (IL-6) significantly increased in the HD group (p < 0.001). Adjusted for the baseline parameters, fecal level of butyric, propionic, and acetic acid were significantly different between the LCD and HD groups (p < 0.001, p = 0.02, and p < 0.001, respectively). Increase in serum insulin level correlated with decrease in fecal propionic acid by 5.3-folds (95% CI = - 2.7, - 0.15, p = 0.04). Increase in serum high sensitive C-reactive protein (hs-CRP) correlated with decrease in the percentage of fecal butyric acid by 25% (p = 0.04). Serum fasting blood sugar (FBS) and insulin showed a significant effect on fecal acetic acid (p = 0.009 and p = 0.01, respectively). Elevated serum FBS and insulin correlated with increase in fecal acetic acid by 2.8 and 8.9-folds (95%CI = 0.34, 1.9 and 1.2, 9.2), respectively. The LCD increased fecal SCFAs and a significant correlation was seen between serum IL-6 and fecal propionic acid level. More studies are needed to reach a concise correlation. Trial registration number: The trial was registered in Iranian ClinicalTrials.gov IRCT20200929048876N3.
Collapse
Affiliation(s)
- Zahra Abbaspour Rad
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hossein Chiti
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
6
|
Karbalaiee M, Chiti H, Mousavi SN, Afshar D. Low-carbohydrate hypo calorie diet has a beneficial effect on gut phyla and metabolic markers in healthy women with obesity: A randomized crossover study. OBESITY MEDICINE 2022; 35:100461. [DOI: 10.1016/j.obmed.2022.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
7
|
Yang M, Liu S, Zhang C. The Related Metabolic Diseases and Treatments of Obesity. Healthcare (Basel) 2022; 10:1616. [PMID: 36141228 PMCID: PMC9498506 DOI: 10.3390/healthcare10091616] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a chronic disease characterized by the abnormal or excessive accumulation of body fat, affecting more than 1 billion people worldwide. Obesity is commonly associated with other metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular diseases, chronic kidney disease, and cancers. Factors such as a sedentary lifestyle, overnutrition, socioeconomic status, and other environmental and genetic conditions can cause obesity. Many molecules and signaling pathways are involved in the pathogenesis of obesity, such as nuclear factor (NF)-κB, Toll-like receptors (TLRs), adhesion molecules, G protein-coupled receptors (GPCRs), programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1), and sirtuin 1 (SIRT1). Commonly used strategies of obesity management and treatment include exercise and dietary change or restriction for the early stage of obesity, bariatric surgery for server obesity, and Food and Drug Administration (FDA)-approved medicines such as semaglutide and liraglutide that can be used as monotherapy or as a synergistic treatment. In addition, psychological management, especially for patients with obesity and distress, is a good option. Gut microbiota plays an important role in obesity and its comorbidities, and gut microbial reprogramming by fecal microbiota transplantation (FMT), probiotics, prebiotics, or synbiotics shows promising potential in obesity and metabolic syndrome. Many clinical trials are ongoing to evaluate the therapeutic effects of different treatments. Currently, prevention and early treatment of obesity are the best options to prevent its progression to many comorbidities.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|