1
|
Sun K, Li H, Dong Y, Cao L, Li D, Li J, Zhang M, Yan D, Yang B. The Use of Identified Hypoxia-related Genes to Generate Models for Predicting the Prognosis of Cerebral Ischemia‒reperfusion Injury and Developing Treatment Strategies. Mol Neurobiol 2024:10.1007/s12035-024-04433-9. [PMID: 39230867 DOI: 10.1007/s12035-024-04433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Cerebral ischemia‒reperfusion injury (CIRI) is a type of secondary brain damage caused by reperfusion after ischemic stroke due to vascular obstruction. In this study, a CIRI diagnostic model was established by identifying hypoxia-related differentially expressed genes (HRDEGs) in patients with CIRI. The ischemia‒reperfusion injury (IRI)-related datasets were downloaded from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ), and hypoxia-related genes in the Gene Cards database were identified. After the datasets were combined, hypoxia-related differentially expressed genes (HRDEGs) expressed in CIRI patients were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the HRDEGs were performed using online tools. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed with the combined gene dataset. CIRI diagnostic models based on HRDEGs were constructed via least absolute shrinkage and selection operator (LASSO) regression analysis and a support vector machine (SVM) algorithm. The efficacy of the 9 identified hub genes for CIRI diagnosis was evaluated via mRNA‒microRNA (miRNA) interaction, mRNA-RNA-binding protein (RBP) network interaction, immune cell infiltration, and receiver operating characteristic (ROC) curve analyses. We then performed logistic regression analysis and constructed logistic regression models based on the expression of the 9 HRDEGs. We next established a nomogram and calibrated the prediction data. Finally, the clinical utility of the constructed logistic regression model was evaluated via decision curve analysis (DCA). This study revealed 9 critical genes with high diagnostic value, offering new insights into the diagnosis and selection of therapeutic targets for patients with CIRI. : Not applicable.
Collapse
Affiliation(s)
- Kaiwen Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hongwei Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yang Dong
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lei Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongpeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jinghong Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Manxia Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongming Yan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
2
|
Zhang Y, Wang Y, Dou H, Wang S, Qu D, Peng X, Zou N, Yang L. Caffeine improves mitochondrial dysfunction in the white matter of neonatal rats with hypoxia-ischemia through deacetylation: a proteomic analysis of lysine acetylation. Front Mol Neurosci 2024; 17:1394886. [PMID: 38745725 PMCID: PMC11091324 DOI: 10.3389/fnmol.2024.1394886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Aims White matter damage (WMD) is linked to both cerebral palsy and cognitive deficits in infants born prematurely. The focus of this study was to examine how caffeine influences the acetylation of proteins within the neonatal white matter and to evaluate its effectiveness in treating white matter damage caused by hypoxia-ischemia. Main methods We employed a method combining affinity enrichment with advanced liquid chromatography and mass spectrometry to profile acetylation in proteins from the white matter of neonatal rats grouped into control (Sham), hypoxic-ischemic (HI), and caffeine-treated (Caffeine) groups. Key findings Our findings included 1,999 sites of lysine acetylation across 1,123 proteins, with quantifiable changes noted in 1,342 sites within 689 proteins. Analysis of these patterns identified recurring sequences adjacent to the acetylation sites, notably YKacN, FkacN, and G * * * GkacS. Investigation into the biological roles of these proteins through Gene Ontology analysis indicated their involvement in a variety of cellular processes, predominantly within mitochondrial locations. Further analysis indicated that the acetylation of tau (Mapt), a protein associated with microtubules, was elevated in the HI condition; however, caffeine treatment appeared to mitigate this over-modification, thus potentially aiding in reducing oxidative stress, inflammation in the nervous system, and improving mitochondrial health. Caffeine inhibited acetylated Mapt through sirtuin 2 (SITR2), promoted Mapt nuclear translocation, and improved mitochondrial dysfunction, which was subsequently weakened by the SIRT2 inhibitor, AK-7. Significance Caffeine-induced changes in lysine acetylation may play a key role in improving mitochondrial dysfunction and inhibiting oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Yajun Zhang
- Department of Anesthesiology, Dalian Women and Children's Medical Group, Dalian, Liaoning, China
| | - Yuqian Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haiping Dou
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shanshan Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Danyang Qu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xin Peng
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ning Zou
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liu Yang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Freddo N, Soares SM, Fortuna M, Pompermaier A, Varela ACC, Maffi VC, Mozzato MT, de Alcantara Barcellos HH, Koakoski G, Barcellos LJG, Rossato-Grando LG. Stimulants cocktail: Methylphenidate plus caffeine impairs memory and cognition and alters mitochondrial and oxidative status. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110069. [PMID: 32800866 DOI: 10.1016/j.pnpbp.2020.110069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/28/2022]
Abstract
Methylphenidate (MPH) is a psychostimulant widely misused to increase wakefulness by drivers and students. Also, MPH can be found in dietary supplements in a clandestine manner aiming to burst performance of physical exercise practitioners. The abusive use of high doses of caffeine (CAF) in these contexts is equally already known. Here, we demonstrate the behavioral, oxidative and mitochondrial effects after acute exposure to high doses of MPH (80 mg/L) and CAF (150 mg/L), alone or associated (80 mg/L + 150 mg/L, respectively). We used zebrafish as animal model due to its high translational relevance. We evaluated the behavioral effects using the Novel Tank Test (NTT), Social Preference Test (SPT) and Y-maze Task and analyzed biomarkers of oxidative stress and activity of mitochondrial respiratory chain complexes. MPH alone induced antisocial behavior. MPH inhibited lipid peroxidation. The association of MPH + CAF presented memory impairment and anxiogenic behavior. In oxidative status, it inhibited lipid peroxidation, increased protein carbonylation and mitochondrial complex II, III and IV activity. Our results demonstrate that MPH and CAF alone negatively impact the typical behavioral of zebrafish. When associated, changes in cognition, memory, oxidative and mitochondrial status are more relevant.
Collapse
Affiliation(s)
- Natália Freddo
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Pompermaier
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | | | - Victoria Costa Maffi
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Heloísa Helena de Alcantara Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Gessi Koakoski
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | | |
Collapse
|
5
|
Ferguson MA, Sutton RM, Karlsson M, Sjövall F, Becker LB, Berg RA, Margulies SS, Kilbaugh TJ. Increased platelet mitochondrial respiration after cardiac arrest and resuscitation as a potential peripheral biosignature of cerebral bioenergetic dysfunction. J Bioenerg Biomembr 2016; 48:269-79. [PMID: 27020568 DOI: 10.1007/s10863-016-9657-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/15/2016] [Indexed: 02/02/2023]
Abstract
UNLABELLED Cardiac arrest (CA) results in a sepsis-like syndrome with activation of the innate immune system and increased mitochondrial bioenergetics. OBJECTIVE To determine if platelet mitochondrial respiration increases following CA in a porcine pediatric model of asphyxia-associated ventricular fibrillation (VF) CA, and if this readily obtained biomarker is associated with decreased brain mitochondrial respiration. CA protocol: 7 min of asphyxia, followed by VF, protocolized titration of compression depth to systolic blood pressure of 90 mmHg and vasopressor administration to a coronary perfusion pressure greater than 20 mmHg. PRIMARY OUTCOME platelet integrated mitochondrial electron transport system (ETS) function evaluated pre- and post-CA/ROSC four hours after return of spontaneous circulation (ROSC). Secondary outcome: correlation of platelet mitochondrial bioenergetics to cerebral bioenergetic function. Platelet maximal oxidative phosphorylation (OXPHOSCI+CII), P < 0.02, and maximal respiratory capacity (ETSCI+CII), P < 0.04, were both significantly increased compared to pre-arrest values. This was primarily due to a significant increase in succinate-supported respiration through Complex II (OXPHOSCII, P < 0.02 and ETSCII, P < 0.03). Higher respiration was not due to uncoupling, as the LEAKCI + CII respiration (mitochondrial respiration independent of ATP-production) was unchanged after CA/ROSC. Larger increases in platelet mitochondrial respiratory control ratio (RCR) compared to pre-CA RCR were significantly correlated with lower RCRs in the cortex (P < 0.03) and hippocampus (P < 0.04) compared to sham respiration. Platelet mitochondrial respiration is significantly increased four hours after ROSC. Future studies will identify mechanistic relationships between this serum biomarker and altered cerebral bioenergetics function following cardiac arrest.
Collapse
Affiliation(s)
- Michael A Ferguson
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Robert M Sutton
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84, Lund, Sweden
| | - Fredrik Sjövall
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84, Lund, Sweden
| | - Lance B Becker
- Department of Emergency Medicine, Perelman School of Medicine at the University of Pennsylvania, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Robert A Berg
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Susan S Margulies
- School of Engineering and Applied Science, Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA, 19104, USA
| | - Todd J Kilbaugh
- Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 34th & Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Soltani Z, Khaksari M, Jafari E, Iranpour M, Shahrokhi N. Is genistein neuroprotective in traumatic brain injury? Physiol Behav 2015; 152:26-31. [DOI: 10.1016/j.physbeh.2015.08.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/17/2015] [Accepted: 08/29/2015] [Indexed: 01/12/2023]
|
7
|
Alves CJ, Dariolli R, Jorge FM, Monteiro MR, Maximino JR, Martins RS, Strauss BE, Krieger JE, Callegaro D, Chadi G. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci 2015; 9:289. [PMID: 26300727 PMCID: PMC4523944 DOI: 10.3389/fncel.2015.00289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/14/2015] [Indexed: 01/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Frederico M Jorge
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Matheus R Monteiro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Roberto S Martins
- Department of Neurosurgery, Surgical Center of Functional Neurosurgery, Clinics Hospital of University of São Paulo São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, University of São Paulo School of Medicine São Paulo, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| |
Collapse
|
8
|
Lin X, Li M, Shang A, Hu Y, Yang X, Ye L, Bian S, Wang Z, Zhou D. Neuroglobin expression in rats after traumatic brain injury. Neural Regen Res 2015; 7:1960-6. [PMID: 25624825 PMCID: PMC4298890 DOI: 10.3969/j.issn.1673-5374.2012.25.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023] Open
Abstract
In this study, we used a rat model of severe closed traumatic brain injury to explore the relationship between neuroglobin, brain injury and neuronal apoptosis. Real-time PCR showed that neuroglobin mRNA expression rapidly increased in the rat cerebral cortex, and peaked at 30 minutes and 48 hours following traumatic brain injury. Immunohistochemical staining demonstrated that neuroglobin expression increased and remained high 2 hours to 5 days following injury. The rate of increase in the apoptosis-related Bax/Bcl-2 ratio greatly decreased between 30 minutes and 1 hour as well as between 48 and 72 hours post injury. Expression of neuroglobin and the anti-apoptotic factor Bcl-2 greatly increased, while that of the proapoptotic factor decreased, in the cerebral cortex post severe closed traumatic brain injury. It suggests that neuroglobin might protect neurons from apoptosis after traumatic injury by regulating Bax/Bcl-2 pathway.
Collapse
Affiliation(s)
- Xin Lin
- Department of Surgery, Division of Nanlou, General Hospital of Chinese PLA, Beijing 100853, China
| | - Min Li
- Department of Traumatic-Aesthetic Surgery, Huangsi Aesthetic Surgery Hospital, Beijing 100120, China
| | - Aijia Shang
- Department of Neurosurgery, Division of Surgery, General Hospital of Chinese PLA, Beijing 100853, China
| | - Yazhuo Hu
- Institute of Geriatrics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Xiao Yang
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ling Ye
- Institute of Geriatrics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Suyan Bian
- Department of Cardiology, Division of Nanlou, General Hospital of Chinese PLA, Beijing 100853, China
| | - Zhongfeng Wang
- Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Dingbiao Zhou
- Department of Neurosurgery, Division of Surgery, General Hospital of Chinese PLA, Beijing 100853, China
| |
Collapse
|
9
|
Evidence to support mitochondrial neuroprotection, in severe traumatic brain injury. J Bioenerg Biomembr 2014; 47:133-48. [PMID: 25358440 DOI: 10.1007/s10863-014-9589-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is still the leading cause of disability in young adults worldwide. The major mechanisms - diffuse axonal injury, cerebral contusion, ischemic neurological damage, and intracranial hematomas have all been shown to be associated with mitochondrial dysfunction in some form. Mitochondrial dysfunction in TBI patients is an active area of research, and attempts to manipulate neuronal/astrocytic metabolism to improve outcomes have been met with limited translational success. Previously, several preclinical and clinical studies on TBI induced mitochondrial dysfunction have focused on opening of the mitochondrial permeability transition pore (PTP), consequent neurodegeneration and attempts to mitigate this degeneration with cyclosporine A (CsA) or analogous drugs, and have been unsuccessful. Recent insights into normal mitochondrial dynamics and into diseases such as inherited mitochondrial neuropathies, sepsis and organ failure could provide novel opportunities to develop mitochondria-based neuroprotective treatments that could improve severe TBI outcomes. This review summarizes those aspects of mitochondrial dysfunction underlying TBI pathology with special attention to models of penetrating traumatic brain injury, an epidemic in modern American society.
Collapse
|
10
|
Dohi K, Kraemer BC, Erickson MA, McMillan PJ, Kovac A, Flachbartova Z, Hansen KM, Shah GN, Sheibani N, Salameh T, Banks WA. Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury. PLoS One 2014; 9:e108034. [PMID: 25251220 PMCID: PMC4176020 DOI: 10.1371/journal.pone.0108034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI. We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1-40 or 1-42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI.
Collapse
Affiliation(s)
- Kenji Dohi
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Department of Emergency Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
| | - Michelle A. Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
| | - Pamela J. McMillan
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Andrej Kovac
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Zuzana Flachbartova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Kim M. Hansen
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Gul N. Shah
- Division of Endocrinology, Department of Internal Medicine, Saint Louis University School of Medicine, Edward A. Doisy Research Center, St. Louis, MO, United States of America
| | - Nader Sheibani
- Opthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Therese Salameh
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
11
|
Hernández-Jiménez M, Sacristán S, Morales C, García-Villanueva M, García-Fernández E, Alcázar A, González VM, Martín ME. Apoptosis-related proteins are potential markers of neonatal hypoxic-ischemic encephalopathy (HIE) injury. Neurosci Lett 2014; 558:143-8. [PMID: 24269372 DOI: 10.1016/j.neulet.2013.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 02/05/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) causes high mortality and long-term morbidity rates. The magnitude of the neuronal damage depends on the duration and severity of the initial insult combined with the deleterious effects of reperfusion and apoptosis. Currently, a diagnosis of HIE is based largely on the neurological and histological findings. Therefore, the aim of this study was to identify apoptosis-related proteins that might serve as potential markers of HIE injury. As an initial step toward reaching this objective, we analyzed changes in protein levels in an in vitro model of hypoxia using antibody arrays, and we have identified changes in the expression level of two proteins involved in apoptosis, Smac-DIABLO and cathepsin D. We obtained brain sections from eight neonatal HIE patients and performed histological staining, TUNEL assays and Smac-DIABLO and cathepsin D immunolocalization. Our results revealed a high number of TUNEL-positive cells, including neurons, astrocytes and ependymal cells, in the various regions that were analyzed. Interestingly, many of the areas that were positive for TUNEL staining did not appear to be damaged in the histological evaluation. In addition, using immunostaining, we found that Smac-DIABLO and cathepsin D had the same regional distribution pattern. Taken together, these findings indicate that these two proteins could serve as markers to identify injured regions that might not to be detectable using histological observations alone.
Collapse
Affiliation(s)
| | - Silvia Sacristán
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain
| | - Carmen Morales
- Servicio de Anatomía Patológica, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | | | | - Alberto Alcázar
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain
| | - Víctor M González
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain
| | - M Elena Martín
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| |
Collapse
|
12
|
Carre E, Ogier M, Boret H, Montcriol A, Bourdon L, Jean-Jacques R. Metabolic crisis in severely head-injured patients: is ischemia just the tip of the iceberg? Front Neurol 2013; 4:146. [PMID: 24130548 PMCID: PMC3795329 DOI: 10.3389/fneur.2013.00146] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/16/2013] [Indexed: 01/05/2023] Open
Abstract
Ischemia and metabolic crisis are frequent post-traumatic secondary brain insults that negatively influence outcome. Clinicians commonly mix up these two types of insults, mainly because high lactate/pyruvate ratio (LPR) is the common marker for both ischemia and metabolic crisis. However, LPR elevations during ischemia and metabolic crisis reflect two different energetic imbalances: ischemia (Type 1 LPR elevations with low oxygenation) is characterized by a drastic deprivation of energetic substrates, whereas metabolic crisis (Type 2 LPR elevations with normal or high oxygenation) is associated with profound mitochondrial dysfunction but normal supply of energetic substrates. The discrimination between ischemia and metabolic crisis is crucial because conventional recommendations against ischemia may be detrimental for patients with metabolic crisis. Multimodal monitoring, including microdialysis and brain tissue oxygen monitoring, allows such discrimination, but these techniques are not easily accessible to all head-injured patients. Thus, a new “gold standard” and adapted medical education are required to optimize the management of patients with metabolic crisis.
Collapse
Affiliation(s)
- Emilie Carre
- Unit of Traumatology, Institut de Recherche Biomedicale des Armees , Bretigny , France
| | | | | | | | | | | |
Collapse
|
13
|
Sawant DA, Tharakan B, Wilson RL, Stagg HW, Hunter FA, Childs EW. Regulation of tumor necrosis factor-α-induced microvascular endothelial cell hyperpermeability by recombinant B-cell lymphoma-extra large. J Surg Res 2013; 184:628-37. [PMID: 23731686 PMCID: PMC3759616 DOI: 10.1016/j.jss.2013.04.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/18/2013] [Accepted: 04/30/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tumor necrosis factor-α (TNF-α), a cytotoxic cytokine, induces endothelial cell barrier dysfunction and microvascular hyperpermeability, leading to tissue edema, a hallmark of traumatic injuries. The objective of the present study was to determine whether B-cell lymphoma-extra large (Bcl-xL), an antiapoptotic protein, would regulate and protect against TNF-α-mediated endothelial cell barrier dysfunction and microvascular hyperpermeability. METHODS Rat lung microvascular endothelial cells were grown as monolayers on Transwell membranes, and fluorescein isothiocyanate-bovine albumin flux (5 mg/mL) across the monolayer was measured fluorometrically to indicate changes in monolayer permeability. The rat lung microvascular endothelial cell adherens junctional integrity and actin cytoskeleton was studied using β-catenin immunofluorescence and rhodamine phalloidin dye, respectively. Pretreatment of caspase-8 inhibitor (Z-IETD-FMK, 100 μM) for 1 hour and transfection of Bcl-2-homology domain 3-interacting domain death agonist small interfering RNA (10 μM) for 48 hours were performed to study their respective effects on TNF-α-induced (10 ng/mL; 1-hour treatment) monolayer permeability. Recombinant Bcl-xL protein (2.5 μg/ml) was transfected in rat lung microvascular endothelial cells for 1 hour, and its effect on permeability was demonstrated using a permeability assay. Caspase-3 activity was assayed fluorometrically. RESULTS Z-IETD-FMK pretreatment protected the adherens junctions and decreased TNF-α-induced monolayer hyperpermeability. Bcl-2-homology domain 3-interacting domain death agonist small interfering RNA transfection attenuated the TNF-α-induced increase in monolayer permeability. Recombinant Bcl-xL protein showed protection against TNF-α-induced actin stress fiber formation, an increase in caspase-3 activity, and monolayer hyperpermeability. CONCLUSIONS Our results have demonstrated the protective effects of recombinant Bcl-xL protein against TNF-α-induced endothelial cell adherens junction damage and microvascular endothelial cell hyperpermeability. These findings support the potential for Bcl-xL-based drug development against microvascular hyperpermeability and tissue edema.
Collapse
Affiliation(s)
- Devendra A. Sawant
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Binu Tharakan
- Texas A&M Health Science Center College of Medicine and Scott & White Health Care, Temple, Texas, USA
| | - Rickesha L. Wilson
- Texas A&M Health Science Center College of Medicine and Scott & White Health Care, Temple, Texas, USA
| | - Hayden W. Stagg
- Texas A&M Health Science Center College of Medicine and Scott & White Health Care, Temple, Texas, USA
| | - Felicia A. Hunter
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Ed W. Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Wang K, Zhang J, Liu J, Tian J, Wu Y, Wang X, Quan L, Xu H, Wang W, Liu H. Variations in the protein level of Omi/HtrA2 in the heart of aged rats may contribute to the increased susceptibility of cardiomyocytes to ischemia/reperfusion injury and cell death : Omi/HtrA2 and aged heart injury. AGE (DORDRECHT, NETHERLANDS) 2013; 35:733-746. [PMID: 22535253 PMCID: PMC3636415 DOI: 10.1007/s11357-012-9406-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
Survival after acute myocardial infarction is decreased in elderly patients. The enhanced rates of apoptosis in the aging heart exacerbate myocardial ischemia/reperfusion (MI/R) injury. We have recently demonstrated that the X-linked inhibitor of apoptosis protein (XIAP), the most potent endogenous inhibitor of apoptosis, was decreased in aging rats' hearts. XIAP was balanced by two mitochondria proteins, Omi/HtrA2 and Smac/DIABLO. However, the implicative role of XIAP, Omi/HtrA2, and Smac/DIABLO to aging-related MI/R injury has not been previously investigated. In our study, male aging rats (20-24 months) or young adult rats (4-6 months) were subjected to 30 min of myocardial ischemia followed by reperfusion. MI/R-induced cardiac injury was enhanced in aging rats, as evidenced by aggravated cardiac dysfunction, enlarged infarct size, and increased myocardial apoptosis (TUNEL and caspase-3 activity). Then, the XIAP, Omi/HtrA2, and Smac/DIABLO protein and mRNA expression was detected. XIAP protein and mRNA expression was decreased in both aging hearts and aging hearts subjected to MI/R. Meanwhile, myocardial XIAP protein expression was correlated to cardiac function after MI/R. However, Omi/HtrA2, but not Smac/DIABLO, expression was increased in aging hearts. Moreover, the translocation of Omi/HtrA2 from mitochondria to cytosol was increased in both aging hearts and aging hearts subjected to MI/R. Treatment with ucf-101 (a novel and specific Omi/HtrA2 inhibitor) attenuated XIAP degradation and caspase-3 activity and exerted cardioprotective effects. Taken together, these results demonstrated that increased expression and leakage of Omi/HtrA2 enhanced MI/R injury in aging hearts via degrading XIAP and promoting myocardial apoptosis.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Aging/pathology
- Animals
- Apoptosis Regulatory Proteins
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Death/genetics
- Disease Models, Animal
- Gene Expression Regulation
- High-Temperature Requirement A Serine Peptidase 2
- In Situ Nick-End Labeling
- Male
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondrial Proteins/biosynthesis
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA-Binding Proteins/biosynthesis
- RNA-Binding Proteins/genetics
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Serine Endopeptidases/biosynthesis
- Serine Endopeptidases/genetics
- Serine-Arginine Splicing Factors
- X-Linked Inhibitor of Apoptosis Protein/genetics
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Ke Wang
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Jie Zhang
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Jingyi Liu
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Jue Tian
- />Department of Pathophysiology, Ningxia Medical University, Yinchuan, Ningxia 750004 People’s Republic of China
| | - Ye Wu
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Xiaoliang Wang
- />Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001 People’s Republic of China
| | - Lin Quan
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Haibo Xu
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Wen Wang
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
| | - Huirong Liu
- />Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men, P.O. Box 907, Beijing, 100069 People’s Republic of China
- />The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100069 People’s Republic of China
| |
Collapse
|
15
|
Dehghan F, Khaksari Hadad M, Asadikram G, Najafipour H, Shahrokhi N. Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: role of oxidative stresses. Arch Med Res 2013; 44:251-8. [PMID: 23608674 DOI: 10.1016/j.arcmed.2013.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 03/15/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Traumatic brain injury (TBI) is one of the main causes of brain edema and increased intracranial pressure (ICP). In the clinic it is essential to limit the development of ICP after TBI. In the present study, the effects of melatonin on these parameters at different time points and alterations of oxidant factors as one of the probable involved mechanisms have been evaluated. METHODS Albino N-Mary rats were divided into five groups of sham, TBI, TBI + vehicle, TBI + Mel5 and TBI + Mel20. Brain injury was induced by Marmarou method. Melatonin was injected i.p. at 1, 24, 48 and 72 h after brain trauma. Brain water and Evans blue dye contents as well as oxidant/antioxidant factors were measured 72 h after TBI. ICP and neurological scores were determined at -1, 1, 24, 48 and 72 h post-TBI. RESULTS Brain water and Evans blue dye contents in melatonin-treated groups decreased as compared to the TBI + vehicle group (p <0.001). Veterinary coma scale (VCS) at 24, 48 and 72 h after TBI showed a significant increase in melatonin groups (TBI + Mel5: p <0.01 and TBI + Mel20: p <0.001) in comparison to the TBI + vehicle group. ICP at 24, 48 and 72 h after TBI decreased in melatonin groups as compared to the TBI + vehicle group (p <0.001). Superoxide dismutase and glutathione peroxidase activities showed a significant increase, whereas malondialdehyde level in these groups was significantly lower in melatonin groups in comparison to the TBI + vehicle group (p <0.001). CONCLUSION Melatonin decreases brain edema, BBB permeability and ICP, but increases VCS after TBI. These effects are probably due to inhibition of oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | | |
Collapse
|
16
|
Potentially neuroprotective gene modulation in an in vitro model of mild traumatic brain injury. Mol Cell Biochem 2012; 375:185-98. [PMID: 23242602 DOI: 10.1007/s11010-012-1541-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/06/2012] [Indexed: 01/21/2023]
Abstract
In this study, we investigated the hypothesis that mild traumatic brain injury (mTBI) triggers a controlled gene program as an adaptive response finalized to neuroprotection, similar to that found in hibernators and in ischemic preconditioning. A stretch injury device was used to produce an equi-biaxial strain field in rat organotypic hippocampal slice cultures at a specified Lagrangian strain of 10 % and a constant strain rate of 20 s(-1). After 24 h from injury, propidium iodide staining, HPLC analysis of metabolites and microarray analysis of cDNA were performed to evaluate cell viability, cell energy state and gene expression, respectively. Compared to control cultures, 10 % stretch injured cultures showed no change in viability, but demonstrated a hypometabolic state (decreased ATP, ATP/ADP, and nicotinic coenzymes) and a peculiar pattern of gene modulation. The latter was characterized by downregulation of genes encoding for proteins of complexes I, III, and IV of the mitochondrial electron transport chain and of ATP synthase; downregulation of transcriptional and translational genes; downregulation and upregulation of genes controlling the synthesis of glutamate and GABA receptors, upregulation of calmodulin and calmodulin-binding proteins; proper modulation of genes encoding for proapoptotic and antiapoptotic proteins. These results support the hypothesis that, following mTBI, a hibernation-type response is activated in non-hibernating species. Unlike in hibernators and ischemic preconditioning, this adaptive gene programme, aimed at achieving maximal neuroprotection, is not triggered by decrease in oxygen availability. It seems rather activated to avoid increase in oxidative/nitrosative stress and apoptosis during a transient period of mitochondrial malfunctioning.
Collapse
|
17
|
Qin X, Li L, Lv Q, Yu B, Yang S, He T, Zhang Y. Underlying mechanism of protection from hypoxic injury seen with n-butanol extract of Potentilla anserine L. in hippocampal neurons. Neural Regen Res 2012; 7:2576-82. [PMID: 25368633 PMCID: PMC4200724 DOI: 10.3969/j.issn.1673-5374.2012.33.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/26/2012] [Indexed: 11/29/2022] Open
Abstract
The alcohol and n-butanol extract of Potentilla anserine L. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear. In this study, primary cultured hippocampal neurons from neonatal rats were incubated in 95% N2 and 5% CO2 for 4 hours. Results indicated that hypoxic injury decreased the viability of neurons, increased the expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein. Pretreatment with 0.25, 0.062 5, 0.015 6 mg/mL n-butanol extract of Potentilla anserine L. led to a significant increase in cell viability. Expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein, were attenuated. The neuroprotective effect of n-butanol extract of Potentilla anserine L. was equivalent to tanshinone IIA. Our data suggest that the n-butanol extract of Potentilla anserine L. could protect primary hippocampal neurons from hypoxic injury by deactivating mitochondrial cell death.
Collapse
Affiliation(s)
- Xiaojing Qin
- Department of Pathology, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Lingzhi Li
- Department of Medicinal Chemistry, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China ; Tianjin Key Laboratory of Occupational and Environmental Hazard Biomarkers, Tianjin 300162, China
| | - Qi Lv
- Department of Central Laboratory, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Baoguo Yu
- Department of Rescue Medicine, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Shuwang Yang
- Department of Postgraduate, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Tao He
- Department of Pathology, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yongliang Zhang
- Tianjin Key Laboratory of Occupational and Environmental Hazard Biomarkers, Tianjin 300162, China ; Ministry of Scientific Research, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| |
Collapse
|
18
|
Sun LL, Zhang L, Meng XL, Zhang F, Zhao Y, Jin X. Effects of fluid shear stress on the expression of Omi/HtrA2 in human umbilical vein endothelial cells. Mol Med Rep 2012; 7:110-4. [PMID: 23123883 DOI: 10.3892/mmr.2012.1137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 07/23/2012] [Indexed: 11/06/2022] Open
Abstract
To investigate the molecular mechanisms of laminar shear stress on the inhibition of apoptosis in endothelial cells, human umbilical vein endothelial cells (HUVECs) were starved in medium containing 2% fetal bovine serum (FBS) and treated with 15 dyne/cm2 shear stress. We confirmed that 15 dyne/cm2 shear stress inhibited the expression of Omi/HtrA2 at the mRNA and protein levels in cultured HUVECs. Furthermore, the release of Omi/HtrA2 from the mitochondria was induced by removal of basic fibroblast growth factor and decrease of FBS in the medium, while shear stress inhibited its release under the same conditions. These results suggest that downregulation of Omi/HtrA2 may contribute to the potent anti-atherosclerotic effect of shear stress by preventing endothelial cells from entering apoptosis.
Collapse
Affiliation(s)
- Liang-Liang Sun
- Department of Pharmacology, School of Medicine, Xiamen University, Xiamen 361005, Fujian, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Gabrielian L, Willshire LW, Helps SC, van den Heuvel C, Mathias J, Vink R. Intracranial Pressure Changes following Traumatic Brain Injury in Rats: Lack of Significant Change in the Absence of Mass Lesions or Hypoxia. J Neurotrauma 2011; 28:2103-11. [DOI: 10.1089/neu.2011.1785] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Levon Gabrielian
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | - Luke W. Willshire
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | - Stephen C. Helps
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | | | - Jane Mathias
- School of Psychology, Adelaide Centre for Neurological Diseases, University of Adelaide, Adelaide SA, Australia
| | - Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| |
Collapse
|
20
|
Improvement of cerebral metabolism mediated by Ro5-4864 is associated with relief of intracranial pressure and mitochondrial protective effect in experimental brain injury. Pharm Res 2011; 28:2945-53. [PMID: 21584844 DOI: 10.1007/s11095-011-0463-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE To investigate the possible impact of reduction of mitochondrial membrane permeabilization by modulation of the 18 kDa translocator protein mediated by Ro5-4864 over post-traumatic cerebral edema and metabolic crisis. METHODS Cerebral microdialysis and intracranial pressure (ICP) monitoring were performed in Sprague-Dawley rats treated by intraperitoneal injection of either dimethylsulfoxide (vehicle) or Ro5-4864 following cortical contusion and further correlated with quantitative assessment of mitochondrial damage, water content in the injured tissue, modified neurological severity score, and lesion size. RESULTS Ro5-4864 resulted in a profound decrease in ICP that correlated with improved cerebral metabolism characterized by significantly higher glucose and pyruvate and lower lactate concentrations in the pericontusional area in comparison with vehicle-treated animals. Reduced ICP correlated with reduced water content in the injured tissue; improved metabolism was associated with reduced mitochondrial damage evidenced by electron microscopy. Both effects were associated with a profound and significant reduction in glycerol release and lesion size, and correlated with improved neurological recovery. CONCLUSIONS The present study shows that Ro5-4864 has a favorable effect on the fate of injured brain, presumably mediated by improvement of metabolism. It further suggests that improvement of metabolism may contribute to ICP relief.
Collapse
|