1
|
Rojas-Solé C, Pinilla-González V, Lillo-Moya J, González-Fernández T, Saso L, Rodrigo R. Integrated approach to reducing polypharmacy in older people: exploring the role of oxidative stress and antioxidant potential therapy. Redox Rep 2024; 29:2289740. [PMID: 38108325 PMCID: PMC10732214 DOI: 10.1080/13510002.2023.2289740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Increased life expectancy, attributed to improved access to healthcare and drug development, has led to an increase in multimorbidity, a key contributor to polypharmacy. Polypharmacy is characterised by its association with a variety of adverse events in the older persons. The mechanisms involved in the development of age-related chronic diseases are largely unknown; however, altered redox homeostasis due to ageing is one of the main theories. In this context, the present review explores the development and interaction between different age-related diseases, mainly linked by oxidative stress. In addition, drug interactions in the treatment of various diseases are described, emphasising that the holistic management of older people and their pathologies should prevail over the individual treatment of each condition.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
2
|
Cirilli I, Orlando P, Hrelia S, Marcheggiani F, Tiano L, Beghelli D, Angeloni C. Endogenous coenzyme Q content and exogenous bioavailability in D. melanogaster. Heliyon 2024; 10:e37854. [PMID: 39315151 PMCID: PMC11417581 DOI: 10.1016/j.heliyon.2024.e37854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/06/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Development and aging significantly impact the cellular levels of Coenzyme Q (CoQ), which is associated with both pathological and physiological conditions. Aim of this study was to describe the CoQ status throughout the lifetime of Drosophila melanogaster, a well-established model in aging studies. CoQ9 and CoQ distribution was analysed across different body segments and various life stages in both male and female flies. The results indicate that CoQ9 is the predominant isoform in every phase of flies' life cycle, with the highest concentrations observed in the thorax. We noted distinct trends in CoQ distribution during aging, which varied according to sex and body segments (head, thorax, and abdomen). Supplementation with two concentrations of CoQ9 and CoQ10 (15 μM and 75 μM) for 2 weeks induced a segment- and sex-specific CoQ uptake. Although 75 μM CoQ10 was more effective in modulating the CoQ status, lifelong treatment with this concentration did not affect the longevity of the flies.
Collapse
Affiliation(s)
- Ilenia Cirilli
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, 47921, Rimini, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, 47921, Rimini, Italy
| |
Collapse
|
3
|
Üstündağ H, Demir Ö, Huyut MT, Yüce N. Investigating the individual and combined effects of coenzyme Q10 and vitamin C on CLP-induced cardiac injury in rats. Sci Rep 2024; 14:3098. [PMID: 38326366 PMCID: PMC10850075 DOI: 10.1038/s41598-024-52932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Sepsis-induced cardiac injury represents a major clinical challenge, amplifying the urgency for effective therapeutic interventions. This study aimed to delve into the individual and combined prophylactic effects of Vitamin C (Vit C) and Coenzyme Q10 (CoQ10) against inflammatory heart injury in a cecal ligation and puncture (CLP) induced polymicrobial sepsis rat model. Thirty adult female Sprague-Dawley rats were randomly divided into five groups: Control, CLP, Vitamin C, CoQ10, and Vit C + CoQ10, each consisting of six rats. Treatments were administered orally via gavage for 10 days prior to the operation. Eighteen hours post-sepsis induction, the animals were euthanized, and specimens were collected for analysis. The study examined variations in oxidative (TOS, OSI, MDA, MPO) and antioxidative markers (TAS, SOD, CAT, GSH), histopathological changes, inflammatory cytokine concentrations (TNF-α, IL-1β), nitric oxide (NO) dynamics, and cardiac indicators such as CK-MB. Impressively, the combined regimen markedly diminished oxidative stress, and antioxidative parameters reflected notable enhancements. Elevated NO levels, a central player in sepsis-driven inflammatory cascades, were effectively tempered by our intervention. Histological examinations corroborated the biochemical data, revealing diminished cardiac tissue damage in treated subjects. Furthermore, a marked suppression in pro-inflammatory cytokines was discerned, solidifying the therapeutic potential of our intervention. Interestingly, in certain evaluations, CoQ10 exhibited superior benefits over Vit C. Collectively, these findings underscore the potential therapeutic promise of Vit C and CoQ10 combination against septic cardiac injuries in rats.
Collapse
Affiliation(s)
- Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye.
| | - Özlem Demir
- Department of Histology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Mehmet Tahir Huyut
- Department of Biostatistics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Neslihan Yüce
- Department of Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
4
|
Akbel E, Kucukkurt I, Ince S, Demirel HH, Acaroz DA, Zemheri-Navruz F, Kan F. Investigation of protective effect of resveratrol and coenzyme Q 10 against cyclophosphamide-induced lipid peroxidation, oxidative stress and DNA damage in rats. Toxicol Res (Camb) 2024; 13:tfad123. [PMID: 38173543 PMCID: PMC10758596 DOI: 10.1093/toxres/tfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
It is seen that cyclophosphamide, which is used in treating many diseases, especially cancer, causes toxicity in studies, and its metabolites induce oxidative stress. This study aimed to investigate the protective effects of resveratrol and Coenzyme Q10, known for their antioxidant properties, separately and together, against oxidative stress induced by cyclophosphamide. In this study, 35 Wistar albino male rats were divided into five groups. Groups; Control group, cyclophosphamide (CP) group (CP as 75 mg kg i.p. on day 14), coenzyme Q10 (CoQ10) + CP group (20 mg/kg i.p. CoQ10 + 75 mg kg i.p. CP), resveratrol (Res) + CP group (20 mg/kg i.p. Res + 75 mg/kg i.p. CP), CoQ10 + Res + CP group (20 mg/kg i.p Res + 20 mg/kg i.p CoQ10 and 75 mg/kg i.p.CP). At the end of the experiment, the cholesterol, creatinine and urea levels of the group given CP increased, while a decrease was observed in the groups given Res and CoQ10. Malondialdehyde level was high, glutathione level, superoxide dismutase and catalase activities were decreased in the blood and all tissues (liver, kidney, brain, heart and testis) of the CP given group. DNA damage and histopathological changes were also observed. In contrast, Res and CoQ10, both separately and together, reversed the CP-induced altered level and enzyme activities and ameliorated DNA damage and histopathological changes. In this study, the effects of Res and CoQ10 against CP toxicity were examined both separately and together.
Collapse
Affiliation(s)
- Erten Akbel
- Usak Health Training School, Usak University, 64200, Uşak, Turkey
| | - Ismail Kucukkurt
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Damla Arslan Acaroz
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Fahriye Zemheri-Navruz
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, 74110, Bartın, Turkey
| | - Fahriye Kan
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Uner B, Dwivedi P, Ergin AD. Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria. Drug Deliv Transl Res 2024; 14:191-207. [PMID: 37555905 DOI: 10.1007/s13346-023-01392-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
Phenylketonuria (PKU) is a rare inherited metabolic disease characterized by phenylalanine hydroxylase enzyme deficiency. In PKU patients, coenzyme Q10 (CoQ10) levels were found low. Therefore, we focused on the modification of CoQ10 to load the micelles and increase entry of micelles into the cell and mitochondria, and it is taking a part in ATP turnover. Micelles had produced by comparing two different production methods (thin-film layer and direct-dissolution), and characterization studies were performed (zeta potential, size, and encapsulation efficiency). Then, L-arginine (LARG) and poly-arginine (PARG) were incorporated with the micelles for subsequential release and PKU cell studies. The effects of these components on intracellular uptake and their use in the cellular cycle were analyzed by ELISA, Western blot, membrane potential measurement, and flow cytometry methods. In addition, both effects of LARG and PARG micelles on pharmacokinetics at the cellular level and their cell binding rate were determined. The thin-film method was found superior in micelle preparation. PARG/LARG-modified micelles showed sustained release. In the cellular and mitochondrial uptake of CoQ10, CoQ10-micelle + PARG > CoQ10-micelle + LARG > CoQ10-micelle > CoQ10 was found. This increased localization caused lowering of oxygen consumption rates, but maintaining mitochondrial membrane potential. The study results had showed that besides micelle formulation, PARG and LARG are effective in cellular and mitochondrial targeting.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA.
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, USA
| | - Ahmet Doğan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
- Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Yazdi A, Shirmohammadi K, Parvaneh E, Entezari-Maleki T, Hosseini SK, Ranjbar A, Mehrpooya M. Effects of coenzyme Q10 supplementation on oxidative stress biomarkers following reperfusion in STEMI patients undergoing primary percutaneous coronary intervention. J Cardiovasc Thorac Res 2023; 15:250-261. [PMID: 38357568 PMCID: PMC10862029 DOI: 10.34172/jcvtr.2023.31817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction It is well-established that oxidative stress is deeply involved in myocardial ischemia-reperfusion injury. Considering the potent antioxidant properties of coenzyme Q10 (CoQ10), we aimed to assess whether CoQ10 supplementation could exert beneficial effects on plasma levels of oxidative stress biomarkers in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPIC). Methods Seventy patients with the first attack of STEMI, eligible for PPCI were randomly assigned to receive either standard treatments plus CoQ10 (400 mg before PPCI and 200 mg twice daily for three days after PPCI) or standard treatments plus placebo. Plasma levels of oxidative stress biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured at 6, 24, and 72 hours after completion of PPCI. Results The changes in plasma levels of the studied biomarkers at 6 and 24 hours after PPCI were similar in the both groups (P values>0.05). This is while at 72 hours, the CoQ10- treated group exhibited significantly higher plasma levels of SOD (P value<0.001), CAT (P value=0.001), and TAC (P value<0.001), along with a lower plasma level of MDA (P value=0.002) compared to the placebo-treated group. The plasma activity of GPX showed no significant difference between the groups at all the study time points (P values>0.05). Conclusion This study showed that CoQ10 has the potential to modulate the balance between antioxidant and oxidant biomarkers after reperfusion therapy. Our results suggest that CoQ10, through its antioxidant capacity, may help reduce the reperfusion injury in ischemic myocardium.
Collapse
Affiliation(s)
- Amirhossein Yazdi
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kimia Shirmohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Erfan Parvaneh
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kianoosh Hosseini
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Rezaie MJ, Allahveisi A, Raoofi A, Rezaei M, Nikkhoo B, Mousavi Khaneghah A. In vitro effects of pentoxifylline and coenzyme Q10 on the sperm of oligoasthenoteratozoospermia patients. HUM FERTIL 2023; 26:908-917. [PMID: 34933649 DOI: 10.1080/14647273.2021.2017024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
The effect of in-vitro sperm incubation with Pentoxifylline (PTX) and Coenzyme Q10 (CoQ10) in Oligoasthenoteratozoospermia (OAT) patients was evaluated. Semen samples were obtained from men with Normozoospermia and men with OAT. Motile sperm from the two groups were subdivided into four subgroups: (i) without incubation with PTX + CoQ10; (ii) incubation with PTX; (iii) Incubation with CoQ10; and (iv) incubation with a combination of PTX + CoQ10. Then, sperm parameters, chromatin, DNA and membrane integrity, protamine deficiency, apoptosis, mitochondrial activity, sperm chromatin dispersion test (SCD), hypo-osmotic swelling test (HOS), chromomycin A3 (CMA3), Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), and diaminobenzidine (DAB) assays were evaluated, respectively. Sperm incubated with CoQ10 and a combination of CoQ10 and PTX resulted in a significant increase in the sperm parameters. Also, a significant decrease was noted with a combination of PTX and CoQ10 in normal men. There was a significant difference between CoQ10 treated and CoQ10 + PTX treated groups in comparison with the OAT group in the percentage of the DNA fragmentation, sperm apoptosis, AB+, HOS test + and sperm mitochondrial activity. Incubated sperm with CoQ10, PTX, and in combination with each other can improve sperm parameters in OAT patients.
Collapse
Affiliation(s)
- Mohammad Jafar Rezaie
- Department of Anatomical Sciences, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Azra Allahveisi
- Department of Anatomical Sciences, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masomeh Rezaei
- Infertility Treatment Center of Besat Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Adam LN, Al-Habib OAM, Shekha MS. Exploring the role of Sirtuin 3 gene polymorphisms and oxidative stress markers in the susceptibility to coronary artery disease. Mol Biol Rep 2023; 50:9221-9228. [PMID: 37801276 DOI: 10.1007/s11033-023-08825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE Coronary artery disease (CAD) is a complex disorder influenced by genetic and environmental factors. This case-control study investigated the association between Sirtuin SIRT3 gene polymorphisms, serum malondialdehyde (MDA) levels, and CAD susceptibility. METHODS Blood samples were collected from 70 CAD cases and 30 controls at the Cardiac Center, Azadi Teaching Hospital, Duhok, Iraq. Genomic DNA was extracted, and PCR-based allele genotyping determined SIRT3 rs11246029 T/C polymorphisms. Serum MDA levels were measured using ELISA. Statistical analysis included t-tests, Mann-Whitney tests, and Spearman correlations. Odds ratios (OR) with 95% confidence intervals (CI) assessed genotypes/alleles and CAD associations. The accuracy of serum MDA in predicting the severity of CAD was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS There were no significant variations in serum MDA levels between controls and CAD patients in the study. The diagnostic accuracy of serum MDA for CAD severity prediction was modest (Area Under Curve (AUC) = 0.56). Correlations revealed associations between MDA and total bilirubin (negative) and Troponin (positive). CRP correlated positively with LDH, glucose, cholesterol, LDL, CKmB, and Troponin. CKmB and Troponin are positively associated with clinical characteristics. Genotype analysis identified a significantly higher CAD risk with the CC genotype compared to controls. CONCLUSION These findings shed light on the potential role of SIRT3 gene polymorphisms and serum MDA levels in CAD susceptibility. Further research is needed to understand underlying mechanisms and therapeutic implications based on these markers. TRIAL REGISTRATION 15092021-9-12. Registered 15 September 2021.
Collapse
Affiliation(s)
- Lina N Adam
- Department of Biology, Faculty of Science, University of Zakho, Duhok, Kurdistan Region, Iraq.
| | - Omar A M Al-Habib
- Department of Biology, College of Science, University of Nawroz, Duhok, Kurdistan Region, Iraq
| | - Mudhir S Shekha
- Department of medical cell biology, Upsala University, Upsala, Sweden
- Department of Biology, College of Science, Salahaddin University -Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
9
|
Dahri M, Sarafan Sadeghi A, Pahlavani N, Nattagh-Eshtivani E, Hashemilar M, Asghari-Jafarabadi M, Barghchi H, Tarighat-Esfanjani A. The Effects of Coenzyme Q10 Supplementation on Oxidative Status and Lipid Profile in Migraine Patients: A Randomized Double-Blinded Controlled Clinical Trial. Clin Nutr Res 2023; 12:257-268. [PMID: 37969937 PMCID: PMC10641325 DOI: 10.7762/cnr.2023.12.4.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
Migraine is a common neurological disease correlated with oxidative stress and lipid profile disorders. The present study was designed to determine the effects of Coenzyme Q10 (Co-Q10) supplementation on oxidative status and lipid profile in migraine individuals. This clinical trial was conducted on 84 females aged 18-50 years, diagnosed for episodic migraine according to the International Headache Society. Subjects were randomized to receive either Co-Q10 supplement (400 mg/day) or placebo for 12 weeks. Lipid profile and oxidative stress indices including malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured before and after intervention in both groups. Also, anthropometric indices, dietary intakes, and clinical features were collected. Data analysis was conducted using SPSS version 16. Seventy-seven of the participants, with mean age of 33.70 ± 7.75 years, completed the study. After 12-week intervention, Co-Q10 led to a significant decrease in MDA levels compared to placebo (p = 0.009), with no effect on TAC levels (p = 0.106). A significant increase in serum Co-Q10 concentration and high-density lipoprotein cholesterol (HDL-C) level in Co-Q10 group was observed, but no significant differences were found in other lipid profile variables (low-density lipoprotein cholesterol, triglycerides and total cholesterol). Among anthropometric variables, Co-Q10 only caused a significant reduction in body fat percentage (BFP), but we did not find any significant changes in others. A 12-week Co-Q10 supplementation led to significant improvement in clinical features, BFP, and HDL-C level among migraine individuals. Trial Registration Iranian Registry of Clinical Trials Identifier: IRCT201508265670N10.
Collapse
Affiliation(s)
- Monireh Dahri
- Department of Nutrition Sciences, Varastegan Institute of Medical Sciences, Mashhad 9179667680, Iran
| | - Atefeh Sarafan Sadeghi
- Department of Nutrition Sciences, Varastegan Institute of Medical Sciences, Mashhad 9179667680, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 9516915169, Iran
| | - Elyas Nattagh-Eshtivani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad 9691793718, Iran
| | - Mazyar Hashemilar
- Department of Neurology, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Mohammad Asghari-Jafarabadi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Hanieh Barghchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1394491388, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| |
Collapse
|
10
|
Cheng B, Zhou M, Tang T, Hassan MJ, Zhou J, Tan M, Li Z, Peng Y. A Trifolium repens flavodoxin-like quinone reductase 1 (TrFQR1) improves plant adaptability to high temperature associated with oxidative homeostasis and lipids remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37009644 DOI: 10.1111/tpj.16230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Maintenance of stable mitochondrial respiratory chains could enhance adaptability to high temperature, but the potential mechanism was not elucidated clearly in plants. In this study, we identified and isolated a TrFQR1 gene encoding the flavodoxin-like quinone reductase 1 (TrFQR1) located in mitochondria of leguminous white clover (Trifolium repens). Phylogenetic analysis indicated that amino acid sequences of FQR1 in various plant species showed a high degree of similarities. Ectopic expression of TrFQR1 protected yeast (Saccharomyces cerevisiae) from heat damage and toxic levels of benzoquinone, phenanthraquinone and hydroquinone. Transgenic Arabidopsis thaliana and white clover overexpressing TrFQR1 exhibited significantly lower oxidative damage and better photosynthetic capacity and growth than wild-type in response to high-temperature stress, whereas AtFQR1-RNAi A. thaliana showed more severe oxidative damage and growth retardation under heat stress. TrFQR1-transgenic white clover also maintained better respiratory electron transport chain than wild-type plants, as manifested by significantly higher mitochondrial complex II and III activities, alternative oxidase activity, NAD(P)H content, and coenzyme Q10 content in response to heat stress. In addition, overexpression of TrFQR1 enhanced the accumulation of lipids including phosphatidylglycerol, monogalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol and cardiolipin as important compositions of bilayers involved in dynamic membrane assembly in mitochondria or chloroplasts positively associated with heat tolerance. TrFQR1-transgenic white clover also exhibited higher lipids saturation level and phosphatidylcholine:phosphatidylethanolamine ratio, which could be beneficial to membrane stability and integrity during a prolonged period of heat stress. The current study proves that TrFQR1 is essential for heat tolerance associated with mitochondrial respiratory chain, cellular reactive oxygen species homeostasis, and lipids remodeling in plants. TrFQR1 could be selected as a key candidate marker gene to screen heat-tolerant genotypes or develop heat-tolerant crops via molecular-based breeding.
Collapse
Affiliation(s)
- Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Tang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianzhen Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meng Tan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
11
|
Hornos Carneiro MF, Colaiácovo MP. Beneficial antioxidant effects of Coenzyme Q10 on reproduction. VITAMINS AND HORMONES 2022; 121:143-167. [PMID: 36707133 DOI: 10.1016/bs.vh.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter focuses on preclinical and clinical studies conducted in recent years that contribute to increasing knowledge on the role of Coenzyme Q10 in female reproductive health. General aspects of CoQ10, such as its role as an antioxidant and in mitochondrial bioenergetics are considered. The age-dependent decline in human female reproductive potential is associated with cellular mitochondrial dysfunction and oxidative stress, and in some cases accompanied by a decrease in CoQ10 levels. Herein, we discuss experimental and clinical evidence on CoQ10 protective effects on reproductive health. We also address the potential of supplementation with this coenzyme to rescue reprotoxicity induced by exposure to environmental xenobiotics. This review not only contributes to our general understanding of the effects of aging on female reproduction but also provides new insights into strategies promoting reproductive health. The use of CoQ10 supplementation can improve reproductive performance through the scavenging of reactive oxygen species and free radicals. This strategy can constitute a low-risk and low-cost strategy to attenuate the impact on fertility related to aging and exposure to environmental chemicals.
Collapse
Affiliation(s)
| | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
12
|
Coenzyme Q10 Supplementation and Oxidative Stress Parameters: An Updated Systematic Review and Meta-analysis of Randomized Controlled Clinical Trials. Asian J Sports Med 2022. [DOI: 10.5812/asjsm-131308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Oxidative stress (OS) contributes to the development of some disorders, including malignancies, metabolic diseases, Alzheimer's disease, and Parkinson's disease. Objectives: The effects of coenzyme Q10 (CoQ10) supplementation on OS parameters have been assessed through an updated systematic review and meta-analysis. Methods: SCOPUS, PubMed, Cochrane Library, EMBASE, and Web of Sciences were used for article searching. Standardized mean difference (SMD) and its standard error were calculated using a random-effects DerSimonian and Laird model. All analyses were done using the STATA software version 16.0 (StataCorp, College Station, TX). Results: Based on twenty-five studies which remained to be incorporated in the meta-analysis, a statistically significant decrease in malondialdehyde (MDA) (SMD -2.74; 95% CI -3.89, -1.58; I2 = 96.9%) as well as nitric oxide (NO) (SMD -5.16; 95% CI -7.98, 2.34; I2 = 92.5%) was associated with CoQ10 supplementation, and a significant increase in total antioxidant capacity (TAC) (SMD 3.40; 95% CI 1.98, 4.83; I2 = 97.4%) and superoxide dismutase (SOD) activity (SMD 1.22; 95% CI 0.32, 2.12; I2 = 94.32%). Conclusions: The results showed no significant effect of CoQ10 supplementation on glutathione peroxidase (GPx), catalase (CAT) activities, and glutathione (GSH) levels. CoQ10 supplementation significantly reduced MDA and NO concentrations and increased TAC and SOD activity.
Collapse
|
13
|
Wardhani LFK, Dewi IP, Putra KNS, Andrianto A, Soemantri D. The physiological insight of Coenzyme-Q10 administration in preventing the incidence of reperfusion arrhythmia among patients undergoing coronary artery bypass grafting surgery. J Basic Clin Physiol Pharmacol 2022; 33:695-701. [PMID: 35858280 DOI: 10.1515/jbcpp-2021-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/25/2022] [Indexed: 11/15/2022]
Abstract
Reperfusion arrhythmia following cardiac surgery has long been studied as part of myocardial damage. Reperfusion injury is thought to be exacerbated by oxygen-free radicals, whereas arrhythmogenic oscillations in membrane potential are mediated by reactive oxygen. Coenzyme Q10 is a lipid-soluble antioxidant that inhibits lipid peroxidation in biological membranes and supplies ATP cell synthesis, required as the organism's primary energy source. This process explains how Coenzyme Q10 helps stabilize membranes and avoids critical metabolite depletion that may relate to reperfusion arrhythmia. There is a reduction of iatrogenic Coenzyme Q10 after coronary artery bypass surgery (CABG). On the other hand, there is an increased inflammatory process and cellular demand post CABG procedure. It leads to ischemia that can be manifested as arrhythmia. Reperfusion arrhythmia was less common in patients who took Coenzyme Q10. These findings suggest that Coenzyme Q10 supplementation might help patients with heart surgery avoid reperfusion arrhythmia. However, a higher-quality randomized controlled study is needed to determine the effect of Coenzyme Q10 in preventing reperfusion arrhythmia in cardiac surgery patients.
Collapse
Affiliation(s)
- Louisa Fadjri Kusuma Wardhani
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Ivana Purnama Dewi
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia.,Faculty of Medicine, Duta Wacana Christian University, Yogyakarta, Indonesia
| | - Kresna Nugraha Setia Putra
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Andrianto Andrianto
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Djoko Soemantri
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| |
Collapse
|
14
|
Zhang Y, Huang X, Liu N, Liu M, Sun C, Qi B, Sun K, Wei X, Ma Y, Zhu L. Discovering the Potential Value of Coenzyme Q10 in Oxidative Stress: Enlightenment From a Synthesis of Clinical Evidence Based on Various Population. Front Pharmacol 2022; 13:936233. [PMID: 35910386 PMCID: PMC9330130 DOI: 10.3389/fphar.2022.936233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Oxidative stress (OS) is associated with ferroptosis. Coenzyme Q10 (CoQ10), as an adjuvant treatment, has shown to be beneficial against OS. However, the efficacy of CoQ10 as a therapeutic agent against OS has not been promptly updated and systematically investigated. Methods: A systematic literature search was performed using the Medline, EMBASE, Web of science, Cochrane Central Register of Controlled Trials, CNKI, CBM, Science direct and clinical trial. gov to identify randomized clinical trials evaluating the efficacy of CoQ10 supplementation on OS parameters. Standard mean differences and 95% confidence intervals were calculated for net changes in OS parameters using a random-effects model. Results: Twenty-one randomized clinical studies met the eligibility criteria to be included in the meta-analysis. Overall, CoQ10 supplementation increased the levels of antioxidant enzymes [including superoxide dismutase (SOD) (SMD = 0.63; 95% CI: 0.38 to 0.88; p < 0.001), catalase (CAT) (SMD = 0.44; 95% CI:0.16 to 0.72; p = 0.002)] significantly and the levels of malondialdehyde (MDA) (SMD = -0.68; 95% CI: 0.93 to -0.43; p < 0.001) was decreased considerably. However, significant associations were not observed between this supplement and total antioxidant capacity (TAC), glutathione peroxidase (GPx) activity. Conclusion: CoQ10 can improve OS as indicated by statistical significance in CAT and MDA concentrations, as well as SOD activity. Future studies focusing on long-term results and specific valuation of OS parameters are required to confirm the efficacy of CoQ10 on OS. We also believe that with the further research on ferroptosis, CoQ10 will gain more attention. Systematic Review Registration: [https://inplasy.com/], identifier [INPLASY2021120123].
Collapse
Affiliation(s)
- Yili Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyi Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ning Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmin Liu
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yong Ma, ; Liguo Zhu,
| | - Yong Ma
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xu Wei, ; Yong Ma, ; Liguo Zhu,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yong Ma, ; Liguo Zhu,
| |
Collapse
|
15
|
Dai S, Tian Z, Zhao D, Liang Y, Liu M, Liu Z, Hou S, Yang Y. Effects of Coenzyme Q10 Supplementation on Biomarkers of Oxidative Stress in Adults: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Antioxidants (Basel) 2022; 11:antiox11071360. [PMID: 35883851 PMCID: PMC9311997 DOI: 10.3390/antiox11071360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Evidence shows that exogenous CoQ10 supplementation may potentially attenuate oxidative stress status. However, its effective dose and evidence certainty require further evaluation in the general population via more updated randomized controlled trials (RCTs). Databases (PubMed, Embase and Cochrane Library) were searched up to 30 March 2022. Evidence certainty was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Thirty-four RCTs containing 2012 participants were included in this review. Pooled effects of significant increase in total antioxidant capacity (TAC) (standardized mean difference: 1.83, 95%CI: [1.07, 2.59], p < 0.001) and significant reduction in malondialdehyde (MDA) concentrations (−0.77, [−1.06, −0.47], p < 0.001) were shown after CoQ10 supplementation compared to placebo. However, we could not determine that there was a significant increase in circulating superoxide dismutase (SOD) levels yet (0.47, [0.00, 0.94], p = 0.05). Subgroup analyses implied that CoQ10 supplementation was more beneficial to people with coronary artery disease or type 2 diabetes. Additionally, taking 100−150 mg/day CoQ10 supplement had better benefits for the levels of TAC, MDA and SOD (all p < 0.01). These results to a statistically significant extent lent support to the efficacy and optimal dose of CoQ10 supplementation on attenuating oxidative stress status in adults.
Collapse
Affiliation(s)
- Suming Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Meitong Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Hou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (S.D.); (Z.T.); (D.Z.); (Y.L.); (M.L.); (Z.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou 510080, China
- China-DRIs Expert Committee on Other Food Substances, Guangzhou 510080, China
- Correspondence:
| |
Collapse
|
16
|
Fogacci F, Rizzoli E, Giovannini M, Bove M, D’Addato S, Borghi C, Cicero AFG. Effect of Dietary Supplementation with Eufortyn ® Colesterolo Plus on Serum Lipids, Endothelial Reactivity, Indexes of Non-Alcoholic Fatty Liver Disease and Systemic Inflammation in Healthy Subjects with Polygenic Hypercholesterolemia: The ANEMONE Study. Nutrients 2022; 14:2099. [PMID: 35631240 PMCID: PMC9145013 DOI: 10.3390/nu14102099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023] Open
Abstract
We aimed to evaluate if dietary supplementation with a nutraceutical compound (Eufortyn® Colesterolo Plus) containing standardized bergamot polyphenolic fraction phytosome (Vazguard®), artichoke extract (Pycrinil®), artichoke dry extract. (Cynara scolymus L.), Q10 phytosome(Ubiqosome®) and zinc, could positively affect serum lipids concentration, systemic inflammation and indexes of non-alcoholic fatty liver disease (NAFLD) in 60 healthy subjects with polygenic hypercholesterolemia. Participants were adhering to a low-fat, low-sodium Mediterranean diet for a month before being randomly allocated to 8-week treatment with 1 pill each day of either Eufortyn® Colesterolo Plus or placebo. Dietary supplementation with Eufortyn® Colesterolo Plus was associated with significant improvement in total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), high-sensitivity C-reactive protein (hs-CRP) and endothelial reactivity (ER) in comparison with baseline, and with significant reductions in waist circumference, TC, LDL-C, LDL-C/HDL-C, lipid accumulation product and fatty liver index compared to placebo. The study shows that dietary supplementation with standardized bergamot polyphenolic fraction phytosome, artichoke extracts, Q10 phytosome and zinc safely exerts significant improvements in serum lipids, systemic inflammation, indexes of NAFLD and endothelial reactivity in healthy subjects with moderate hypercholesterolemia.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (F.F.); (E.R.); (M.G.); (M.B.); (S.D.); (C.B.)
- IRCCS Policlinico S. Orsola—Malpighi di Bologna, 40138 Bologna, Italy
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy
| | - Elisabetta Rizzoli
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (F.F.); (E.R.); (M.G.); (M.B.); (S.D.); (C.B.)
- IRCCS Policlinico S. Orsola—Malpighi di Bologna, 40138 Bologna, Italy
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (F.F.); (E.R.); (M.G.); (M.B.); (S.D.); (C.B.)
- IRCCS Policlinico S. Orsola—Malpighi di Bologna, 40138 Bologna, Italy
| | - Marilisa Bove
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (F.F.); (E.R.); (M.G.); (M.B.); (S.D.); (C.B.)
- IRCCS Policlinico S. Orsola—Malpighi di Bologna, 40138 Bologna, Italy
| | - Sergio D’Addato
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (F.F.); (E.R.); (M.G.); (M.B.); (S.D.); (C.B.)
- IRCCS Policlinico S. Orsola—Malpighi di Bologna, 40138 Bologna, Italy
| | - Claudio Borghi
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (F.F.); (E.R.); (M.G.); (M.B.); (S.D.); (C.B.)
- IRCCS Policlinico S. Orsola—Malpighi di Bologna, 40138 Bologna, Italy
| | - Arrigo F. G. Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (F.F.); (E.R.); (M.G.); (M.B.); (S.D.); (C.B.)
- IRCCS Policlinico S. Orsola—Malpighi di Bologna, 40138 Bologna, Italy
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy
| |
Collapse
|
17
|
Mantle D, Turton N, Hargreaves IP. Lyme Disease: A Role for Coenzyme Q10 Supplementation? Antioxidants (Basel) 2022; 11:667. [PMID: 35453352 PMCID: PMC9027459 DOI: 10.3390/antiox11040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Lyme disease results from a bacterial infection following a bite from an infected tick. Patients are initially treated with antibiotics; however, in cases where antibiotic treatment is delayed, or when patients do not respond to antibiotic treatment, fatigue may develop alongside problems affecting the nervous system, cardiovascular system, and joints. It is thought that most of the damage to these tissues results from the excessive inflammatory response of the host, involving a self-reinforcing cycle of mitochondrial dysfunction, oxidative stress and inflammation. In this article, we review the potential role of supplementary coenzyme Q10 (CoQ10) in mediating the pathogenic mechanism underlying Lyme disease, on the basis of its role in mitochondrial function, as well as its anti-inflammatory and antioxidant actions.
Collapse
Affiliation(s)
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
18
|
Facile Solvent-Free Preparation of Antioxidant Idebenone-Loaded Nanoparticles for Efficient Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14030521. [PMID: 35335897 PMCID: PMC8951630 DOI: 10.3390/pharmaceutics14030521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/26/2023] Open
Abstract
The excessive production of reactive oxygen species (ROS) causes harmful effects, including biomolecular damage and inflammation. ROS due to ultraviolet rays, blue light, and fine dust harm the skin, causing urban-related aging. Therefore, a strong antioxidant that relieves oxidative stress in the skin and removes ROS is required. Idebenone (IB) is a powerful antioxidant but is poorly soluble and thus has low solubility in water, resulting in low bioavailability. In this study, IB-loaded nanoparticles (IB@NPs) were synthesized by loading IB without an organic solvent into nanoparticles that can provide high loading efficiency and stability for solubilization. Indeed, the synthesized IB@NPs exhibited long-term stability through dynamic light scattering, methylene blue staining, and redispersion assays, and IB@NPs prepared with a 5 wt% IB loading content were found to be optimal. The antioxidant activity of IB@NPs evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was significantly higher than that of unloaded IB. In addition, IB@NPs showed excellent biocompatibility, inhibited oxidative damage to mouse NIH-3T3 fibroblasts, and reduced intracellular ROS generation according to an in vitro DPPH antioxidant assay. Most notably, IB@NPs significantly promoted wound healing in vitro, as demonstrated by scratch assays. Therefore, as carriers with excellent stability, IB@NPs have potential cosmetic and pharmaceutical applications.
Collapse
|
19
|
CoenzymeQ10 and Ischemic Preconditioning Potentially Prevent Tourniquet-Induced Ischemia/Reperfusion in Knee Arthroplasty, but Combined Pretreatment Possibly Neutralizes Their Beneficial Effects. Antioxidants (Basel) 2022; 11:antiox11020419. [PMID: 35204301 PMCID: PMC8869537 DOI: 10.3390/antiox11020419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Tourniquet (TQ) use during total knee arthroplasty (TKA) induces ischemia/reperfusion (I/R) injury, resulting in mitochondrial dysfunction. This study aims to determine the effects of coenzyme Q10 (CoQ10) and ischemic preconditioning (IPC), either alone or in combination, on I/R-induced mitochondrial respiration alteration in peripheral blood mononuclear cells (PBMCs) and pain following TKA. Forty-four patients were allocated into four groups: control, CoQ10, IPC, and CoQ10 + IPC. CoQ10 dose was 300 mg/day for 28 days. IPC protocol was three cycles of 5/5-min I/R time. Mitochondrial oxygen consumption rates (OCRs) of PBMCs were measured seven times, at baseline and during ischemic/reperfusion phases, with XFe 96 extracellular flux analyzer. Postoperative pain was assessed for 48 h. CoQ10 improved baseline mitochondrial uncoupling state; however, changes in OCRs during the early phase of I/R were not significantly different from the placebo. Compared to ischemic data, IPC transiently increased basal OCR and ATP production at 2 h after reperfusion. Clinically, CoQ10 significantly decreased pain scores and morphine requirements at 24 h. CoQ10 + IPC abolished analgesic effect of CoQ10 and mitochondrial protection of IPC. In TKA with TQ, IPC enhanced mitochondrial function by a transient increase in basal and ATP-linked respiration, and CoQ10 provides postoperative analgesic effect. Surprisingly, CoQ10 + IPC interferes with beneficial effects of each intervention.
Collapse
|
20
|
Cirilli I, Damiani E, Dludla PV, Hargreaves I, Marcheggiani F, Millichap LE, Orlando P, Silvestri S, Tiano L. Role of Coenzyme Q 10 in Health and Disease: An Update on the Last 10 Years (2010-2020). Antioxidants (Basel) 2021; 10:antiox10081325. [PMID: 34439573 PMCID: PMC8389239 DOI: 10.3390/antiox10081325] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The present review focuses on preclinical and clinical studies conducted in the last decade that contribute to increasing knowledge on Coenzyme Q10's role in health and disease. Classical antioxidant and bioenergetic functions of the coenzyme have been taken into consideration, as well as novel mechanisms of action involving the redox-regulated activation of molecular pathways associated with anti-inflammatory activities. Cardiovascular research and fertility remain major fields of application of Coenzyme Q10, although novel applications, in particular in relation to topical application, are gaining considerable interest. In this respect, bioavailability represents a major challenge and the innovation in formulation aspects is gaining critical importance.
Collapse
Affiliation(s)
- Ilenia Cirilli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Phiwayinkosi Vusi Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa;
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Lauren Elizabeth Millichap
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
- Correspondence: ; Tel.: +39-071-220-4394
| |
Collapse
|
21
|
Hasanloei MAV, Zeinaly A, Rahimlou M, Houshyar H, Moonesirad S, Hashemi R. Effect of coenzyme Q10 supplementation on oxidative stress and clinical outcomes in patients with low levels of coenzyme Q10 admitted to the intensive care unit. J Nutr Sci 2021; 10:e48. [PMID: 34290862 PMCID: PMC8278158 DOI: 10.1017/jns.2021.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022] Open
Abstract
Today, trauma is known to be the third leading cause of death in most countries. Studies have demonstrated below-normal plasma levels of antioxidants in trauma patients. The present study aimed to assess the efficacy of Coenzyme Q10 (CoQ10) on oxidative stress, clinical outcomes and anthropometrical parameters in traumatic mechanical ventilated patients admitted to the intensive care unit. Patients were randomised to receive sublingual CoQ10 (400 mg/d) or placebo for 7 d. Primary and secondary outcomes were measured at the baseline and end of the study. We enrolled forty patients for this trial: twenty in the CoQ10 group and twenty in the placebo group. There was not any significant difference in the baseline variables (P > 0⋅05). At the end of the study, CoQ10 administration caused a considerable reduction in the Malondialdehyde (MDA) and Interleukin 6 (IL-6) concentrations (P < 0⋅001), Glasgow Coma Score (GCS; P = 0⋅02), ICU and hospital length of stay and mechanical ventilation (MV) duration (P < 0⋅001). We found that CoQ10 administration could increase Fat-Free Mass (P < 0⋅001) (FFM; P = 0⋅04), Skeletal Muscle Mass (SMM; P = 0⋅04) and Body Cell Mass (BCM) percent (P = 0⋅03). There was not any significant difference in other factors between the two groups (P > 0⋅05). CoQ10 administration has beneficial effects on patients with traumatic injury and has no side effects. However, since the possibility of the type II error was high, the outcomes on the duration of MV, ICU stay and hospital stay, and GCS may very well be false positives.
Collapse
Affiliation(s)
- Mohammad Amin Valizade Hasanloei
- Clinical Research Development Unit, Imam Khomeini Hospital, Urmia University of Medical Sciences, Ershad Ave, 5756151818Urmia, West Azerbaijan Province, Iran
| | - Aidin Zeinaly
- Department of Anesthesiology, Urmia University of Medical Sciences, 11 km SERO Road, 5756151818Urmia, West Azerbaijan Province, Iran
| | - Mehran Rahimlou
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hadi Houshyar
- Department of Anesthesiology, Imam Khomeini Hospital, Faculty of Medicine, Urmia University of Medical Sciences, Imam Khomeini Avenue, 5756151818Urmia, West Azerbaijan Province, Iran
| | - Solma Moonesirad
- Urmia University of Medical Sciences, 11 km SERO Road, 5756151818Urmia, West Azerbaijan Province, Iran
| | - Reza Hashemi
- Clinical Research Development Unit, Imam Khomeini Hospital, Urmia University of Medical Sciences, Ershad Ave, 5756151818Urmia, West Azerbaijan Province, Iran
| |
Collapse
|
22
|
Hajiluian G, Heshmati J, Jafari Karegar S, Sepidarkish M, Shokri A, Shidfar F. Diabetes, Age, and Duration of Supplementation Subgroup Analysis for the Effect of Coenzyme Q10 on Oxidative Stress: A Systematic Review and Meta-Analysis. Complement Med Res 2021; 28:557-570. [PMID: 33866314 DOI: 10.1159/000515249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Coenzyme Q10 (CoQ10) has been known as ubiquinone or ubidecarenone, which is a kind of lipid-soluble and vitamin-like antioxidant. It has a potent antioxidant effect against oxidation status via various mechanisms, including its ability to regenerate other antioxidants, such as vitamin E and vitamin C, and to increase antioxidant enzymes. Moreover, CoQ10 can quench free radicals and prevent lipid peroxidation. The aim of this systematic review and meta-analysis was to evaluate the effect of CoQ10 on oxidative stress variables. METHODS A comprehensive electronic database search in Scopus, Web of Science, Embase, Cochrane Library, and Medline was performed to identify eligible randomized clinical trials. A meta-analysis of included studies was performed on selected variables using a random-effects model. Quality assessment was conducted by means of the Cochrane risk of bias assessment tool. RESULTS To evaluate the effect of CoQ10 supplementation, 17 trials and 972 participants were included for the meta-analysis. The pooled analysis of primary studies showed that CoQ10 increased serum total antioxidant capacity (standardized mean difference [SMD] 0.62 mmol/L, 95% CI 0.18-1.05, I2 = 76.1%, p ˂ 0.001) and superoxide dismutase (SMD 0.40 U/mg, 95% CI 0.12-0.67, I2 = 9.6%, p ˂ 0.345) levels and decreased malondialdehyde (SMD -1.02 mmol/L, 95% CI -1.60 to -0.44, I2 = 88.2%, p ˂ 0.001) level significantly compared to the placebo group. Although the effect of CoQ10 on nitric oxide (SMD 1.01 µmol/L, 95% CI -1.53 to 3.54, p ˂ 0.001, I2 = 97.8%) and glutathione peroxidase (SMD -0.01 mmol/L, 95% CI -0.86 to 0.84, p ˂ 0.001, I2 = 88.6%) was not significant, CoQ10 can be mentioned as an improvement in antioxidant defense status against reactive oxygen species. CONCLUSION These supplements have positive effects on antioxidant defense against oxidizing agents and elevate antioxidant enzyme levels in the body. However, due to limited research the results should be taken with caution.
Collapse
Affiliation(s)
- Ghazaleh Hajiluian
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sahar Jafari Karegar
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Sepidarkish
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Shokri
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Preventing Myocardial Injury Following Non-Cardiac Surgery: A Potential Role for Preoperative Antioxidant Therapy with Ubiquinone. Antioxidants (Basel) 2021; 10:antiox10020276. [PMID: 33579045 PMCID: PMC7916807 DOI: 10.3390/antiox10020276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Over 240 million non-cardiac operations occur each year and are associated with a 15-20% incidence of adverse perioperative cardiovascular events. Unfortunately, preoperative therapies that have been useful for chronic ischemic heart diseases, such as coronary artery revascularization, antiplatelet agents, and beta-blockers have failed to improve outcomes. In a pre-clinical swine model of ischemic heart disease, we showed that daily administration of ubiquinone (coenzyme Q10, CoQ10) enhances the antioxidant status of mitochondria within chronically ischemic heart tissue, potentially via a PGC1α-dependent mechanism. In a randomized controlled trial, among high-risk patients undergoing elective vascular surgery, we showed that NT Pro-BNP levels are an important means of risk-stratification during the perioperative period and can be lowered with administration of CoQ10 (400 mg/day) for 3 days prior to surgery. The review provides background information for the role of oxidant stress and inflammation during high-risk operations and the potential novel application of ubiquinone as a preoperative antioxidant therapy that might reduce perioperative adverse cardiovascular outcomes.
Collapse
|
24
|
Abstract
COPD represents a major cause of mortality and morbidity worldwide, is linked to systemic inflammation and tends to coexist with a variety of comorbidities. Inflammation, oxidative stress and protease-antiprotease imbalance represent the pathogenic triad of COPD. Even though oxidative stress and mitochondrial dysfunction is a well-studied phenomenon in COPD and there is a variety of studies that aim to counteract its effect, there is limited data available on the use of coenzyme Q10 in COPD. The aim of the current review is to analyze the current data on the use of coenzyme Q10 in the management of COPD and frequently encountered comorbidities.
Collapse
Affiliation(s)
- V I Zozina
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - S Covantev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - V G Kukes
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - A Corlateanu
- Department of Respiratory Medicine, State University of Medicine and Pharmacy N. Testemitanu, Chisinau, Republic of Moldova
| |
Collapse
|
25
|
Coenzyme Q10 and Silymarin Reduce CCl4-Induced Oxidative Stress and Liver and Kidney Injury in Ovariectomized Rats—Implications for Protective Therapy in Chronic Liver and Kidney Diseases. PATHOPHYSIOLOGY 2021; 28:50-63. [PMID: 35366269 PMCID: PMC8830449 DOI: 10.3390/pathophysiology28010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is one of the key factors in the pathophysiology of liver disease. The present study aimed to evaluate the potential impact of two antioxidants, namely coenzyme Q10 (CoQ10) and silymarin, on carbon tetrachloride (CCl4)-induced oxidative stress and hepatic damage in ovariectomized rats. Female Long Evans rats were divided into six groups (n = 6): control, CCl4, CCl4 + CoQ10 (200 mg/kg), CCl4 + silymarin (140 mg/kg), Control + CoQ10, and Control + silymarin. Plasma and tissues from liver and kidney were analyzed for oxidative stress parameters and antioxidant enzyme activities using biochemical assays. Infiltration of inflammatory cells and fibrosis were assessed by histological staining of tissue sections. Both CoQ10 and silymarin significantly lowered serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels that were detected to be higher in CCl4 rats compared to controls. Significant reduction in CCl4-induced elevated levels of oxidative stress markers malondialdehyde (MDA), nitric oxide (NO), and advanced protein oxidation product (APOP) was observed with both antioxidants. However, in control rats, CoQ10 and silymarin did not produce a significant effect. Histological analysis revealed that CCl4 markedly increased the level of inflammatory cells infiltration and fibrosis in liver and kidney tissues, but this was significantly reduced in CCl4 + CoQ10 and CCl4 + silymarin groups. Taken together, our results suggest that CoQ10 and silymarin can protect the liver against oxidative damage through improved antioxidant enzyme activities and reduced lipid peroxidation. Thus, supplementation of the aforementioned antioxidants may be useful as a therapeutic intervention to protect liver health in chronic liver diseases.
Collapse
|
26
|
Yi S, Chen M. Decreased albumin is associated with elevated N-terminal pro-brain natriuretic peptide and poor long-term prognosis in patients with chronic heart failure. Medicine (Baltimore) 2020; 99:e23872. [PMID: 33371174 PMCID: PMC7748339 DOI: 10.1097/md.0000000000023872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022] Open
Abstract
At present, the association between albumin, N-terminal pro-brain natriuretic peptide (NT-proBNP) and long-term prognosis in patients with chronic heart failure (CHF) is unclear. Therefore, the purpose of this study is to explore the relationship between albumin, NT-proBNP and all-cause mortality in CHF patients.Three hundred fifty two CHF patients were recruited in our study, and patients were divided into 2 groups according to the mean (37.16 g/L) of albumin concentration [low group (albumin < 37.16 g/L) and high group (albumin≥37.16 g/L)]. Differences between groups was compared by odds ratio (OR) and 95% confidence interval (CI).NT-proBNP in the high group was significantly lower than that in the low group at baseline [1811.50 (698.75-4037.00) vs 3479.50 (1538.50-7824.25), P < .001]. Spearman correlation analysis showed that there was a negative correlation between albumin and NT-pro BNP log10 transform (ρ= -0.217, P < .001). Furthermore, curve fitting further confirmed that albumin was negatively correlated with NT-proBNP. After a median follow-up of 1726 days, 90 patients in the high group occur all-cause mortality, and 98 patients in the low group occur all-cause mortality (46.88% vs 61.25%, OR = 0.29, 95% CI: 0.08-0.50). After adjusting for the selected confounding covariates by multivariate regression analysis, decreased albumin was still associated with increased all-cause mortality (high group vs low group: OR = 0.62, 95% CI: 0.39-0.97).Decreased albumin is associated with elevated NT-ProBNP and poor long-term prognosis in CHF patients. Clinicians need to pay enough attention to the nutritional status of CHF patients.
Collapse
Affiliation(s)
- Sheng Yi
- Intensive Care Unit, Central Hospital of Hengyang, Hengyang, Hunan
- Guangxi Medical University
| | - Menghua Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
27
|
Ramirez-Tortosa CL, Varela-López A, Navarro-Hortal MD, Ramos-Pleguezuelos FM, Márquez-Lobo B, Ramirez-Tortosa MC, Ochoa JJ, Battino M, Quiles JL. Longevity and Cause of Death in Male Wistar Rats Fed Lifelong Diets Based on Virgin Olive Oil, Sunflower Oil, or Fish Oil. J Gerontol A Biol Sci Med Sci 2020; 75:442-451. [PMID: 30953048 DOI: 10.1093/gerona/glz091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 01/15/2023] Open
Abstract
Extending life by delaying the aging process has been proven to be the most effective way to fight multiple chronic diseases in elderly adults. Evidence suggests that longevity is inversely related to unsaturation of membrane phospholipids. This study investigated how different unsaturated dietary fats affect life span and cause of death in male Wistar rats fed diets based on virgin olive oil (V), sunflower oil (S), or fish oil (F), which were supplemented or not with Coenzyme Q10 (CoQ10). Previous results suggest that individual longevity and survival probability at different ages may be modulated by an appropriate dietary fat treatment. Lifelong feeding with V or F diets would reduce death probability compared to feeding with S diet at certain ages, although the effects of V diet would be maintained for most of life. Furthermore, the addition of lower amounts of CoQ10 reduced mortality associated with S diet, but CoQ10 had no effect on survival when combined with virgin olive oil or fish oil. Supplementation with low doses of CoQ10 failed to increase the maximum life span potential of rats fed a V or F diet. No clear evidence showing that monounsaturated fatty acids, n-3 polyunsaturated fatty acids, or CoQ10 exerted the observed effects by modulating the rate of aging has been found.
Collapse
Affiliation(s)
| | - Alfonso Varela-López
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - Maria D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Center, University of Granada, Armilla, Granada
| | | | | | - MCarmen Ramirez-Tortosa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Center, University of Granada, Armilla, Granada, Spain
| | - Julio J Ochoa
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Center, University of Granada, Armilla, Granada
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Center, University of Granada, Armilla, Granada
| |
Collapse
|
28
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Fittipaldi MR, Toscanesi M, Trifuoggi M. Aging-Related Disorders and Mitochondrial Dysfunction: A Critical Review for Prospect Mitoprotective Strategies Based on Mitochondrial Nutrient Mixtures. Int J Mol Sci 2020; 21:ijms21197060. [PMID: 32992778 PMCID: PMC7582285 DOI: 10.3390/ijms21197060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential–and distinct—roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly relied on the use of only one MN to ARD-affected patients as, e.g., in the case of CoQ10 in CVD, or of ALA in T2D, possibly with the addition of other antioxidants. Only a few clinical and pre-clinical studies reported on the administration of two MNs, with beneficial outcomes, while no available studies reported on the combined administration of three MNs. Based on the literature also from pre-clinical studies, the present review is to recommend the design of clinical trials based on combinations of the three MNs.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
- Correspondence:
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010 Valencia, Spain;
| | - Alex Lyakhovich
- Vall d’Hebron Institut de Recerca, E-08035 Barcelona, Catalunya, Spain;
- Institute of Molecular Biology and Biophysics of the “Federal Research Center of Fundamental and Translational Medicine”, Novosibirsk 630117, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, I-60100 Ancona, Italy;
| | - Maria Rosa Fittipaldi
- Internal Medicine Unit, San Francesco d’Assisi Hospital, I-84020 Oliveto Citra (SA), Italy;
| | - Maria Toscanesi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
| |
Collapse
|
29
|
Nashimoto S, Takekawa Y, Takekuma Y, Sugawara M, Sato Y. Transport via Niemann-Pick C1 Like 1 contributes to the intestinal absorption of ubiquinone. Drug Metab Pharmacokinet 2020; 35:527-533. [PMID: 33036883 DOI: 10.1016/j.dmpk.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Ubiquinone, which is a component in the electron-transport systems of mitochondria, is essential for various activities related to energy metabolism, but the detailed absorption mechanism of ubiquinone is not clear. On the other hand, Niemann-Pick C1 Like 1 (NPC1L1) is involved in the intestinal absorption of fat-soluble components such as cholesterol. In this study, we investigated whether the intestinal absorption of ubiquinone was transported by NPC1L1 as is cholesterol. In this study, coenzyme q10 (CoQ10) and coenzyme q9 (CoQ9) were used as models of ubiquinone. The transport activity of ubiquinone was increased significantly in NPC1L1-overexpressed Madin-Darby canine kidney (MDCK) cells compared with that in pMAM2-BSD vector-transfected MDCK cells and the uptake of ubiquinone was decreased in the presence of ezetimibe, an inhibitor of NPC1L1. These results indicate that NPC1L1 mediates the transport of ubiquinone. Furthermore, to clarify the effect of NPC1L1 on the intestinal absorption of CoQ10, emulsified CoQ10 was orally administered to Wistar rats, and the plasma concentration was measured. The plasma concentration of CoQ10 was significantly decreased by coadministration of ezetimibe and CoQ10 compared to that with administration of only CoQ10. This result indicates that the intestinal absorption of CoQ10 is mediated by NPC1L1.
Collapse
Affiliation(s)
- Shunsuke Nashimoto
- Graduate School of Life Science, Hokkaido University, Kita-10-jo, Nishi-8-chome, Kita-ku, Sapporo 060-0810, Japan
| | - Yuto Takekawa
- School of Pharmaceutical Sciences and Pharmacy, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yoh Takekuma
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo 060-8648, Japan
| | - Mitsuru Sugawara
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo 060-8648, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Yuki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
30
|
Akbari A, Mobini GR, Agah S, Morvaridzadeh M, Omidi A, Potter E, Fazelian S, Ardehali SH, Daneshzad E, Dehghani S. Coenzyme Q10 supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol 2020; 76:1483-1499. [PMID: 32583356 DOI: 10.1007/s00228-020-02919-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Oxidative stress (OS) is associated with several chronic complications and diseases. The use of coenzyme Q10 (CoQ10) as an adjuvant treatment with routine clinical therapy against metabolic diseases has shown to be beneficial. However, the impact of CoQ10 as a preventive agent against OS has not been systematically investigated. METHODS A systematic literature search was performed using the PubMed, SCOPUS, EMBASE, and Cochrane Library databases to identify randomized clinical trials evaluating the efficacy of CoQ10 supplementation on OS parameters. Standard mean differences and 95% confidence intervals were calculated for net changes in OS parameters using a random-effects model. RESULTS Seventeen randomized clinical trials met the eligibility criteria to be included in the meta-analysis. Overall, CoQ10 supplementation was associated with a statistically significant decrease in malondialdehyde (MDA) (SMD - 0.94; 95% CI - 1.46, - 0.41; I2 = 87.7%) and a significant increase in total antioxidant capacity (TAC) (SMD 0.67; 95% CI 0.28, 1.07; I2 = 74.9%) and superoxide dismutase (SOD) activity (SMD 0.40; 95% CI 1.12, 0.67; I2 = 9.6%). The meta-analysis found no statistically significant impact of CoQ10 supplementation on nitric oxide (NO) (SMD - 1.40; 95% CI - 0.12, 1.93; I2 = 92.6%), glutathione (GSH) levels (SMD 0.41; 95% CI - 0.09, 0.91; I2 = 70.0%), catalase (CAT) activity (SMD 0.36; 95% CI - 0.46, 1.18; I2 = 90.0%), or glutathione peroxidase (GPx) activities (SMD - 1.40; 95% CI: - 0.12, 1.93; I2 = 92.6%). CONCLUSION CoQ10 supplementation, in the tested range of doses, was shown to reduce MDA concentrations, and increase TAC and antioxidant defense system enzymes. However, there were no significant effects of CoQ10 on NO, GSH concentrations, or CAT activity.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Mobini
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences (SkUMS), Shahrekord, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Omidi
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eric Potter
- Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Hossein Ardehali
- Department of Anesthesiology and Critical Care, Shohadaye Tajrish Hospital, Tehran, Iran
| | - Elnaz Daneshzad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Dehghani
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men. Eur J Appl Physiol 2020; 120:1657-1669. [DOI: 10.1007/s00421-020-04396-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022]
|
32
|
Sangsefidi ZS, Yaghoubi F, Hajiahmadi S, Hosseinzadeh M. The effect of coenzyme Q10 supplementation on oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Food Sci Nutr 2020; 8:1766-1776. [PMID: 32328242 PMCID: PMC7174219 DOI: 10.1002/fsn3.1492] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Some evidence exists in supporting the beneficial effects of coenzyme Q10 (CoQ10) on oxidative stress. Since the findings of studies over the impact of CoQ10 supplementation on oxidative stress are contradictory, this study was conducted. The aim was to evaluate CoQ10 supplementation effect on total antioxidant capacity (TAC), malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) levels using data collected from randomized controlled trials (RCTs). Several databases including PubMed, Web of Science, Google Scholar, and Scopus were comprehensively searched up to 23 January 2019 to identify RCTs. A random-effects model, standardized mean difference (SMD), and 95% confidence interval (CI) were applied for data analysis. According to the meta-analysis results on 19 eligible studies, CoQ10 increased the levels of TAC (SMD = 1.29; 95% CI = 0.35-2.23; p = .007), GPX (SMD = 0.45; 95% CI = 0.17-0.74; p = .002), SOD (SMD = 0.63; 95% CI = 0.29-0.97; p < .0001), and CAT (SMD = 1.67; 95% CI = 0.29-3.10; p = .018) significantly. This supplementation also caused a significant reduction in MDA levels (SMD = -1.12; 95% CI = -1.58 to -0.65; p < .0001). However, the results of SOD and CAT should be stated carefully due to the publication bias. In conclusion, this research indicated that CoQ10 supplementation had beneficial effects on oxidative stress markers. However, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Zohreh Sadat Sangsefidi
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Fatemeh Yaghoubi
- Department of BiochemistryShahid Sadoughi University of Medical SciencesYazdIran
| | - Salimeh Hajiahmadi
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Mahdieh Hosseinzadeh
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
- Department of NutritionSchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
33
|
Scintigraphic evaluation of renoprotective effects of coenzyme Q10 in a rat renal ischemia-reperfusion injury. Nucl Med Commun 2020; 40:1011-1021. [PMID: 31365500 DOI: 10.1097/mnm.0000000000001070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Renal ischemia-reperfusion injury (RIRI) may occur secondary to several reasons leading to renal failure. Coenzyme-Q10 (CoQ10) is a well-known antioxidant. However, the effects CoQ10 against RIRI have not been evaluated. Our aim was to evaluate protective effects of CoQ10 to renal ischemia-reperfusion by biochemical, immunohistochemical and scintigraphic findings. METHODS Thirty Wistar-albino rats were randomly separated into groups of 10; Group Sham; Group ischemia-reperfusion (IR) had left renal pedicle clamping; Group CoQ10+IR had IR and CoQ10. Twenty-four hours later after reperfusion, scintigraphy was performed and after that, rats were sacrificed. To demonstrate effects of RIRI, serum urea and creatinine levels and tissue levels oxidative stress markers were evaluated. Both kidneys were subjected to histopathological evaluation and to confirm RIRI-induced immunohistochemical aspects of apoptosis, terminal-deoxynucleotidyl-transferase mediated-deoxyuridine-triphosphate-nick-end-labeling assay and caspase-3 were assessed. RESULTS Tissue oxidative stress, histopathologic changes, apoptosis scores and quantitative scintigraphic parameters were significantly higher in Group IR compared with Group Sham. Although tissue oxidative stress levels and histopathologic changes were not significant, quantitative scintigraphic parameters of contralateral kidney of Group IR were significantly increased. Compared with Group IR, Group CoQ10+IR presented decreased tissue oxidative stress levels; decreased scores of histopathology and apoptosis; and decreased quantitative scintigraphic parameters with increased split renal function in ischemic kidney. CONCLUSIONS Our results suggest that other than its antioxidant properties, CoQ10 shows antiperoxidative, antiapoptotic and antiinflammatory potential in protecting renal functioning of ischemic kidney. Furthermore, our results show that renal scintigraphy is a feasible method to detect early changes in renal functioning after RIRI.
Collapse
|
34
|
Enhancement of intestinal absorption of coenzyme Q10 using emulsions containing oleyl polyethylene acetic acids. Eur J Pharm Sci 2019; 142:105144. [PMID: 31730802 DOI: 10.1016/j.ejps.2019.105144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 11/10/2019] [Indexed: 01/17/2023]
Abstract
Emulsions have often been prepared to improve absorption of lipophilic compounds that have poor solubility. Coenzyme Q10 (CoQ10) is a lipophilic compound that has been used as an anti-aging supplement. We focused on oleyl polyethyleneoxy acetic acid, an oxa acid derivative, to prepare emulsions of CoQ10 with the expectation of application to oral pharmaceutics. Oxa acids were purified and classified into four groups based on the average length of the ethylene oxide chain. The emulsion that were prepared using the four oxa acid groups were administered to rats and the plasma concentration profiles of CoQ10 were analyzed. The absorption of CoQ10 was improved in all emulsion groups compared with that in the powder group. The emulsion using oxa acid (n = 9.0) greatly increased the plasma concentration of CoQ10. Absorption was also improved by using emulsions containing larger percentage of oxa acids (6%, 15% and 23%) to compared with the same oxa acid (n = 9.0). The effects of oxa acids on cell viability were almost the same as those of conventional surfactants such as polyoxyethylene (20) sorbitan monooleate (Tween 80). The results showed that oxa acids are useful to prepare emulsions for oral administration and that the absorption of CoQ10 using oxa acids is significantly improved by using our formulations.
Collapse
|
35
|
Khan A, Johnson DK, Carlson S, Hocum-Stone L, Kelly RF, Gravely AA, Mbai M, Green DL, Santilli S, Garcia S, Adabag S, McFalls EO. NT-Pro BNP Predicts Myocardial Injury Post-vascular Surgery and is Reduced with CoQ 10: A Randomized Double-Blind Trial. Ann Vasc Surg 2019; 64:292-302. [PMID: 31629852 DOI: 10.1016/j.avsg.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND NT-Pro BNP levels provide incremental value in perioperative risk assessment prior to major noncardiac surgery. Whether they can be pharmacologically modified in patients prior to an elective vascular operation is uncertain. METHODS A double-blind, randomized controlled trial was implemented at a single institution. Patients were screened during their preoperative vascular clinic appointment and randomly assigned to CoQ10 (400 mg per day) versus Placebo for 3 days prior to surgery. Biomarkers, including NT-Pro BNP, troponin I and C-reactive protein were obtained prior to and following surgery for up to 48 hours. The primary endpoint was postoperative NT-Pro BNP levels, and secondary endpoint measures included myocardial injury, defined by an elevated cardiac troponin level and length of stay. RESULTS One hundred and twenty-three patients were randomized to receive either CoQ10 (N = 62) versus Placebo (N = 61) for 3 days before vascular surgery. Preoperative cardiac risks included ischemic heart disease (N = 52), CHF (N = 12), stroke (N = 23), and diabetes mellitus (N = 48) and the planned vascular procedures were infrainguinal (N = 78), carotid (N = 36), and intraabdominal (N = 9). There were no intergroup differences in these clinical variables. NT-Pro BNP levels (median; IQs) in the CoQ10 and Placebo groups were 179 (75-347) and 217 (109-585) pg/ml, respectively, (P = 0.08) preoperatively, and 397 (211-686) and 591 (288-1,433) pg/ml respectively, (P = 0.01) at 24 hours following surgery. Patients with an elevated NT-Pro BNP had a higher incidence of myocardial injury, (58% vs. 20%; P < 0.01) and a longer hospital stay (4.4 ± 3.8 vs. 2.8 ± 3.2 days; P < 0.02) compared with individuals without an elevated NT-Pro BNP level. CONCLUSIONS NT-Pro BNP levels predict adverse events post-vascular surgery and are lowered in those patients assigned to preoperative administration of CoQ10. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT03956017. Among patients undergoing elective vascular surgery, 123 patients were randomized to either CoQ10 (400 mg/day) versus placebo for three days preoperatively. NT-Pro BNP levels (median; IQs) in the CoQ10 and Placebo groups were 179 (75-347) and 217 (109-585) pg/ml, respectively, (P = 0.08) preoperatively, and 397 (211-686) and 591 (288-1,433) pg/ml, respectively, (P = 0.01) post-surgery. Patients with an elevated NT-Pro BNP had a higher incidence of myocardial injury (58% vs. 20%; P < 0.01) and a longer hospital stay (4.4 ± 3.8 vs. 2.8 ± 3.2 days; P < 0.02) compared with individuals without an NT-Pro BNP elevation. In conclusion, BNP predicts adverse outcomes and can be reduced with preoperative CoQ10.
Collapse
Affiliation(s)
- Asrar Khan
- Division of Cardiology, University of Minnesota, Minneapolis, MN
| | - Debra K Johnson
- Division of Cardiology, Minneapolis VA Medical Center, Minneapolis, MN
| | - Selma Carlson
- Division of Cardiology, University of Minnesota, Minneapolis, MN; Division of Cardiology, Minneapolis VA Medical Center, Minneapolis, MN
| | - Laura Hocum-Stone
- Division of Cardiology, Minneapolis VA Medical Center, Minneapolis, MN; Division of Cardiothoracic Surgery, University of Minnesota, Minneapolis, MN
| | - Rosemary F Kelly
- Division of Cardiothoracic Surgery, University of Minnesota, Minneapolis, MN
| | - Amy A Gravely
- Department of Research Statistical Center, Minneapolis VA Medical Center, Minneapolis, MN
| | - Mackenzi Mbai
- Division of Cardiology, University of Minnesota, Minneapolis, MN; Division of Cardiology, Minneapolis VA Medical Center, Minneapolis, MN
| | - Derrick L Green
- Division of Vascular Surgery, Minneapolis VA Medical Center, Minneapolis, MN
| | - Steve Santilli
- Division of Vascular Surgery, Minneapolis VA Medical Center, Minneapolis, MN
| | - Santiago Garcia
- Division of Cardiology, Minneapolis Heart Institute, Minneapolis, MN
| | - Selcuk Adabag
- Division of Cardiology, University of Minnesota, Minneapolis, MN; Division of Cardiology, Minneapolis VA Medical Center, Minneapolis, MN
| | - Edward O McFalls
- Division of Cardiology, University of Minnesota, Minneapolis, MN; Division of Cardiology, Minneapolis VA Medical Center, Minneapolis, MN.
| |
Collapse
|
36
|
Ya F, Xu XR, Shi Y, Gallant RC, Song F, Zuo X, Zhao Y, Tian Z, Zhang C, Xu X, Ling W, Ni H, Yang Y. Coenzyme Q10 Upregulates Platelet cAMP/PKA Pathway and Attenuates Integrin αIIbβ3 Signaling and Thrombus Growth. Mol Nutr Food Res 2019; 63:e1900662. [PMID: 31512815 DOI: 10.1002/mnfr.201900662] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Indexed: 12/11/2022]
Abstract
SCOPE Platelet integrin αIIbβ3 is the key mediator of atherothrombosis. Supplementation of coenzyme Q10 (CoQ10), a fat-soluble molecule that exists in various foods, exerts protective cardiovascular effects. This study aims to investigate whether and how CoQ10 acts on αIIbβ3 signaling and thrombosis, the major cause of cardiovascular diseases. METHODS AND RESULTS Using a series of platelet functional assays in vitro, it is demonstrated that CoQ10 reduces human platelet aggregation, granule secretion, platelet spreading, and clot retraction. It is further demonstrated that CoQ10 inhibits platelet integrin αIIbβ3 outside-in signaling. These inhibitory effects are mainly mediated by upregulating cAMP/PKA pathway, where CoQ10 stimulates the A2A adenosine receptor and decreases phosphodiesterase 3A phosphorylation. Moreover, CoQ10 attenuates murine thrombus growth and vessel occlusion in a ferric chloride (FeCl3 )-induced thrombosis model in vivo. Importantly, the randomized, double-blind, placebo-controlled clinical trial in dyslipidemic patients demonstrates that 24 weeks of CoQ10 supplementation increases platelet CoQ10 concentrations, enhances the cAMP/PKA pathway, and attenuates αIIbβ3 outside-in signaling, leading to decreased platelet aggregation and granule release. CONCLUSION Through upregulating the platelet cAMP/PKA pathway, and attenuating αIIbβ3 signaling and thrombus growth, CoQ10 supplementation may play an important protective role in patients with risks of cardiovascular diseases.
Collapse
Affiliation(s)
- Fuli Ya
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China
| | - Xiaohong Ruby Xu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Yilin Shi
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China
| | - Reid C Gallant
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Fenglin Song
- School of Food Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, 510006, China
| | - Xiao Zuo
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| | - Yimin Zhao
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| | - Zezhong Tian
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| | - Cheng Zhang
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Xiping Xu
- National Clinical Research Center for Kidney Disease, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada.,Canadian Blood Services Centre for Innovation, Toronto, Ontario, M5G 2M1, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, M5S 1A1, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Yan Yang
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| |
Collapse
|
37
|
Effect of liquid ubiquinol supplementation on glucose, lipids and antioxidant capacity in type 2 diabetes patients: a double-blind, randomised, placebo-controlled trial. Br J Nutr 2019; 120:57-63. [PMID: 29936921 DOI: 10.1017/s0007114518001241] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ubiquinone is a lipid antioxidant, and a novel liquid ubiquinol (a hydro-soluble, reduced form of coenzyme Q10) supplement was recently developed. The purpose of this study was to examine the levels of glucose, lipids and antioxidant capacity of type 2 diabetes patients after liquid ubiquinol supplementation. This study was designed as a randomised, double-blind, placebo-controlled trial. In all, fifty participants were randomly assigned to a placebo (n 25) or liquid ubiquinol (100 mg/d, n 25) group, and the intervention lasted for 12 weeks. Plasma coenzyme Q10, glucose homoeostasis parameters, lipid profiles, oxidative stress and antioxidative enzyme activities were measured during the study. After 12 weeks of supplementation, glyco Hb (HbA1c) value was significantly decreased in the liquid ubiquinol group (P=0·03), and subjects in the liquid ubiquinol group had significantly lower anti-glycaemic medication effect scores (MES) compared with those in the placebo group (P=0·03). The catalase (P<0·01) and glutathione peroxidase (P=0·03) activities were increased significantly after supplementation. Plasma coenzyme Q10 was correlated with the insulin level (P=0·05), homoeostatic model assessment-insulin resistance (P=0·07), quantitative insulin sensitivity check index (P=0·03) and the anti-hyperglycaemic agents' MES (P=0·03) after supplementation. Lipid profiles did not change after supplementation; however, the subjects in the placebo group had a significantly lower level of HDL-cholesterol after 12 weeks of intervention. In conclusion, oral intake of 100 mg/d liquid ubiquinol might benefit type 2 diabetes patients by increasing antioxidant enzyme activity levels, reducing HbA1c levels and maintaining HDL-cholesterol levels.
Collapse
|
38
|
Fadda L, Ali HM, Aldrees GA, Alquraishi NM. Nano ubiquinone: Promising candidate for treatment of renal toxicity induced by over dose of paracetamol. Toxicol Rep 2019; 6:712-717. [PMID: 31384564 PMCID: PMC6661393 DOI: 10.1016/j.toxrep.2019.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
Paracetamol-toxicity induced renal-damage. Compare the impact of nano-ubiquinone with that of ubiquinone on were carried out. Treatment with the antioxidants significantly ameliorated all the altered parameters.
Over doses of Paracetamol (panadol; acetaminophen) can cause life-threatening renal damage. This study compared the impact of nano-ubiquinone (Nubiq) with native ubiquinone (ubiq) reducing damage induced by Paracetamol-toxicity in rats. Paracetamol treatment produced an elevation in serum urea, uric acid, creatinine, C-reactive protein, renal nitric oxide, and lipid peroxide levels, and reductions in interleukin-10, superoxide dismutase, and glutathione levels. Meanwhile, c-Jun N-terminal kinases, vascular cell adhesion protein-1, cyclooxygenase-2 protein, and kidney injury molecule-1 were highly expressed, and NFE2-related factor 2 gene expression was down-regulated. Destruction of the epithelium, necrosis, and inflammatory cell infiltration could be observed in the renal tissue. Treatment with both ubiq an nubiq significantly ameliorated all of these signs. These findings suggest that Nubiq achieved the most significant amelioration in oxidative stress and inflammatory biomarkers in paracetamol -induced nephrotoxicity.
Collapse
Affiliation(s)
- Laila Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Riyadh, Saudi Arabia
| | - Hanaa M Ali
- Common First year Deanship, King Saud University, Riyadh, Saudi Arabia.,Genetic and Cytology department, National Research Centre, Cairo, Egypt
| | - Ghada A Aldrees
- Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
39
|
Bubb KJ, Drummond GR, Figtree GA. New opportunities for targeting redox dysregulation in cardiovascular disease. Cardiovasc Res 2019; 116:532-544. [DOI: 10.1093/cvr/cvz183] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/02/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Despite substantial promise, the use of antioxidant therapy to improve cardiovascular outcomes has been disappointing. Whilst the fundamental biology supporting their use continues to build, the challenge now is to differentially target dysregulated redox signalling domains and to identify new ways to deliver antioxidant substances. Looking further afield to other disciplines, there is an emerging ‘tool-kit’ containing sophisticated molecular and drug delivery applications. Applying these to the cardiovascular redox field could prove a successful strategy to combat the increasing disease burden. Excessive reactive oxygen species production and protein modifications in the mitochondria has been the target of successful drug development with several positive outcomes emerging in the cardiovascular space, harnessing both improved delivery mechanisms and enhanced understanding of the biological abnormalities. Using this as a blueprint, similar strategies could be applied and expanded upon in other redox-hot-spots, such as the caveolae sub-cellular region, which houses many of the key cardiovascular redox proteins such as NADPH oxidase, endothelial nitric oxide synthase, angiotensin II receptors, and beta adrenoceptors. The expanded tool kit of drug development, including gene and miRNA therapies, nanoparticle technology and micropeptide targeting, can be applied to target dysregulated redox signalling in subcellular compartments of cardiovascular cells. In this review, we consider the opportunities for improving cardiovascular outcomes by utilizing new technology platforms to target subcellular ‘bonfires’ generated by dysregulated redox pathways, to improve clinical outcomes.
Collapse
Affiliation(s)
- Kristen J Bubb
- Cardiothoracic and Vascular Health, Kolling Institute and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Gemma A Figtree
- Cardiothoracic and Vascular Health, Kolling Institute and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
40
|
Andalib S, Mashhadi-Mousapour M, Bijani S, Hosseini MJ. Coenzyme Q 10 Alleviated Behavioral Dysfunction and Bioenergetic Function in an Animal Model of Depression. Neurochem Res 2019; 44:1182-1191. [PMID: 30820817 DOI: 10.1007/s11064-019-02761-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Coenzyme Q10 (CoQ10) is a natural compound, is involved in the mitochondrial electron transfer chain (ETC) and plays an important pattern in adenosine triphosphate (ATP) production. Amelioration of ATP is related to abnormalities in cognitive function and psychiatric diseases. Previous studies have shown that depression is accompanied by the induction of inflammatory and oxidative stress pathways and amelioration of antioxidant status. In a recent study, we investigated the beneficial effects of CoQ10 on behavioral dysfunction and CoQ10 level in the rat brain. Therefore, intracerebroventricular (ICV) infusion of a single dose of streptozotocin (STZ, 0.2 mg/mouse) was used in adult male mice to induce depression. The behavioral data revealed a significant difference between the depression and control groups regarding the forced swim test (FST) and splash test results at 24 h following STZ treatment. Also, the validated and accurate high-performance liquid chromatography (HPLC) technique showed decreased CoQ10 level in the brain samples of the STZ group, compared to the controls. Our findings revealed that behavioral abnormalities due to STZ target mitochondria and affect energy metabolism and hemostasis, resulting in the initiation of oxidative damage in the brain. Besides, 4-week administration of CoQ10 could reverse the depressive like behavior and bioenergetic effects of STZ in the treated groups.
Collapse
Affiliation(s)
- Sina Andalib
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran
| | - Mobin Mashhadi-Mousapour
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran
| | - Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran. .,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran.
| |
Collapse
|
41
|
Jorat MV, Tabrizi R, Kolahdooz F, Akbari M, Salami M, Heydari ST, Asemi Z. The effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in among coronary artery disease: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology 2019; 27:233-248. [PMID: 30758695 DOI: 10.1007/s10787-019-00572-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Systemic inflammation and oxidative stress significantly contribute in developing coronary artery disease (CAD). This systematic review and meta-analysis was aimed to determine the effects of coenzyme Q10 (CoQ10) supplementation on biomarkers of inflammation and oxidative stress among patients with CAD. METHODS The electronic databases including MEDLINE, EMBASE, Scopus, Web of Science, and Cochrane Library databases were systematically searched until Oct 2018. The quality assessment and heterogeneity of the selected randomized clinical Trials (RCTs) were examined using the Cochrane Collaboration risk of bias tool, and Q and I2 tests, respectively. Given the presence of heterogeneity, random-effects model or fixed-effect model were used to pool standardized mean differences (SMDs) as summary effect sizes. RESULTS A total of 13 clinical RCTs of 912 potential citations were found to be eligible for the current meta-analysis. The pooled findings for biomarkers of inflammation and oxidative stress demonstrated that CoQ10 supplementation significantly increased superoxide dismutase (SOD) (SMD 2.63; 95% CI, 1.17, 4.09, P < 0.001; I2 = 94.5%) and catalase (CAT) levels (SMD 1.00; 95% CI, 0.57, 1.43, P < 0.001; I2 = 24.5%), and significantly reduced malondialdehyde (MDA) (SMD - 4.29; 95% CI - 6.72, - 1.86, P = 0.001; I2 = 97.6%) and diene levels (SMD - 2.40; 95% CI - 3.11, - 1.68, P < 0.001; I2 = 72.6%). We did not observe any significant effect of CoQ10 supplementation on C-reactive protein (CRP) (SMD - 0.62; 95% CI - 1.31, 0.08, P = 0.08; I2 = 87.9%), tumor necrosis factor alpha (TNF-α) (SMD 0.22; 95% CI - 1.07, 1.51, P = 0.73; I2 = 89.7%), interleukin-6 (IL-6) (SMD - 1.63; 95% CI - 3.43, 0.17, P = 0.07; I2 = 95.2%), and glutathione peroxidase (GPx) levels (SMD 0.14; 95% CI - 0.77, 1.04, P = 0.76; I2 = 78.7%). CONCLUSIONS Overall, this meta-analysis demonstrated CoQ10 supplementation increased SOD and CAT, and decreased MDA and diene levels, but did not affect CRP, TNF-α, IL-6, and GPx levels among patients with CAD.
Collapse
Affiliation(s)
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariba Kolahdooz
- Indigenous and Global Health Research Group, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Taghi Heydari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
42
|
Chen HH, Yeh TC, Cheng PW, Ho WY, Ho CY, Lai CC, Sun GC, Tseng CJ. Antihypertensive Potential of Coenzyme Q10 via Free Radical Scavenging and Enhanced Akt-nNOS Signaling in the Nucleus Tractus Solitarii in Rats. Mol Nutr Food Res 2019; 63:e1801042. [PMID: 30668894 DOI: 10.1002/mnfr.201801042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/19/2018] [Indexed: 01/22/2023]
Abstract
SCOPE In the Natural Medicines database, coenzyme Q10 (CoQ10) is classified as possibly effective for the treatment of hypertension. Patients with hypertension frequently have a significant deficiency of the antioxidant CoQ10. Furthermore, reactive oxygen species are overproduced in the nucleus tractus solitarii (NTS) during the cardiovascular regulation of hypertension in vivo. However, the molecular mechanisms by which CoQ10 modulates cardiovascular functions in the NTS are unclear. In this study, the effects of CoQ10 on superoxide generation, downstream NO signaling in the NTS, and blood pressure were evaluated in rats with fructose-induced hypertension. METHODS AND RESULTS Treatment with oral CoQ10 for 4 weeks abolished nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activation, decreased p38 phosphorylation, and increased superoxide dismutase 2 production in the NTS of fructose-fed rats. The serum levels of uric acid decrease in response to CoQ10 treatment in fructose-fed rats. Oral CoQ10 reduced blood pressure by inducing Akt and nNOS phosphorylation in NTS of fructose-induced hypertensive rats. CONCLUSION Oral CoQ10 decreases blood pressure by negatively regulating fructose-induced NADPH oxidase levels, abolishing ROS generation, reducing p38 phosphorylation, and enhancing the Akt-nNOS pathway in the NTS. These results support the beneficial effects of CoQ10 in oxidative stressassociated hypertension.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Yuh-Ing Junior College of Health Care & Management, Kaohsiung, 80776, Taiwan
| | - Tung-Chen Yeh
- Cardiovascular Center, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Yuh-Ing Junior College of Health Care & Management, Kaohsiung, 80776, Taiwan.,Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, 82144, Taiwan
| | - Wen-Yu Ho
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Division of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chiu-Yi Ho
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chi-Cheng Lai
- Cardiology, Kaohsiung Municipal United Hospital, Kaohsiung, 80457, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.,Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan.,Department of Pharmacology, National Defense Medical Center, Taipei, 11490, Taiwan
| |
Collapse
|
43
|
Nakazawa H, Ikeda K, Shinozaki S, Yasuhara S, Yu YM, Martyn JAJ, Tompkins RG, Yorozu T, Inoue S, Kaneki M. Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle. FEBS Open Bio 2019; 9:348-363. [PMID: 30761259 PMCID: PMC6356165 DOI: 10.1002/2211-5463.12580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial dysfunction is associated with metabolic alterations in various disease states, including major trauma (e.g., burn injury). Metabolic derangements, including muscle insulin resistance and hyperlactatemia, are a clinically significant complication of major trauma. Coenzyme Q10 (CoQ10) is an essential cofactor for mitochondrial electron transport, and its reduced form acts as a lipophilic antioxidant. Here, we report that burn injury induces impaired muscle insulin signaling, hyperlactatemia, mitochondrial dysfunction (as indicated by suppressed mitochondrial oxygen consumption rates), morphological alterations of the mitochondria (e. g., enlargement, and loss of cristae structure), mitochondrial oxidative stress, and disruption of mitochondrial integrity (as reflected by increased mitochondrial DNA levels in the cytosol and circulation). All of these alterations were significantly alleviated by CoQ10 treatment compared with vehicle alone. These findings indicate that CoQ10 treatment is efficacious in protecting against mitochondrial dysfunction and insulin resistance in skeletal muscle of burned mice. Our data highlight CoQ10 as a potential new strategy to prevent mitochondrial damage and metabolic dysfunction in burn patients.
Collapse
Affiliation(s)
- Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA.,Department of Anesthesiology Kyorin University School of Medicine Tokyo Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction Research Center for Genomic Medicine Saitama Medical University Japan
| | - Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA.,Department of Life Sciences and Bioethics Tokyo Medical and Dental University Japan
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| | - Yong-Ming Yu
- Shriners Hospitals for Children Boston MA USA.,Department of Surgery Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| | - Ronald G Tompkins
- Shriners Hospitals for Children Boston MA USA.,Department of Surgery Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Tomoko Yorozu
- Department of Anesthesiology Kyorin University School of Medicine Tokyo Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction Research Center for Genomic Medicine Saitama Medical University Japan.,Tokyo Metropolitan Institute of Gerontology Japan
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School Charlestown MA USA.,Shriners Hospitals for Children Boston MA USA
| |
Collapse
|
44
|
Fallah M, Askari G, Soleimani A, Feizi A, Asemi Z. Clinical Trial of the Effects of Coenzyme Q10 Supplementation on Biomarkers of Inflammation and Oxidative Stress in Diabetic Hemodialysis Patients. Int J Prev Med 2019; 10:12. [PMID: 30774846 PMCID: PMC6360842 DOI: 10.4103/ijpvm.ijpvm_418_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/01/2018] [Indexed: 11/04/2022] Open
Abstract
Background The aim of the study was to determine the effects of coenzyme Q10 (CoQ10) supplementation on biomarkers of inflammation and oxidative stress among diabetic hemodialysis (HD) patients. Methods Sixty diabetic HD patients participated in the randomized, double blind, placebo-controlled clinical trial. They were randomly assigned into two groups to intake either 60 mg CoQ10 supplements (n = 30) or placebo (n = 30) twice a day for 12 weeks. Results After 12 weeks of intervention, CoQ10 supplementation significantly increased total antioxidant (TAC) (54.921 ± 26.437 vs. -126.781 ± 26.437, P < 0.001) and nitric oxide (NO) levels (4.121 ± 1.314 vs. -1.427 ± 1.314, P = 0.006) and decreased C-reactive protein (CRP) (-1.302 ± 0.583 vs. 0.345 ± 0.583, 0.042) levels compared with the placebo. We did not observe any significant effect of CoQ10 supplementation on malondialdehyde (MDA) and glutathione (GSH) levels compared with the placebo. Conclusions Overall, our study showed that CoQ10 supplementation to diabetic HD patients for 12 weeks was associated with increased levels of TAC and NO levels and decreased level of high-sensitivity CRP (hs-CRP) levels, but did not have any beneficial effects on MDA and GSH.
Collapse
Affiliation(s)
- Melika Fallah
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Awat Feizi
- Isfahan Endocrine and Metabolism Research Center, Isfahan, Iran.,Department of Biostatistics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
45
|
Korakas E, Dimitriadis G, Raptis A, Lambadiari V. Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander? Nutrients 2018; 10:E1912. [PMID: 30518065 PMCID: PMC6316552 DOI: 10.3390/nu10121912] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
The role of nutrition in the pathogenesis of cardiovascular disease has long been debated. The established notion of the deleterious effects of fat is recently under question, with numerous studies demonstrating the benefits of low-carbohydrate, high-fat diets in terms of obesity, diabetes, dyslipidemia, and metabolic derangement. Monounsaturated and polyunsaturated fatty acids, especially n-3 PUFAs (polyunsaturated fatty acids), are the types of fat that favor metabolic markers and are key components of the Mediterranean Diet, which is considered an ideal dietary pattern with great cardioprotective effects. Except for macronutrients, however, micronutrients like polyphenols, carotenoids, and vitamins act on molecular pathways that affect oxidative stress, endothelial function, and lipid and glucose homeostasis. In relation to these metabolic markers, the human gut microbiome is constantly revealed, with its composition being altered by even small dietary changes and different microbial populations being associated with adverse cardiovascular outcomes, thus becoming the target for potential new treatment interventions. This review aims to present the most recent data concerning different dietary patterns at both the macro- and micronutrient level and their association with atherosclerosis, obesity, and other risk factors for cardiovascular disease.
Collapse
Affiliation(s)
- Emmanouil Korakas
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| | - George Dimitriadis
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| | - Athanasios Raptis
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| | - Vaia Lambadiari
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| |
Collapse
|
46
|
Hormozi M, Mirzaei R, Nakhaee A, payandeh A, Izadi S, Haghighi JD. Effects of coenzyme Q10 supplementation on oxidative stress and antioxidant enzyme activity in glazers with occupational cadmium exposure: A randomized, double-blind, placebo-controlled crossover clinical trial. Toxicol Ind Health 2018; 35:32-42. [DOI: 10.1177/0748233718809256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, there is a growing interest for the use of antioxidants as a preventive agent against cadmium (Cd) intoxication. The current study aimed to investigate the effects of dietary coenzyme Q10 supplementation on oxidative stress and antioxidant enzymes activity in Cd-exposed glazers. In a randomized, double-blind, placebo-controlled 2-month crossover clinical trial, coenzyme Q10 (60 mg twice daily) or placebo was administrated to 40 male glazers occupationally exposed to Cd. The subjects were randomly assigned to the placebo and coenzyme Q10 groups ( n = 20 in each group). Total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) as well as malondialdehyde (MDA) in the serum of glazers were measured at baseline and at the end of both intervention phases. The primary outcomes were the changes in serum levels of MDA, TAC and the activities of SOD, CAT, and GPx during administration with coenzyme Q10 versus placebo. Compared with placebo, treatment to coenzyme Q10 was associated with a significant reduction in serum MDA levels ( p < 0.001) While, there was no significant effect on the serum TAC levels ( p = 0.096). Also, the activity antioxidant enzymes of SOD ( p < 0.001) and GPx ( p = 0.003) were significantly higher and the CAT activity ( p < 0.001) was lower after 2-month coenzyme Q10 administration compared with placebo. Data demonstrated that coenzyme Q10 supplementation at a dose of 60 mg (twice daily) is effective in reducing oxidative stress marker level (MDA) and improving antioxidant enzymes activity in glazers exposed to Cd. However, further research is needed to assess coenzyme Q10 as a possible dietary intervention in Cd-exposed workers. Trial Registration: Iranian Registry of Clinical Trials Registration Number: IRCT2016061228407N1 ( www.who.int/ictrp/network/irct/en/ ).
Collapse
Affiliation(s)
- Maryam Hormozi
- Department of Occupational Health, School of Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramazan Mirzaei
- Department of Occupational Health, School of Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Nakhaee
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Abolfazl payandeh
- Department of Epidemiology & Biostatistics, School of Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shahrokh Izadi
- Department of Epidemiology & Biostatistics, School of Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Javid Dehghan Haghighi
- Department of Community Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
47
|
Suárez-Rivero JM, de la Mata M, Pavón AD, Villanueva-Paz M, Povea-Cabello S, Cotán D, Álvarez-Córdoba M, Villalón-García I, Ybot-González P, Salas JJ, Muñiz O, Cordero MD, Sánchez-Alcázar JA. Intracellular cholesterol accumulation and coenzyme Q 10 deficiency in Familial Hypercholesterolemia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3697-3713. [PMID: 30292637 DOI: 10.1016/j.bbadis.2018.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/07/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor. Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q10 (CoQ10) deficiency, suggesting dysregulation of the mevalonate pathway. Secondary CoQ10 deficiency was associated with mitochondrial depolarization and mitophagy activation in FH fibroblasts. Persistent mitophagy altered autophagy flux and induced inflammasome activation accompanied by increased production of cytokines by mutant cells. All the pathological alterations in FH fibroblasts were also reproduced in a human endothelial cell line by LDL-receptor gene silencing. Both increased intracellular cholesterol and mitochondrial dysfunction in FH fibroblasts were partially restored by CoQ10 supplementation. Dysregulated mevalonate pathway in FH, including increased expression of cholesterogenic enzymes and decreased expression of CoQ10 biosynthetic enzymes, was also corrected by CoQ10 treatment. Reduced CoQ10 content and mitochondrial dysfunction may play an important role in the pathophysiology of early atherosclerosis in FH. The diagnosis of CoQ10 deficiency and mitochondrial impairment in FH patients may also be important to establish early treatment with CoQ10.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Unidad de Gestión de Pediatría, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Spain
| | - Joaquín J Salas
- Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (CSIC), Spain
| | - Ovidio Muñiz
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mario D Cordero
- Instituto de Nutrición y Tecnología de los Alimentos "José Mataix Verdú", Departamento de Fisiología, Centro de Investigación Biomédica, Universidad de Granada, 18100 Granada, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| |
Collapse
|
48
|
Bronzato S, Durante A. Dietary Supplements and Cardiovascular Diseases. Int J Prev Med 2018; 9:80. [PMID: 30283612 PMCID: PMC6151970 DOI: 10.4103/ijpvm.ijpvm_179_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022] Open
Abstract
The market of nutritional supplements is expected to expand over 6%/year through 2018 due to growing interest in personal health, aging population, and promising personalized care products. The most used dietary supplements are fish oil, multivitamins, Vitamin D, and coenzyme Q10 (CoQ10) in this order, while probiotics is the fastest growing supplement. In the U.S., over 68% of the population use dietary supplements regularly. On the other hand, in the developed countries, cardiovascular diseases (CVDs) are the main cause of death and morbidity from the 1900s. The effects of most dietary supplements on cardiovascular risk and CVD have been studied for a long time. However, despite several studies explored the association of the various supplements to the cardiovascular risk, there is still a lack of consensus. Multivitamin supplementation has been advocated to reduce cardiovascular events; Vitamin D levels have been associated with the occurrence of coronary artery disease, heart failure, and atrial fibrillation; CoQ10 deficiency has been associated with myocardial dysfunction and with statin myopathy; probiotoics has been suggested to lower both blood pressure and circulating lipids. However, the study of the effects of dietary supplementations is not straightforward, since people assuming dietary supplements generally have a healthier diet and lifestyle, and randomized studies are rarely performed. In this review, we will summarize the findings linking dietary supplements to CVD with a special focus on novel insights.
Collapse
|
49
|
Coenzyme Q 10 supplementation reduces oxidative stress and decreases antioxidant enzyme activity in children with autism spectrum disorders. Psychiatry Res 2018; 265:62-69. [PMID: 29684771 DOI: 10.1016/j.psychres.2018.03.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
Antioxidants and oxidative stress can participate in pathobiochemical mechanisms of autism spectrum disorders (ASDs). The aim was to identify the effects of early CoQ10 supplementation on oxidative stress in children with ASDs. Ninety children with ASDs were included in this study, based on DSM-IV criteria and using Childhood Autism Rating Scale (CARS) scores. Concentrations of CoQ10, MDA, total antioxidant status (TAS) assay, and antioxidant enzymes (superoxide dismutase or SOD and glutathione peroxidase or GPx) activity were determined in serum before and after 100 days of supportive therapy with CoQ10 at daily doses of 30 and 60 mg. Data on children's behavior were collected from parents and babysitters. CoQ10 supportive therapy was determined after three months with daily dose 2 ͯ 30 mg improved oxidative stress in the children with ASDs. A relation was seen between serum MDA (r2 = 0.668) and TAS (r2 = 0.007), and antioxidant enzymes (SOD [r2 = 0.01] and GPx [r2 = 0.001]) activity and CARS score. Based on the results, high doses of CoQ10 can improve gastrointestinal problems (P = 0.004) and sleep disorders (P = 0.005) in children with ASDs with an increase in the CoQ10 of the serum. We concluded that the serum concentration of CoQ10 and oxidative stress could be used as relevant biomarkers in helping the improvement of ASDs.
Collapse
|
50
|
Alahmar AT. The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clin Exp Reprod Med 2018; 45:57-66. [PMID: 29984205 PMCID: PMC6030611 DOI: 10.5653/cerm.2018.45.2.57] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 11/06/2022] Open
Abstract
It has been estimated that approximately 15% of reproductive-age couples suffer from infertility. Male factors contribute to almost half of infertility cases, and in many patients the underlying cause of oligoasthenoteratozoospermia is unknown. Accumulating evidence suggests that oxidative stress plays a role as a contributing factor to male infertility, and reactive oxygen species have been shown to impair sperm function and motility and to damage sperm membrane and DNA. Therefore, this review explored the evidence provided by studies published from 2002 to 2017 on the impact of oral antioxidants (vitamin C, vitamin E, L-carnitine, coenzyme Q10, zinc, selenium, and pentoxifylline) on seminal fluid parameters in men with idiopathic oligoasthenoteratozoospermia. Most of the studies were randomized controlled studies that investigated the effect of single or combined antioxidants and reported improvements in at least one semen parameter. The most noteworthy effect that was found was that the use of multiple antioxidants increased sperm motility and concentration. Nonetheless, there is a lack of agreement on the dose, the duration of treatment, and whether individual or combined oral antioxidants should be used. Therefore, the current review provides evidence supporting the use of oral antioxidants in the treatment of infertile men with idiopathic oligoasthenoteratozoospermia.
Collapse
Affiliation(s)
- Ahmed T Alahmar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Babylon, Babylon, Iraq
| |
Collapse
|