1
|
Mi R, Fu Z, Jiang J, Gao S, Guan X, Wang X, Zhou Z. Sea Cucumber Viscera Processed by Protease Hydrolysis Combined with Cordyceps militaris Fermentation Protect Caco-2 Cells against Oxidative Damage via Enhancing Antioxidant Capacity, Activating Nrf2/HO-1 Pathway and Improving Cell Metabolism. Antioxidants (Basel) 2024; 13:988. [PMID: 39199234 PMCID: PMC11351466 DOI: 10.3390/antiox13080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Excessive reactive oxygen species (ROS) may lead to oxidative damage and metabolic disorder. The pathogenesis of human bowel inflammation is closely related to oxidative damage of intestinal epithelial cells caused by ROS. This study aimed to explore the high-value utilization of the byproducts of sea cucumber in antioxidant food for colitis prevention. The technology of protease hydrolysis combined with Cordyceps militaris fermentation was used to obtain fermented sea cucumber viscera protease hydrolysates (FSVHs). The results revealed that FSVH could enhance antioxidant capacity and alleviate oxidative damage and apoptosis by activating the Nrf2/HO-1 pathway and triggering the self-protection immune mechanisms. Moreover, the FSVH supplementation could upregulate antioxidant-related metabolic pathways of Caco-2 cells such as glutathione metabolism, confirming the enhanced antioxidant capacity of damaged cells. In summary, FSVH could exert protective effects on Caco-2 cells in response to oxidative damage, providing a promising prospect for sea cucumber resource utilization and colitis prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zunchun Zhou
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, China; (R.M.); (Z.F.); (J.J.); (S.G.); (X.G.); (X.W.)
| |
Collapse
|
2
|
Chen XC, Huang XQ, Tang YW, Zhang L, Lin F. Effects of dietary nucleotides on growth performance, immune response, intestinal morphology and disease resistance of juvenile largemouth bass, Micropterus salmoides. JOURNAL OF FISH BIOLOGY 2022; 101:204-212. [PMID: 35567749 DOI: 10.1111/jfb.15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
An 8 week feeding trial was carried out to investigate the effects of dietary nucleotides on growth performance, intestinal morphology, immune response and disease resistance of juvenile largemouth bass, Micropterus salmoides. Five grades of dietary nucleotide levels were designed as 0, 0.2, 0.4, 0.8 and 1.2 g kg-1 , respectively. Each group had 3 replicates, with 40 fish in each replicate. After the feeding experiment, 15 fish from each tank were infected with Aeromonas hydrophila for 14 days. The results indicated that fish fed the diets containing 0.4, 0.8 and 1.2 g kg-1 nucleotides had higher growth performance and feed utilization than those fed the control diet. Nonetheless, there were no significant differences in survival between all the groups, although fish fed the diets with all-level nucleotides obtained higher survival than those fed the control diet. Dietary nucleotides significantly affected the superoxide dismutase, acid phosphatase and catalase activities in serum but not the malondialdehyde content. Fish fed the 0.4 g kg-1 nucleotide diets had the highest fold height, enterocyte height and muscular layer thickness significantly. The average mortality of largemouth bass infected with A. hydrophila was significantly influenced by dietary nucleotides. The mortality was significantly higher in the control group (91.11%) and 0.02% nucleotide group (73.11%) followed by the other groups and lowest in the 0.8 g kg-1 nucleotide group. In summary, dietary 0.4-0.8 g kg-1 nucleotides promoted growth performance, enhanced immunity and improved intestinal morphology and disease resistance of largemouth bass.
Collapse
Affiliation(s)
- Xiao-Chun Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | | | - Yi-Wen Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lei Zhang
- Nanjing Biotogether Co. Ltd., Nangjing, China
| | - Feng Lin
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| |
Collapse
|
3
|
Ding T, Song G, Liu X, Xu M, Li Y. Nucleotides as optimal candidates for essential nutrients in living organisms: A review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
4
|
Mutual role of ecto-5'-nucleotidase/CD73 and concentrative nucleoside transporter 3 in the intestinal uptake of dAMP. PLoS One 2019; 14:e0223892. [PMID: 31634358 PMCID: PMC6802847 DOI: 10.1371/journal.pone.0223892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022] Open
Abstract
2'-Deoxyadenosine 5'-monophosphate (dAMP), a deoxyribonucleotide found in DNA, affects intestinal cell growth. The molecular mechanisms underlying gastrointestinal absorption of foreign DNA ingested along with food has hardly been investigated. The aim of this study was to investigate the mechanism underlying intestinal absorption of dAMP. The uptake of [3H]dAMP by Caco-2 cells was Na+- and pH-dependent and was inhibited by various nucleosides. In contrast, nitrobenzylthioinosine (NMBPR), an equilibrative nucleoside transporter inhibitor, showed little inhibitory effects on [3H]dAMP uptake. Additionally, human concentrative nucleoside transporter (CNT) 3, transiently expressed in COS-7 cells, mediated the uptake of [3H]dAMP. A kinetic study revealed that the Km value of CNT3-mediated uptake of dAMP (59.6 μM) was close to that of 2'-deoxyadenosine (dAdo) (56.3 μM), whereas the dAMP Vmax (15.6 pmol·mg protein–1min–1) was 500-fold lesser than the dAdo Vmax (7782 pmol·mg protein–1min–1). Further, [3H]dAMP uptake was greater in COS-7 cells expressing ecto-5'-nucleotidase/CD73 with CNT3 than in those expressing CNT3 alone. These data suggest that, although dAMP is a substrate of CNT3, it is dephosphorylated to dAdo by CD73 and is efficiently absorbed as dAdo from the intestinal lumen.
Collapse
|
5
|
Tan C, Zhai Z, Ni X, Wang H, Ji Y, Tang T, Ren W, Long H, Deng B, Deng J, Yin Y. Metabolomic Profiles Reveal Potential Factors that Correlate with Lactation Performance in Sow Milk. Sci Rep 2018; 8:10712. [PMID: 30013051 PMCID: PMC6048051 DOI: 10.1038/s41598-018-28793-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
Sow milk contains necessary nutrients for piglets; however, the relationship between the levels of metabolites in sow milk and lactation performance has not been thoroughly elucidated to date. In this study, we analysed the metabolites in sow milk from Yorkshire sows with high lactation (HL) or low lactation (LL) performance; these categories were assigned based on the weight gain of piglets during the entire lactation period (D1 to D21). The concentration of milk fat in the colostrum tended to be higher in the HL group (P = 0.05), the level of mannitol was significantly lower in the HL group (P < 0.05) and the level of glucuronic acid lactone was significantly higher in the HL group (P < 0.05) compared to those in LL group. In mature milk, the levels of lactose, creatine, glutamine, glutamate, 4-hydroxyproline, alanine, asparagine, and glycine were significantly higher (P < 0.05) in the HL group than those in LL group. The level of fatty acids showed no significant difference between the two groups in both the colostrum and mature milk. This study suggested that lactation performance may be associated with the levels of lactose and several amino acids in sow milk, and these results can be used to develop new feed additives to improve lactation performance in sows.
Collapse
Affiliation(s)
- Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Zhenya Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Xiaojun Ni
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Yongcheng Ji
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Tianyue Tang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Hongrong Long
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, P.R. China.
| |
Collapse
|
6
|
Alizadeh M, Rogiewicz A, McMillan E, Rodriguez-Lecompte JC, Patterson R, Slominski BA. Effect of yeast-derived products and distillers dried grains with solubles (DDGS) on growth performance and local innate immune response of broiler chickens challenged with Clostridium perfringens. Avian Pathol 2017; 45:334-45. [PMID: 26956683 DOI: 10.1080/03079457.2016.1155693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study evaluated the effect of yeast-derived products on growth performance, gut lesion score, intestinal population of Clostridium perfringens, and local innate immunity of broiler chickens challenged with C. perfringens. One-day-old broiler chickens were randomly assigned to eight dietary treatments providing six replicate pens of 55 birds each per treatment. Dietary treatments consisted of Control diets without and with C. perfringens challenge, and diets containing bacitracin methylene disalicylate (BMD, 55 g/tonne), nucleotides (150 g/tonne), yeast cell wall (YCW, 300 g/tonne), and a commercial product Maxi-Gen Plus (1 kg/tonne) fed to chickens challenged with C. perfringens. Diets containing 10% distillers dried grains with solubles without and with C. perfringens challenge were also used. Birds were orally challenged with C. perfringens (10(8) colony-forming units (cfu)/bird) on day 14. On day 21, intestinal samples were collected for gene expression analysis. Pathogen challenge significantly (P < 0.05) impaired feed intake, body weight gain, and feed conversion ratio (FCR) shortly after the challenge (14-21 days). Increased C. perfringens counts and intestinal lesion scores were observed for challenged birds except the BMD-containing diet. Over the entire trial (1-35 days), no difference in growth performance was observed except the BMD diet which improved FCR over the Control, challenged group. Birds receiving nucleotides showed increased expression of toll-like receptors and cytokines interleukin (IL)-4 and IL-18 compared to the Control, challenged group. Expression of macrophage mannose receptor and IL-18 was upregulated in birds receiving YCW. Increased expression of cytokines and receptors involved in innate immunity in broilers receiving nucleotides and YCW suggests the immunomodulatory properties of these products under pathogen challenge conditions.
Collapse
Affiliation(s)
- M Alizadeh
- a Department of Animal Science , University of Manitoba , Winnipeg , Canada
| | - A Rogiewicz
- a Department of Animal Science , University of Manitoba , Winnipeg , Canada
| | - E McMillan
- b Nutreco Canada Agresearch , Burford , Canada
| | - J C Rodriguez-Lecompte
- c Department of Pathology and Microbiology , Atlantic Veterinary College, University of Prince Edward Island , Charlottetown , Canada
| | - R Patterson
- d Canadian Bio-Systems Inc ., Calgary , Canada
| | - B A Slominski
- a Department of Animal Science , University of Manitoba , Winnipeg , Canada
| |
Collapse
|
7
|
Liu Y, Zhang Y, Jiang W, Wang J, Pan X, Wu W, Cao M, Dong P, Liang X. Nucleic acids digestion by enzymes in the stomach of snakehead (Channa argus) and banded grouper (Epinephelus awoara). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:127-136. [PMID: 27531133 DOI: 10.1007/s10695-016-0273-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Dietary nucleic acids (NAs) were important nutrients. However, the digestion of NAs in stomach has not been studied. In this study, the digestion of NAs by enzymes from fish stomach was investigated. The snakehead pepsins (SP) which were the main enzymes in stomach were extracted and purified. The purity of SP was evaluated by SDS-PAGE and HPLC. The snakehead pepsin 2 (SP2) which was the main component in the extracts was used for investigating the protein and NAs digestion activity. SP2 could digest NAs, including λ DNA and salmon sperm DNA. Interestingly, the digestion could be inhibited by treatment of alkaline solution at pH 8.0 and pepstatin A, and the digestion could happen either in the presence or absence of hemoglobin (Hb) and BSA as the protein substrates. Similarly, the stomach enzymes of banded grouper also showed the NAs digestion activity. NAs could be digested by the stomach enzymes of snakehead and banded grouper. It may be helpful for understanding both animal nutrition and NAs metabolic pathway.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yanfang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wei Jiang
- Innovation and Application Institute, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaoming Pan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wei Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Minjie Cao
- College of Biological Engineering, Jimei University, Xiamen, China
- Key Laboratory of Science and Technology for Aquaculture and Food Safety, Jimei University, Xiamen, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
8
|
Liu Y, Zhang Y, Guo H, Wu W, Dong P, Liang X. Accelerated digestion of nucleic acids by pepsin from the stomach of chicken. Br Poult Sci 2016; 57:674-681. [PMID: 27535578 DOI: 10.1080/00071668.2016.1200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nucleic acids have become an important nutritional supplement in poultry feed; however, the digestion of nucleic acids in poultry is unclear. The objective of this study was to investigate the digestion of nucleic acids by chicken pepsin in vitro. The extracted pepsinogen from the stomach of the chicken was purified to homogeneity. Upon activation at pH 2.0, chicken pepsinogen was converted to its active form. Nucleic acids, including λ-DNA, salmon sperm DNA and single-strand DNA (ssDNA), can be used as substrates and digested into short-chain oligonucleotides by pepsin. Interestingly, the digestion of the nucleic acids was inhibited when pepsin was treated by alkaline solution (pH 8.0) or pepstatin A. Also, the digestion of the nucleic acids was not affected by the addition of haemoglobin or bovine serum albumin. The results suggested that nucleic acids could be digested by chicken pepsin. Thus pepsin may have a role in digesting nucleic acids in vivo. Nucleic acids added to poultry fed may be digested, starting from the stomach.
Collapse
Affiliation(s)
- Y Liu
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China.,b Innovation and Application Institute , Zhejiang Ocean University , Zhoushan , China
| | - Y Zhang
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - H Guo
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - W Wu
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - P Dong
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | - X Liang
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| |
Collapse
|
9
|
Zhang Y, Li C, Liu Y, Wang X, Dong P, Liang X. Mechanism of extraordinary DNA digestion by pepsin. Biochem Biophys Res Commun 2016; 472:101-7. [DOI: 10.1016/j.bbrc.2016.02.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022]
|
10
|
Wei Z, Yi L, Xu W, Zhou H, Zhang Y, Zhang W, Mai K. Effects of dietary nucleotides on growth, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicas. FISH & SHELLFISH IMMUNOLOGY 2015; 47:1-6. [PMID: 26299704 DOI: 10.1016/j.fsi.2015.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
A 9-week feeding trial was conducted to investigate the effects of dietary nucleotides (NT) on growth, immune response and disease resistance of sea cucumber Apostichopus japonicas (initial weight: 5.87 ± 0.03 g). Four graded levels of dietary NT were designed as 0, 150, 375 and 700 mg/kg, respectively. After the feeding trial, sea cucumbers were challenged with Vibrio splendidus for the determination of disease resistance. The results showed that the specific growth rates were significantly higher in sea cucumber fed the diet with 375 mg/kg NT than those fed the basal diet without NT supplementation (P < 0.05). The highest total coelomocytes counts in coelomic fluid were found in the treatment with 150 mg/kg of dietary NT (P < 0.05). Compared to those fed with the basal diet, sea cucumber fed diets with nucleotides (≥ 375 mg/kg) had significantly higher phagocytic activities in coelomic fluid (P < 0.05). Respiratory burst activities in coelomic fluid significantly increased with increasing dietary NT supplementations up to 700 mg/kg (P < 0.05). No significant differences in the activities of superoxide dismutase, total nitric oxide synthase and acid phosphatase in coelomic fluid were found among all the treatments (P > 0.05). After being challenged with V. splendidus, the cumulative mortalities of sea cucumber fed diets with 150 and 375 mg/kg NT were significantly lower than that in the treatment without dietary nucleotide supplementation (P < 0.05). Under the experimental conditions, the present results confirmed that a diet supplemented with 375 mg/kg NT is able to enhance both non-specific immune response and growth of sea cucumber in vivo. In conclusion, it was showed that dietary NT does increase the growth performance, non-specific immunity and disease resistance of sea cucumber. The optimum dietary NT supplementation level for sea cucumber was found to be 375 mg/kg. The application of dietary NT may present a novel strategy for health management in sea cucumber's aquaculture.
Collapse
Affiliation(s)
- Zehong Wei
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lina Yi
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Wei Xu
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huihui Zhou
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
11
|
Hess JR, Greenberg NA. The role of nucleotides in the immune and gastrointestinal systems: potential clinical applications. Nutr Clin Pract 2012; 27:281-94. [PMID: 22392907 DOI: 10.1177/0884533611434933] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nucleotides are low molecular weight biological molecules key to biochemical processes. Sources include de novo synthesis, recovery via salvage mechanisms, and dietary intakes. Although endogenous production serves as the main nucleotide source, evidence suggests that exogenous sources are essential to immune competence, intestinal development, and recovery. Dietary nucleotides serve a marked role in rapidly proliferating cells where they are necessary for optimal function. Accordingly, dietary nucleotides are deemed conditionally essential in the presence of various physiological stresses, including growth and development, recovery from injury, infection, and certain disease states. Clinical studies that evaluated nutrition formulations of nucleotides in combination with other specific nutrient substances demonstrated improved clinical outcomes in patients characterized as critically ill, injured, immune suppressed, or with chronic gastrointestinal conditions. However, conclusions regarding specific benefits of nucleotides are limited. Scientific substantiation of nucleotide supplementation in infant formula has been reported to improve the maturation and development of the intestinal tract as well as immune function. All medical nutrition products except for one immune-modulating formulation are devoid of nucleotides. In an effort to build on this, the current review presents the data to support potential clinical applications for nucleotides in enteral nutrition that may contribute to improved outcomes in physiologically stressed patients.
Collapse
|
12
|
Hester SN, Donovan SM. Individual and Combined Effects of Nucleotides and Human Milk Oligosaccharides on Proliferation, Apoptosis and Necrosis in a Human Fetal Intestinal Cell Line. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/fns.2012.311205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Ortega Á, Gil Á, Sánchez-Pozo A. Exogenous nucleosides modulate expression and activity of transcription factors in Caco-2 cells. J Nutr Biochem 2010; 22:595-604. [PMID: 20970311 DOI: 10.1016/j.jnutbio.2010.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 05/02/2010] [Accepted: 05/18/2010] [Indexed: 01/15/2023]
Abstract
Dietary nucleotides (NTs) have an important role in cellular and humoral immunity, intestinal growth, differentiation and recovery from tissue damage. Nucleosides (NSs) are the best-absorbed chemical form of NTs in the intestinal epithelium. The aim of this study was to evaluate the effects of NSs on the activity and expression of multiple transcription factors (TFs) in Caco-2 cells, as a possible molecular mechanism by which NSs modulate gene expression in human intestinal cells. The effects of NS-supplemented media on human Caco-2 cell proliferation, viability, protein and RNA concentration were determined, and the activity and expression profiles of multiple TFs were analyzed by using an array-based technology. Exogenous NSs did not affect Caco-2 cell proliferation or viability but increased the protein content in cytoplasm and nucleus and the nuclear protein/RNA ratio. The addition of NSs to the media increased the expression and activity of the TFs CCAAT displacement protein (CUX1), v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) and SMAD family member 2. In contrast, NS addition decreased the expression and activity of the general upstream stimulatory factor 1 (USF1), glucocorticoid receptor (NR3C1), NFKB and tumor protein p53. In conclusion, our results suggest that exogenous NSs affect the expression and activity of several TFs involved in cell growth, differentiation, apoptosis, immune response and inflammation.
Collapse
Affiliation(s)
- Ángeles Ortega
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide - Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 41092 Seville, Spain.
| | | | | |
Collapse
|
14
|
Wang L, Song X, Gong X. Nucleotides Accelerate Mice Thymocyte DNA Repairin vitro. JOURNAL OF APPLIED ANIMAL RESEARCH 2010. [DOI: 10.1080/09712119.2010.9707166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Rodríguez-Serrano F, Marchal JA, Ríos A, Martínez-Amat A, Boulaiz H, Prados J, Perán M, Caba O, Carrillo E, Hita F, Aránega A. Exogenous nucleosides modulate proliferation of rat intestinal epithelial IEC-6 cells. J Nutr 2007; 137:879-84. [PMID: 17374648 DOI: 10.1093/jn/137.4.879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exogenous nucleotides are considered semiessential nutritional components that play an important role in intestinal development, maintenance, and recovery from tissue damage. Nucleosides (NS) are the best-absorbed chemical form of nucleotides in the intestinal epithelium. The aim of this work was to clarify, at the cellular level, the effects described in vivo. Under conditions of high intracellular availability of NS, we studied the effects of 2 NS mixtures on the NS uptake and intracellular distribution and on the proliferation, morphology, viability, and cell-cycle phase distribution of rat intestinal epithelial cell line 6. Purine and pyrimidine NS showed a similar uptake profile, but the intracellular incorporation of guanosine was greater than that of uridine, without differences in intracellular distribution. Proliferation assays demonstrated that IEC-6 cell proliferation is increased by a mixture containing thymidine but decreased by one containing uridine. In fact, the antiproliferative effect started at 75 micromol/L, which indicated that it may not be correct to consider concentrations of uridine >75 micromol/L as physiological. Interestingly, these effects were not related to increased cell necrosis or apoptosis or to changed cell morphology but rather to a reduced S-phase and increased G0/G1 phase of the cell cycle. In summary, our results suggest that NS molecules are well-absorbed by rat intestinal epithelial cell line 6 cells, whose proliferation can be promoted or inhibited (according to the NS mixtures used) by a mechanism that is not dependent on the toxicity of the mixtures.
Collapse
|
16
|
Holen E, Bjørge OA, Jonsson R. Dietary nucleotides and human immune cells. II. Modulation of PBMC growth and cytokine secretion. Nutrition 2006; 22:90-6. [PMID: 16615178 DOI: 10.1016/j.nut.2006.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The immune system is dependent on purines and pyrimidines as building blocks for DNA and RNA synthesis to enable rapid cell proliferation and protein synthesis. Emerging evidence suggests that dietary nucleotides optimize immune function. We investigated whether growth and function of human immune cells were affected by an exogenous source of nucleotides during specific antigen challenge. METHODS Peripheral blood mononuclear cells from healthy individuals (n = 10) were stimulated with influenza virus antigen and either DNA sodium from fish soft roe (DNA), RNA from bakers yeast (Saccharomyces cerevisiae) (RNA), 2' deoxyadenosine 5'-monophosphate sodium (dAMP), 2' deoxycytidine 5'-monophosphate sodium (dCMP), 2' deoxyguanosine 5'-monophosphate sodium (dGMP), 2' deoxyuridine 5'-monophosphate sodium (dUMP) or thymidine sodium (TMP). Growth effects were ascertained by measuring the amount of tritium-labeled thymidine, incorporated into cell DNA. Cell function was measured by detection of IFN-gamma, TNF-alpha and IL-10 production. RESULTS Specific nucleotide derivatives alone did not affect the growth of healthy peripheral blood mononuclear cells. However, the nucleotide derivatives influenced immune cell growth and cytokine secretion when cocultured with specific antigen. DNA, RNA, dAMP, dCMP and dUMP increased influenza virus antigen induced immune cell proliferation. In contrast dGMP and TMP inhibited the antigen-induced growth response. RNA and dAMP cocultured with virus antigen significantly increased peripheral blood mononuclear cell secretion of IFN-gamma, IL-10 and TNF-alpha. DNA increased virus antigen-induced immune cell secretion of IFN-gamma only, whereas dUMP significantly increased secretion of IL-10 only. dGMP completely inhibited virus-triggered IFN-gamma secretion, whereas TMP did not change the virus induced secretion pattern of measured cytokines. CONCLUSION Nucleotide derivatives affect growth and function of specific virus antigen-stimulated human immune cells in vitro.
Collapse
Affiliation(s)
- Elisabeth Holen
- Broegelmann Research Laboratory, University of Bergen, Norway.
| | | | | |
Collapse
|
17
|
Frankic T, Pajk T, Rezar V, Levart A, Salobir J. The role of dietary nucleotides in reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chicken leukocytes. Food Chem Toxicol 2006; 44:1838-44. [PMID: 16875771 DOI: 10.1016/j.fct.2006.06.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 05/05/2006] [Accepted: 06/02/2006] [Indexed: 01/02/2023]
Abstract
The objective of present study was to determine the effect of T-2 toxin and deoxynivalenol (DON) on DNA fragmentation in spleen leukocytes and oxidative stress in chickens, and furthermore, to evaluate the potential of dietary nucleotides in reduction of toxin-induced DNA damage. Male broiler chickens were exposed to 10mg/kg feed of either T-2 toxin or DON with or without addition of dietary nucleotides. After 17 days of treatment DNA damage of spleen leukocytes was measured by Comet assay, lipid peroxidation was studied by malondialdehyde (MDA), total antioxidant status (TAS) of plasma and glutathione peroxidase (GPx) assays, and the hepatotoxicity was studied by measuring plasma liver enzyme levels (ALT, AST and GGT) levels. T-2 toxin and DON induced DNA fragmentation in chicken spleen leukocytes and supplementation with nucleotides reduced the amount of damage only when added to T-2 toxin. In comparison to control group, values of TAS and AST decreased significantly in the groups fed T-2 toxin with or without nucleotide supplementation. Plasma and liver MDA content in groups fed T-2 toxin and DON did not differ significantly from the control. Dietary nucleotides did not affect MDA formation when added to the diets with mycotoxins. The results obtained suggest that dietary nucleotides have the potency to reduce the extent of DNA damage induced by the action of T-2 toxin in immune cells. This underlines their possible beneficial effect on the immune system in mycotoxin intoxication.
Collapse
Affiliation(s)
- T Frankic
- Institute of Nutrition, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | | | | | | | | |
Collapse
|
18
|
Dancey CP, Attree EA, Brown KF. Nucleotide supplementation: a randomised double-blind placebo controlled trial of IntestAidIB in people with Irritable Bowel Syndrome [ISRCTN67764449]. Nutr J 2006; 5:16. [PMID: 16762076 PMCID: PMC1513247 DOI: 10.1186/1475-2891-5-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 06/08/2006] [Indexed: 12/25/2022] Open
Abstract
Background Dietary nucleotide supplementation has been shown to have important effects on the growth and development of cells which have a rapid turnover such as those in the immune system and the gastrointestinal tract. Work with infants has shown that the incidence and duration of diarrhoea is lower when nucleotide supplementation is given, and animal work shows that villi height and crypt depth in the intestine is increased as a result of dietary nucleotides. Dietary nucleotides may be semi-essential under conditions of ill-health, poor diet or stress. Since people with Irritable Bowel Syndrome tend to fulfil these conditions, we tested the hypothesis that symptoms would be improved with dietary nucleotide supplementation. Methods Thirty-seven people with a diagnosis of Irritable Bowel gave daily symptom severity ratings for abdominal pain, diarrhoea, urgency to have a bowel movement, incomplete feeling of evacuation after a bowel movement, bloating, flatulence and constipation for 28 days (baseline). They were then assigned to either placebo (56 days) followed by experimental (56 days) or the reverse. There was a four week washout period before crossover. During the placebo and experimental conditions participants took one 500 mg capsule three times a day; in the experimental condition the capsule contained the nutroceutical substances. Symptom severity ratings and psychological measures (anxiety, depression, illness intrusiveness and general health) were obtained and analysed by repeated measures ANOVAs. Results Symptom severity for all symptoms (except constipation) were in the expected direction of baseline>placebo>experimental condition. Symptom improvement was in the range 4 – 6%. A feeling of incomplete evacuation and abdominal pain showed the most improvement. The differences between conditions for diarrhoea, bloating and flatulence were not significant at the p < .05 level. There were no significant differences between the conditions for any of the psychological measures. Conclusion Dietary nucleotide supplementation improves some of the symptoms of irritable bowel above baseline and placebo level. As expected, placebo effects were high. Apart from abdominal pain and urgency to have a bowel movement, the improvements, while consistent, are modest, and were not accompanied by improvements in any of the psychological measures. We suggest that the percentage improvement over and above the placebo effect is a physiological effect of the nucleotide supplement on the gut. The mechanisms by which these effects might improve symptoms are discussed.
Collapse
|
19
|
Holen E, Bjørge OA, Jonsson R. Dietary nucleotides and human immune cells. II. Modulation of PBMC growth and cytokine secretion. Nutrition 2006; 21:1003-9. [PMID: 16157237 DOI: 10.1016/j.nut.2005.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 03/24/2005] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The immune system is dependent on purines and pyrimidines as building blocks for DNA and RNA synthesis to enable rapid cell proliferation and protein synthesis. Emerging evidence suggests that dietary nucleotides optimize immune function. We investigated whether growth and function of human immune cells were affected by an exogenous source of nucleotides during specific antigen challenge. METHODS Peripheral blood mononuclear cells from healthy individuals (n = 10) were stimulated with influenza virus antigen and DNA-Na+ from fish soft roe, RNA from bakers yeast (Saccharomyces cerevisiae), 2'deoxyadenosine 5'-monophosphate sodium, 2'deoxycytidine 5'-monophosphate sodium, 2'deoxyguanosine 5'-monophosphate sodium, or 2'deoxyuridine 5'-monophosphate disodium. Growth effects were ascertained by measuring the amount of tritium-labeled Thymidine 5'-monophosphate sodium incorporated into cell DNA. Cell function was measured by detection of interferon-gamma (IFN-gamma), tumor necrosis factor-alpha, and interleukin-10 production. RESULTS Specific nucleotide derivatives alone did not affect the growth of healthy peripheral blood mononuclear cells. However, the nucleotide derivatives influenced immune cell growth and cytokine secretion when cocultured with specific antigen. DNA, RNA, deoxyadenosine monophosphate, deoxycytidine monophosphate, and deoxyuridine monophosphate increased influenza virus antigen-induced immune cell proliferation. In contrast, deoxyadenosine monophosphate and thymosine monophosphate inhibited the antigen-induced growth response. RNA and deoxyadenosine monophosphate cocultured with virus antigen significantly increased peripheral blood mononuclear cell secretion of IFN-gamma, interleukin-10, and tumor necrosis factor-alpha. DNA increased virus antigen-induced immune cell secretion of IFN-gamma only, whereas deoxyuridine monophosphate significantly increased secretion of interleukin-10 only. Deoxyguanosine monophosphate completely inhibited virus-triggered IFN-gamma secretion, whereas thymosine monophosphate did not change the secretion pattern of measured cytokines. CONCLUSION Nucleotide derivatives affect growth and function of specific virus antigen-stimulated human immune cells in vitro.
Collapse
Affiliation(s)
- Elisabeth Holen
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway.
| | | | | |
Collapse
|
20
|
Goyal RN, Sondhi SM, Lahoti AM. Investigations of electron-transfer reactions and the redox mechanism of 2′-deoxyguanosine-5′-monophosphate using electrochemical techniques. NEW J CHEM 2005. [DOI: 10.1039/b415452p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|