1
|
Rafinezhad M, Kheirouri S, Abbasnezhad M, Alizadeh M. What Dietary Vitamins and Minerals Might Be Associated with Paraoxonase-1 Serum Levels in Patients with Coronary Artery Disease? Biol Trace Elem Res 2024:10.1007/s12011-024-04382-3. [PMID: 39313692 DOI: 10.1007/s12011-024-04382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Paraoxonase-1 (PON-1) is an antioxidant enzyme inversely associated with atherosclerosis incidence. Dietary antioxidants help to increase PON-1 serum levels. Since most vitamins and minerals have antioxidant properties, this research aimed to examine the association between PON-1 serum levels and dietary intake of vitamins and minerals in patients with coronary artery disease (CAD). In this cross-sectional study, 102 inpatients with CAD and 60 healthy individuals participated. The average dietary vitamins and minerals intake were computed using information from the food frequency questionnaire with the assistance of Nutritionist IV software. The serum PON-1 level was measured using the ELISA method. Regarding minerals, serum PON-1 level was positively correlated with dietary calcium (β = 0.57, p = 0.001), phosphorus (β = 0.52, p = 0.004), and potassium intake (β = 0.40, p = 0.03), but inversely associated with dietary consumption of iron (β = - 0.43, p = 0.04), and sodium (β = - 0.41, p = 0.02). Concerning vitamins, serum levels of PON-1 were positively associated with vitamin B6 (β = 0.53, p = 0.01) and riboflavin (β = 0.44, p = 0.03) but inversely correlated with niacin (β = - 0.49, p = 0.03). The serum level of PON-1 might be associated with the dietary intake of minerals and vitamins. Therefore, a diet rich in certain minerals and vitamins may be advantageous in increasing serum PON-1 levels and preventing CAD.
Collapse
Affiliation(s)
- Masoumeh Rafinezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohsen Abbasnezhad
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Alizadeh
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Dornas W, Silva M. Modulation of the antioxidant enzyme paraoxonase-1 for protection against cardiovascular diseases. Nutr Metab Cardiovasc Dis 2024:S0939-4753(24)00154-6. [PMID: 39277536 DOI: 10.1016/j.numecd.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 09/17/2024]
Abstract
AIM The enzyme paraoxonase 1 (PON1) bound to high-density lipoprotein has received special attention for its protective role against stress-mediated damage and use as a potential regulatory target in atherosclerosis and related vascular diseases. DATA SYNTHESIS We present an overview of the literature on PON1 activity and mRNA levels by investigating its modulation for clinical translations. Specifically, the expression of PON1 and its regulated activity can be modified in different ways with natural substances, drugs, and lifestyle factors thar affect the development of atherosclerosis. CONCLUSIONS The endothelial contribution of PON1 to overcome differences considering an individual's disease development risk is supported by polymorphism interaction data and the susceptibility to modify PON1 responses in chronic events composed by biological and environmental factors.
Collapse
Affiliation(s)
- Waleska Dornas
- Course Superior of Technology in Radiology, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Maisa Silva
- Department of Basic Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, MG, Brazil
| |
Collapse
|
3
|
Kunachowicz D, Ściskalska M, Kepinska M. Modulatory Effect of Lifestyle-Related, Environmental and Genetic Factors on Paraoxonase-1 Activity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2813. [PMID: 36833509 PMCID: PMC9957543 DOI: 10.3390/ijerph20042813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Paraoxonase-1 (PON1) is a calcium-dependent, HDL-bound serum hydrolase active toward a wide variety of substrates. PON1 displays three types of activities, among which lactonase, paraoxonase, arylesterase and phosphotriesterase can be distinguished. Not only is this enzyme a major organophosphate compound detoxifier, but it is also an important constituent of the cellular antioxidant system and has anti-inflammatory and antiatherogenic functions. The concentration and activity of PON1 is highly variable among individuals, and these differences can be both of genetic origin and be a subject of epigenetic regulation. Owing to the fact that, in recent decades, the exposure of humans to an increasing number of different xenobiotics has been continuously rising, the issues concerning the role and activity of PON1 shall be reconsidered with particular attention to growing pharmaceuticals intake, dietary habits and environmental awareness. In the following manuscript, the current state of knowledge concerning the influence of certain modifiable and unmodifiable factors, including smoking, alcohol intake, gender, age and genotype variation on PON1 activity, along with pathways through which these could interfere with the enzyme's protective functions, is presented and discussed. Since exposure to certain xenobiotics plays a key role in PON1 activity, the influence of organophosphates, heavy metals and several pharmaceutical agents is also specified.
Collapse
Affiliation(s)
| | | | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50–556 Wrocław, Poland
| |
Collapse
|
4
|
Otocka-Kmiecik A. Effect of Carotenoids on Paraoxonase-1 Activity and Gene Expression. Nutrients 2022; 14:nu14142842. [PMID: 35889799 PMCID: PMC9318174 DOI: 10.3390/nu14142842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme attached to HDL with an anti-atherogenic potential. It protects LDL and HDL from lipid peroxidation. The enzyme is sensitive to various modulating factors, such as genetic polymorphisms as well as pharmacological, dietary (including carotenoids), and lifestyle interventions. Carotenoids are nutritional pigments with antioxidant activity. The aim of this review was to gather evidence on their effect on the modulation of PON1 activity and gene expression. Carotenoids administered as naturally occurring nutritional mixtures may present a synergistic beneficial effect on PON1 status. The effect of carotenoids on the enzyme depends on age, ethnicity, gender, diet, and PON1 genetic variation. Carotenoids, especially astaxanthin, β-carotene, and lycopene, increase PON1 activity. This effect may be explained by their ability to quench singlet oxygen and scavenge free radicals. β-carotene and lycopene were additionally shown to upregulate PON1 gene expression. The putative mechanisms of such regulation involve PON1 CpG-rich region methylation, Ca(2+)/calmodulin-dependent kinase II (CaMKKII) pathway induction, and upregulation via steroid regulatory element-binding protein-2 (SREBP-2). More detailed and extensive research on the mechanisms of PON1 modulation by carotenoids may lead to the development of new targeted therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Aneta Otocka-Kmiecik
- Department of Experimental Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
5
|
Ponce-Ruiz N, Murillo-González FE, Rojas-García AE, Bernal Hernández YY, Mackness M, Ponce-Gallegos J, Barrón-Vivanco BS, Hernández-Ochoa I, González-Arias CA, Ortega Cervantes L, Cardoso-Saldaña G, Medina-Díaz IM. Phenotypes and concentration of PON1 in cardiovascular disease: The role of nutrient intake. Nutr Metab Cardiovasc Dis 2020; 30:40-48. [PMID: 31757567 DOI: 10.1016/j.numecd.2019.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS Paraoxonase 1 (PON1) is considered to play a crucial role as an anti-atherosclerotic factor. The PON1 activity is affected by genetic polymorphisms, environmental factors, age, sex, lifestyle, pharmaceutical drugs, and dietary factors. The aim of this study was to evaluate the association between macro- and micronutrients as well as PON1 concentration and activities in patients with cardiovascular diseases (CVD), cardiovascular risk factors but no CVD (CRF), and in healthy controls (control group). METHODS AND RESULTS A case-control study was carried out with 356 volunteers from the Mexican Institute of Social Security, Mexico. Clinical parameters, lipid profile, PON1 activities (AREase, LACase, CMPAase and PONase), and PON1 concentration were evaluated. There was a differential intake of macro- and micronutrients among the study groups. The intake of proteins and carbohydrates was higher in the CVD group than in the CFR and control groups (p < 0.05). AREase, LACase, and CMPAase activities and PON1 concentration were lowest in the CVD group. CONCLUSION LACase and CMPAase activities, as well as PON1 concentration, could be included in the battery of CVD predictive biomarkers in the Mexican population.
Collapse
Affiliation(s)
- Néstor Ponce-Ruiz
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico; Posgrado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - Fátima E Murillo-González
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico; Posgrado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - Aurora E Rojas-García
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - Yael Y Bernal Hernández
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | | | | | - Briscia S Barrón-Vivanco
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - Isabel Hernández-Ochoa
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Toxicología, Mexico.
| | - Cyndia A González-Arias
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | - Laura Ortega Cervantes
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| | | | - Irma M Medina-Díaz
- Universidad Autónoma de Nayarit, Laboratorio de Contaminación y Toxicología, Secretaría de Investigación y Posgrado, Nayarit, Mexico.
| |
Collapse
|
6
|
Martini D, Del Bo’ C, Porrini M, Ciappellano S, Riso P. Role of polyphenols and polyphenol-rich foods in the modulation of PON1 activity and expression. J Nutr Biochem 2017. [DOI: 10.1016/j.jnutbio.2017.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Zasowska-Nowak A, Nowak PJ, Bialasiewicz P, Prymont-Przyminska A, Zwolinska A, Sarniak A, Wlodarczyk A, Markowski J, Rutkowski KP, Nowak D. Strawberries Added to the Usual Diet Suppress Fasting Plasma Paraoxonase Activity and Have a Weak Transient Decreasing Effect on Cholesterol Levels in Healthy Nonobese Subjects. J Am Coll Nutr 2016; 35:422-35. [PMID: 26934671 DOI: 10.1080/07315724.2015.1065523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Strawberries can improve oxidants-antioxidants balance and reduce some cardiovascular risk factors in obese subjects. Paraoxonase-1 (PON-1) is a high-density lipoprotein-associated enzyme with antioxidant properties that can protect from coronary artery disease in humans. We examined the effect of strawberry consumption on plasma PON-1 activity and lipid profile in healthy nonobese subjects. METHODS Thirty-one subjects (body mass index [BMI] 24.4 ± 4.0 kg/m(2)) on their usual diet consumed 500 g of strawberry pulp daily for 30 days (first course) and after a 10-day washout the cycle was repeated (second course). Fasting blood and spot morning urine samples were collected before, during, and after each strawberry course (8 time points) for determination of paraoxonase and arylesterase PON-1 activities and lipid profile. Twenty subjects served as controls with respect to cholesterol and PON-1 activities changes over the study period. RESULTS Strawberries decreased mean plasma paraoxonase PON-1 activity and this effect was more evident after the second course (by 11.6%, p < 0.05) than after the first course (5.4%, p = 0.06), whereas arylesterase activity was constant. Strawberries altered total cholesterol levels (p < 0.05) with a tendency to transiently decrease it (by 5.1%) only after 15 days of the first course. Triglycerides and high- and low-density lipoprotein cholesterol did not change in response to fruit consumption. No changes in PON-1 activities and lipid profile were noted in controls. Paraoxonase correlated with arylesterase activity (ƿ from 0.33 to 0.46 at the first 7 time points, p < 0.05). This association disappeared at the end of study (ƿ = 0.07) when the strongest inhibition of paraoxonase was noted. CONCLUSIONS Supplementation of the usual diet with strawberries decreased paraoxonase PON-1 activity and did not improve lipid profiles in healthy nonobese subjects. Further studies are necessary to establish the clinical significance of paraoxonase suppression and to define a group of healthy subjects who can benefit from strawberry consumption with respect to cholesterol levels.
Collapse
Affiliation(s)
| | - Piotr J Nowak
- b Department of Nephrology , Hypertension and Kidney Transplantation
| | | | | | | | | | | | - Jaroslaw Markowski
- g Medical University of Lodz, Lodz, POLAND; Research Institute of Horticulture, Division of Pomology , Fruit Storage and Processing Department , Skierniewice , POLAND
| | - Krzysztof P Rutkowski
- g Medical University of Lodz, Lodz, POLAND; Research Institute of Horticulture, Division of Pomology , Fruit Storage and Processing Department , Skierniewice , POLAND
| | | |
Collapse
|
8
|
Kim DS, Marsillach J, Furlong CE, Jarvik GP. Pharmacogenetics of paraoxonase activity: elucidating the role of high-density lipoprotein in disease. Pharmacogenomics 2014; 14:1495-515. [PMID: 24024900 DOI: 10.2217/pgs.13.147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PON1 is a key component of high-density lipoproteins (HDLs) and is at least partially responsible for HDL's antioxidant/atheroprotective properties. PON1 is also associated with numerous human diseases, including cardiovascular disease, Parkinson's disease and cancer. In addition, PON1 metabolizes a broad variety of substrates, including toxic organophosphorous compounds, statin adducts, glucocorticoids, the likely atherogenic L-homocysteine thiolactone and the quorum-sensing factor of Pseudomonas aeruginosa. Numerous cardiovascular and antidiabetic pharmacologic agents, dietary macronutrients, lifestyle factors and antioxidant supplements affect PON1 expression and enzyme activity levels. Owing to the importance of PON1 to HDL function and its individual association with diverse human diseases, pharmacogenomic interactions between PON1 and the various factors that alter its expression and activity may represent an important therapeutic target for future investigation.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Departments of Genome Sciences & Medicine (Division of Medical Genetics), University of Washington School of Medicine, Box 357720, University of Washington, Seattle, WA 98195-7720, USA
| | | | | | | |
Collapse
|
9
|
Bayram B, Nikolai S, Huebbe P, Ozcelik B, Grimm S, Grune T, Frank J, Rimbach G. Biomarkers of oxidative stress, antioxidant defence and inflammation are altered in the senescence-accelerated mouse prone 8. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1205-1217. [PMID: 22767392 PMCID: PMC3705129 DOI: 10.1007/s11357-012-9448-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
In this study we compared biomarkers of oxidative stress, stress response, antioxidant defence and inflammation between mice (n = 10 per group, female, 7 months old) with an accelerated (SAMP8) and a normal ageing phenotype (SAMR1). As compared to SAMR1 mice, SAMP8 mice exhibited higher levels of lipid peroxides and protein carbonyls as well as a lower activity of the proteasomal subunit β-5. Furthermore, heme oxygenase-1 and paraoxonase-1 (PON-1) status was lower in SAMP8 mice indicating impaired stress response. Biomarkers of inflammation such as C-reactive protein and serum amyloid P were elevated in SAMP8 mice. Interestingly, impaired stress response and increased inflammation in SAMP8 mice were associated with elevated concentrations of ascorbic acid and α-tocopherol in the liver. An age-dependent increase in hepatic vitamin E and a decline in PON-1 gene expression were also observed in aged compared to young C57BL/6 mice.
Collapse
Affiliation(s)
- Banu Bayram
- />Institute of Human Nutrition and Food Science, Christian-Albrechts-University, Hermann Rodewald Strasse 6, 24098 Kiel, Germany
- />Department of Food Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Sibylle Nikolai
- />Institute of Human Nutrition and Food Science, Christian-Albrechts-University, Hermann Rodewald Strasse 6, 24098 Kiel, Germany
| | - Patricia Huebbe
- />Institute of Human Nutrition and Food Science, Christian-Albrechts-University, Hermann Rodewald Strasse 6, 24098 Kiel, Germany
| | - Beraat Ozcelik
- />Department of Food Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Stefanie Grimm
- />Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University, Dornburger Strasse 24, 07743 Jena, Germany
| | - Tilman Grune
- />Institute of Nutrition, Department of Nutritional Toxicology, Friedrich Schiller University, Dornburger Strasse 24, 07743 Jena, Germany
| | - Jan Frank
- />Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Gerald Rimbach
- />Institute of Human Nutrition and Food Science, Christian-Albrechts-University, Hermann Rodewald Strasse 6, 24098 Kiel, Germany
| |
Collapse
|
10
|
Martinelli N, Consoli L, Girelli D, Grison E, Corrocher R, Olivieri O. Paraoxonases: ancient substrate hunters and their evolving role in ischemic heart disease. Adv Clin Chem 2013; 59:65-100. [PMID: 23461133 DOI: 10.1016/b978-0-12-405211-6.00003-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Interest in the role of paraoxonases (PON) in cardiovascular research has increased substantially over the past two decades. These multifaceted and pleiotropic enzymes are encoded by three highly conserved genes (PON1, PON2, and PON3) located on chromosome 7q21.3-22.1. Phylogenetic analysis suggests that PON2 is the ancient gene from which PON1 and PON3 arose via gene duplication. Although PON are primarily lactonases with overlapping, but distinct specificities, their physiologic substrates remain poorly characterized. The most interesting characteristic of PON, however, is their multifunctional roles in various biochemical pathways. These include protection against oxidative damage and lipid peroxidation, contribution to innate immunity, detoxification of reactive molecules, bioactivation of drugs, modulation of endoplasmic reticulum stress, and regulation of cell proliferation/apoptosis. In general, PON appear as "hunters" of old and new substrates often involved in athero- and thrombogenesis. Although reduced PON activity appears associated with increased cardiovascular risk, the correlation between PON genotype and ischemic heart disease remains controversial. In this review, we examine the biochemical pathways impacted by these unique enzymes and investigate the potential use of PON as diagnostic tools and their impact on development of future therapeutic strategies.
Collapse
Affiliation(s)
- Nicola Martinelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
She ZG, Chen HZ, Yan Y, Li H, Liu DP. The human paraoxonase gene cluster as a target in the treatment of atherosclerosis. Antioxid Redox Signal 2012; 16:597-632. [PMID: 21867409 PMCID: PMC3270057 DOI: 10.1089/ars.2010.3774] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paraoxonase (PON) gene cluster contains three adjacent gene members, PON1, PON2, and PON3. Originating from the same fungus lactonase precursor, all of the three PON genes share high sequence identity and a similar β propeller protein structure. PON1 and PON3 are primarily expressed in the liver and secreted into the serum upon expression, whereas PON2 is ubiquitously expressed and remains inside the cell. Each PON member has high catalytic activity toward corresponding artificial organophosphate, and all exhibit activities to lactones. Therefore, all three members of the family are regarded as lactonases. Under physiological conditions, they act to degrade metabolites of polyunsaturated fatty acids and homocysteine (Hcy) thiolactone, among other compounds. By detoxifying both oxidized low-density lipoprotein and Hcy thiolactone, PONs protect against atherosclerosis and coronary artery diseases, as has been illustrated by many types of in vitro and in vivo experimental evidence. Clinical observations focusing on gene polymorphisms also indicate that PON1, PON2, and PON3 are protective against coronary artery disease. Many other conditions, such as diabetes, metabolic syndrome, and aging, have been shown to relate to PONs. The abundance and/or activity of PONs can be regulated by lipoproteins and their metabolites, biological macromolecules, pharmacological treatments, dietary factors, and lifestyle. In conclusion, both previous results and ongoing studies provide evidence, making the PON cluster a prospective target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Gang She
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Loyd DO, Lynch SM. Lipid-soluble vitamin C palmitate and protection of human high-density lipoprotein from hypochlorite-mediated oxidation. Int J Cardiol 2011; 152:256-7. [PMID: 21872949 DOI: 10.1016/j.ijcard.2011.07.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
|
13
|
Costa LG, Giordano G, Furlong CE. Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: the hunt goes on. Biochem Pharmacol 2010; 81:337-44. [PMID: 21093416 DOI: 10.1016/j.bcp.2010.11.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/07/2010] [Accepted: 11/08/2010] [Indexed: 12/15/2022]
Abstract
Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated enzyme displaying esterase and lactonase activity. PON1 hydrolyzes several organophosphorus (OP) insecticides and nerve agents, a number of exogenous and endogenous lactones, and metabolizes toxic oxidized lipids of low density lipoproteins (LDL) and HDL. As such, PON1 plays a relevant role in determining susceptibility to OP toxicity, cardiovascular diseases and several other diseases. Serum PON1 activity in a given population can vary by at least 40-fold. Most of this variation can be accounted for by genetic polymorphisms in the coding region (Q192R, L55M) and in the promoter region (T-108C). However, exogenous factors may also modulate PON1 activity and/or level of expression. This paper examines various factors that have been found to positively modulate PON1. Certain drugs (e.g. hypolipemic and anti-diabetic compounds), dietary factors (antioxidants, polyphenols), and life-style factors (moderate alcohol consumption) appear to increase PON1 activity. Given the relevance of PON1 in protecting from certain environmental exposure and from cardiovascular and other diseases, there is a need for further mechanistic, animal, and clinical research in this area, and for consideration of possible alternative strategies for increasing the levels and activity of PON1.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA.
| | | | | |
Collapse
|