1
|
Feng Y, Shi K, Li D, Yang S, Dang X, Li J, Chen Y, Yao J, Zhang Y, Sun L, Liu F. Elucidating the metabolic mechanisms and active constituents of ZuoGui Wan in combatting postmenopausal osteoporosis: A metabolomics and network pharmacology approach. PHYTOMEDICINE PLUS 2025; 5:100711. [DOI: 10.1016/j.phyplu.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Qi J, Chen G, Deng Z, Ji Y, An S, Chen B, Fan G, Fang C, Yang K, Shi F, Deng C. Hierarchical Porous Microspheres-Assisted Serum Metabolic Profile for the Early Diagnosis and Surveillance of Postmenopausal Osteoporosis. Anal Chem 2025; 97:345-354. [PMID: 39729344 DOI: 10.1021/acs.analchem.4c04293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
With the aging global population, the incidence of osteoporosis (OP) is increasing, putting more individuals at risk. Since postmenopausal osteoporosis (PMOP) often remains asymptomatic until a fracture occurs, making the early clinical diagnosis of PMOP particularly challenging. In this work, the AuNPs-anchored hierarchical porous ZrO2 microspheres (Au/HPZOMs) is designed to assist laser desorption/ionization mass spectrometry (LDI-MS) for the requirement of serum metabolic fingerprints of PMOP, postmenopausal osteopenia (PMON), and healthy controls (HC) and realize the early diagnosis and surveillance of PMOP. With its large surface area, suitable surface roughness, and enhanced UV absorbance, the LDI efficiency of Au/HPZOMs is significantly enhanced. Combining machine learning, PMOP and non-PMOP (HC and PMON) are clearly distinguished with the area under the receiver operating characteristic curves reaching up to 1.000. Furthermore, seven key m/z features are identified, facilitating the specific detection of PMON and two stages of PMOP. The precision of distinguishing PMON and PMOP at different stages based on these features exceeds 86.5% in both the training and validation sets, aiding in the early diagnosis and monitoring of PMOP. This work sheds light on the metabolic profile for large-scale screening, early detection, and monitoring of PMOP, which will promote the application of fluid metabolism-driven precision medicine into practical clinical use.
Collapse
Affiliation(s)
- Jia Qi
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Gang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Zhaoqun Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Yiquan Ji
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shuai An
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Bao Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Guoming Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Caiyun Fang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Kun Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Fangying Shi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2024; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
4
|
Wang T, Luo E, Zhou Z, Yang J, Wang J, Zhong J, Zhang J, Yao B, Li X, Dong H. Lyophilized powder of velvet antler blood improves osteoporosis in OVX-induced mouse model and regulates proliferation and differentiation of primary osteoblasts via Wnt/β-catenin pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
5
|
Samtiya M, Aluko RE, Dhaka N, Dhewa T, Puniya AK. Nutritional and health-promoting attributes of millet: current and future perspectives. Nutr Rev 2022; 81:684-704. [PMID: 36219789 DOI: 10.1093/nutrit/nuac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Millet is consumed as a staple food, particularly in developing countries, is part of the traditional diet in a number of relatively affluent countries, and is gaining popularity throughout the world. It is a valuable dietary energy source. In addition to high caloric value, several health-promoting attributes have been reported for millet seeds. This review describes many nutritional characteristics of millet seeds and their derivatives that are important to human health: antioxidant, antihypertensive, immunomodulatory or anti-inflammatory, antibacterial or antimicrobial, hypocholesterolemic, hypoglycemic, and anti-carcinogenic potential, and their role as modulators of gut health. There are several varieties, but the main focus of this review is on pearl millet (Cenchrus americanus [synonym Pennisetum glaucum]), one of the most widely eaten millet crops grown in India, though other millet types are also covered. In this article, the health-promoting properties of the natural components (ie, proteins, peptides, polyphenols, polysaccharides, oil, isoflavones, etc.) present in millet seeds are discussed. Although many of these health benefits have been demonstrated using animal models in vitro studies, human intervention-feeding trials are required to confirm several of the potential health benefits of millet seeds. Based on the nutritional and health-promoting attributes known for pearl millet (discussed in this review), finger millet and foxtail millet are suggested as good candidates for use in future nutritional interventions for improved human health.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Anil Kumar Puniya
- is with the Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
6
|
Hemp Seeds in Post-Arthroplasty Rehabilitation: A Pilot Clinical Study and an In Vitro Investigation. Nutrients 2021; 13:nu13124330. [PMID: 34959882 PMCID: PMC8709006 DOI: 10.3390/nu13124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis is a type of degenerative joint disease that results from the breakdown of joint cartilage and underlying bone. Due to their antioxidants and anti-inflammatory action, the phytochemical constituents of many vegetable varieties could represent a new frontier for the treatment of patients with Osteoarthritis and are still being explored. The aim of this pilot human study was to investigate the effects of pasta enriched with hemp seed flour on osteoarticular pain and bone formation markers in patients in post-arthroplasty rehabilitation. Another purpose was to evaluate the effect of hemp seed extract on bone metabolism, in vitro. A pilot, controlled, clinical study was conducted to verify the feasibility of pain symptom reduction in patients with Osteoarthritis undergoing arthroplasty surgery. We also investigated the effect of hemp seed extract on the Wnt/β-catenin and ERK1/2 pathways, alkaline phosphatase, RANKL, RUNX-2, osteocalcin, and COL1A on Saos-2. After 6 weeks, the consumption of hemp seed pasta led to greater pain relief compared to the regular pasta control group (−2.9 ± 1.3 cm vs. −1.3 ± 1.3 cm; p = 0.02). A significant reduction in serum BALP was observed in the participants consuming the hemp seed pasta compared to control group (−2.8 ± 3.2 µg/L vs. 1.1 ± 4.3 µg/L; p = 0.04). In the Saos-2 cell line, hemp seed extract also upregulated Wnt/β-catenin and Erk1/2 pathways (p = 0.02 and p = 0.03) and osteoblast differentiation markers (e.g., ALP, OC, RUNX2, and COL1A) and downregulated RANKL (p = 0.02), compared to the control. Our study demonstrated that hemp seed can improve pain symptoms in patients with osteoarthritis undergoing arthroplasty surgery and also improves bone metabolism both in humans and in vitro. However, more clinical studies are needed to confirm our preliminary findings.
Collapse
|
7
|
Nutritional composition patterns and application of multivariate analysis to evaluate indigenous Pearl millet ((Pennisetum glaucum (L.) R. Br.) germplasm. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Abstract
Wound healing is a complex, dynamic process supported by a myriad of cellular events that must be tightly coordinated to efficiently repair damaged tissue. Derangement in wound-linked cellular behaviours, as occurs with diabetes and ageing, can lead to healing impairment and the formation of chronic, non-healing wounds. These wounds are a significant socioeconomic burden due to their high prevalence and recurrence. Thus, there is an urgent requirement for the improved biological and clinical understanding of the mechanisms that underpin wound repair. Here, we review the cellular basis of tissue repair and discuss how current and emerging understanding of wound pathology could inform future development of efficacious wound therapies.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull HU6 7RX, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
9
|
Kim GJ, Kim D, Lee KJ, Kim D, Chung KH, Choi JW, An JH. Effect of Nano-Montmorillonite on Osteoblast Differentiation, Mineral Density, and Osteoclast Differentiation in Bone Formation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E230. [PMID: 32013042 PMCID: PMC7075198 DOI: 10.3390/nano10020230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
Abstract
Calcium-type montmorillonite, a phyllosilicate mineral, has diverse health benefits when introduced into the gastrointestinal tract or applied to the skin. However, the predominant use of this layered material has thus far been in traditional industries, despite its potential application in the pharmaceutical industry. We investigated the effects and mechanism of nano-montmorillonite (NM) on osteoblast and osteoclast differentiation in vivo and in vitro. We examined the osteogenic effects of NM with high calcium content (3.66 wt%) on alkaline phosphatase (ALP) activity, mineralization, bone microarchitecture, and expression level of osteoblast and osteoclast related genes in Ca-deficient ovariectomized (OVX) rats. Micro-computed tomography of OVX rats revealed that NM attenuated the low-Ca-associated changes in trabecular and cortical bone mineral density. It improved ALP activity and mineralization, as well as the expression of osteoblast and osteoclast differentiation associated genes. NM also activated the expression of runt-related transcription factor 2, osteocalcin, bone morphogenetic protein 2, and type 1 collagen via phosphorylated small mothers against decapentaplegic homolog 1/5/8 signaling. Further, NM repressed the expression of receptor activator for cathepsin K, nuclear factor kappa-B ligand and tartrate-resistant acid phosphatase. Therefore, NM inhibits osteoclastogenesis, stimulates osteoblastogenesis, and alleviates osteoporosis.
Collapse
Affiliation(s)
- Gyeong-Ji Kim
- Department of Food and Nutrition, KC University, Seoul 07661, Korea;
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
| | - Daniel Kim
- Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Korea;
| | - Kwon-Jai Lee
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Korea;
| | - Daeyoung Kim
- Department of Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 34113, Korea;
| | - Kang-Hyun Chung
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Korea;
| | - Jeong Woo Choi
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107l, Korea
| | - Jeung Hee An
- Department of Food and Nutrition, KC University, Seoul 07661, Korea;
| |
Collapse
|
10
|
Hou L, Hou J, Zhou Z, Deng Y, Yao D. Biosafety, and improvement of osteoporosis in cage layers through using chOPG protein. Saudi J Biol Sci 2019; 27:288-295. [PMID: 31889849 PMCID: PMC6933202 DOI: 10.1016/j.sjbs.2019.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022] Open
Abstract
Thirty six 56-week-old ISA cage layers were divided into two groups randomly. The cage layers in control group (12 birds) and experiment group (24 birds) were respectively injected with 300 µL sodium chloride and 300 μg eucaryon recombinant plasmid pcDNA3.1(+)-chOPG. Eighty 56-week-old ISA cage layers were divided into group A, B, C and D randomly. Group A is for control group, while plasmid pcDNA3.1(+)-chOPG was injected to B, C, D groups in muscle at the dosage of 200 μg, 400 μg, 600 μg at 57, 59, 61, 63th weeks respectively. After the detection on the expression of chOPG protein after 3 h, it reached the peak at 7 d and then fell down. After 28 d, nothing was detected in the injected skeletal muscles. The other organs did not express exogenous chOPG protein. Plasmid in liver had the fastest metabolism. The pathological effects in main organs were not observed by histological section. The concentration of plasma calcium in B, C and D groups significantly decreased, while the activity of alkaline phosphatase was significantly improved, compared to control group. The total average value of abnormal and broken eggs of group C, D was significantly higher than those of group A. The bone biomechanical property and bone radiographic density of tibia and femur in experiment group were significantly higher than control group. Therefore, one conclusion is drawn that the expression of chOPG from foreign plasmid pcDNA3.1(+)-chOPG have contribute to bone formation, chOPG can increase bone density and strength by inhibiting bone resorption. Nevertheless, it was cleared out from cellular system in a short-term after intramuscular injection and cannot integrate into host chromosome genomic in cage layers. There were no pathological effects observed in the main tissues. It is believed that 200 μg plasmid pcDNA3.1(+)-chOPG should be within the safe range for application, because it can improve bone metabolism and will not affect the production of cage layer during the post cycle.
Collapse
Affiliation(s)
- Lele Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.,Animal Husbandry and Veterinary Research Institute of Qingdao, Qingdao 266000, China
| | - Jiafa Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China
| | - Yifeng Deng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China
| | - Dawei Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China
| |
Collapse
|
11
|
Choi HK, Kim GJ, Yoo HS, Song DH, Chung KH, Lee KJ, Koo YT, An JH. Vitamin C Activates Osteoblastogenesis and Inhibits Osteoclastogenesis via Wnt/β-Catenin/ATF4 Signaling Pathways. Nutrients 2019; 11:E506. [PMID: 30818817 PMCID: PMC6471534 DOI: 10.3390/nu11030506] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
This study evaluated the effects of vitamin C on osteogenic differentiation and osteoclast formation, and the effects of vitamin C concentration on bone microstructure in ovariectomized (OVX) Wistar rats. Micro-computed tomography analysis revealed the recovery of bone mineral density and bone separation in OVX rats treated with vitamin C. Histomorphometrical analysis revealed improvements in the number of osteoblasts, osteoclasts, and osteocytes; the osteoblast and osteoclast surface per bone surface; and bone volume in vitamin C-treated OVX rats. The vitamin C-treated group additionally displayed an increase in the expression of osteoblast differentiation genes, including bone morphogenetic protein-2, small mothers against decapentaplegic 1/5/8, runt-related transcription factor 2, osteocalcin, and type I collagen. Vitamin C reduced the expression of osteoclast differentiation genes, such as receptor activator of nuclear factor kappa-B, receptor activator of nuclear factor kappa-B ligand, tartrate-resistant acid phosphatase, and cathepsin K. This study is the first to show that vitamin C can inhibit osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through the activation of wingless-type MMTV integration site family/β-catenin/activating transcription factor 4 signaling, which is achieved through the serine/threonine kinase and mitogen-activated protein kinase signaling pathways. Therefore, our results suggest that vitamin C improves bone regeneration.
Collapse
Affiliation(s)
- Hyeon Kyeong Choi
- Department of Food and Nutrition, KC University, Seoul 077661, Korea.
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Korea.
| | - Gyeong-Ji Kim
- Department of Food and Nutrition, KC University, Seoul 077661, Korea.
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea.
| | - Han-Seok Yoo
- Department of Food and Nutrition, KC University, Seoul 077661, Korea.
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Korea.
| | - Da Hye Song
- Department of Food and Nutrition, KC University, Seoul 077661, Korea.
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Korea.
| | - Kang-Hyun Chung
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Korea.
| | - Kwon-Jai Lee
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Korea.
| | - Young Tae Koo
- Kwang-Dong Pharmaceutical Co, Ltd., Seoul 06650, Korea.
| | - Jeung Hee An
- Department of Food and Nutrition, KC University, Seoul 077661, Korea.
| |
Collapse
|
12
|
Xu M, Tan X, Li N, Wu H, Wang Y, Xie J, Wang J. Differential regulation of estrogen in iron metabolism in astrocytes and neurons. J Cell Physiol 2018; 234:4232-4242. [PMID: 30132882 DOI: 10.1002/jcp.27188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
Previous studies have demonstrated an effect of estrogen on iron metabolism in peripheral tissues. The role of estrogen on brain iron metabolism is currently unknown. In this study, we investigated the effect and mechanism of estrogen on iron transport proteins. We demonstrated that the iron exporter ferroportin 1 (FPN1) and iron importer divalent metal transporter 1 (DMT1) were upregulated and iron content was decreased after estrogen treatment for 12 hr in primary cultured astrocytes. Hypoxia-inducible factor-1 alpha (HIF-1α) was upregulated, but HIF-2α remained unchanged after estrogen treatment for 12 hr in primary cultured astrocytes. In primary cultured neurons, DMT1 was downregulated, FPN1 was upregulated, iron content decreased, iron regulatory protein (IRP1) was downregulated, but HIF-1α and HIF-2α remained unchanged after estrogen treatment for 12 hr. These results suggest that the regulation of iron metabolism by estrogen in astrocytes and neurons is different. Estrogen increases FPN1 and DMT1 expression by inducing HIF-1α in astrocytes, whereas decreased expression of IRP1 may account for the decreased DMT1 and increased FPN1 expression in neurons.
Collapse
Affiliation(s)
- Manman Xu
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Xu Tan
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Na Li
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Hao Wu
- Clinical Medicine of Class Excellence, Grade 2013, Medical College of Qingdao University, Qingdao, China
| | - Yue Wang
- Clinical Medicine of Class 3, Grade 2014, Medical College of Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Jun Wang
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Jiang J, Xiao S, Xu X, Ma H, Feng C, Jia X. Isomeric flavonoid aglycones derived from Epimedii Folium exerted different intensities in anti-osteoporosis through OPG/RANKL protein targets. Int Immunopharmacol 2018; 62:277-286. [PMID: 30036771 DOI: 10.1016/j.intimp.2018.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 01/01/2023]
Abstract
Two Epimedium-derived isomeric flavonoids, CIT and IT, had the therapeutic effect in osteopenic rats. However, it is difficult to expound their activity differences in anti-osteoporosis. This paper contrasted their anti-osteoporosis activity from the perspective of their affinity to OPG/RANKL protein targets. Molecular docking indicated that both of CIT and IT could interact with the hydrophobic pockets of OPG/RANKL, while CIT was easier and more stable to combine with RANKL. On the contrary, compared with CIT, IT was more inclined to combine with OPG and stay away from combining with RANKL. Subsequently, whether the interaction between isomeric flavonoids and OPG/RANKL targets promoted or suppressed bone resorption was undefined and which was validated by zebrafish embryo and ovariectomized rats in this paper. Compared with IT, the staining area and cumulative optical density of zebrafish skeleton were significantly increased after the treatment of CIT (0.1 μM, p < 0.05). Furthermore, CIT mainly reflected a more significant role in upregulating OPG (p < 0.05), downregulating RANKL (p < 0.05), reducing serum AKP and TRACP level (p < 0.05), enhancing bone biomechanical properties (p < 0.05), increasing bone mineral density (p < 0.05) and improving trabecular bone microarchitecture (p < 0.05) in osteoporotic rats. In conclusion, the combination of isomeric flavonoids (CIT/IT) and OPG/RANKL targets attenuated the excitation effects of OPG or RANKL on RANKL. Because CIT was more firmly combined with RANKL than IT, CIT had stronger anti-osteoporosis effect by inhibiting bone resorption.
Collapse
Affiliation(s)
- Jun Jiang
- School of Pharmacy, Jiangsu University, 301(#) Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; College of Chinese Medicine, China Pharmaceutical University, 639(#) Longmian Road, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Shichang Xiao
- School of Pharmacy, Jiangsu University, 301(#) Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, 301(#) Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chunlai Feng
- School of Pharmacy, Jiangsu University, 301(#) Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Xiaobin Jia
- College of Chinese Medicine, China Pharmaceutical University, 639(#) Longmian Road, Jiangning District, Nanjing 211198, Jiangsu Province, China
| |
Collapse
|
14
|
Dias-Martins AM, Pessanha KLF, Pacheco S, Rodrigues JAS, Carvalho CWP. Potential use of pearl millet ( Pennisetum glaucum (L.) R. Br.) in Brazil: Food security, processing, health benefits and nutritional products. Food Res Int 2018; 109:175-186. [DOI: 10.1016/j.foodres.2018.04.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/29/2022]
|
15
|
Hong D, Bi L, Zhou J, Tong Y, Zhao Q, Chen J, Lu X. Incidence of menopausal symptoms in postmenopausal breast cancer patients treated with aromatase inhibitors. Oncotarget 2018; 8:40558-40567. [PMID: 28489562 PMCID: PMC5522209 DOI: 10.18632/oncotarget.17194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/02/2017] [Indexed: 12/30/2022] Open
Abstract
Aromatase inhibitors (AIs) are the standard of care for postmenopausal women with estrogen receptor-positive breast cancer. Here, we performed a meta-analysis to evaluate the occurrence of menopausal symptoms in breast cancer patients receiving the AI therapy. Patients treated with AIs had an increased risk of all-grade arthralgia (1.63 [95% CI: 1.34–1.98]) and insomnia (1.24 [95% CI: 1.14–1.34]). The overall incidence of hot flashes, fatigue, arthralgia, sweating, and insomnia in patients receiving AIs was 30.47% (95% CI: 25.51%–35.93%), 17.16% (95% CI: 14%–20.85%), 17.91% (95% CI: 11.29%–27.22%), 14.64% (95% CI: 11.46%–18.52%), and 16.52% (95% CI: 12.45%–21.6 %), respectively. Both arthralgia (RR = 0.34, 95% CI: 0.16–0.75) and sweating (RR = 11.02, 95% CI: 4.11–29.57) differed between patients with early- and advanced-stage breast cancer. Our findings indicates that AIs are associated with a significant risk of developing arthralgia and insomnia in breast cancer patients. Effective early detection and management of menopausal symptoms would likely lead to safer use of AIs in breast cancer patients.
Collapse
Affiliation(s)
- Dongsheng Hong
- Department of Pharmacy, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Ling Bi
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Jun Zhou
- Department of Pharmacy, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Yinghui Tong
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, P.R. China
| | - Qingwei Zhao
- Department of Pharmacy, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Jing Chen
- Department of Medical Oncology, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Xiaoyang Lu
- Department of Pharmacy, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| |
Collapse
|
16
|
FSH aggravates bone loss in ovariectomised rats with experimental periapical periodontitis. Mol Med Rep 2016; 14:2997-3006. [PMID: 27510616 PMCID: PMC5042797 DOI: 10.3892/mmr.2016.5613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/22/2016] [Indexed: 11/12/2022] Open
Abstract
Periapical bone loss is one of the prominent pathological and clinical features of periapical periodontitis. Previous studies have demonstrated that follicle-stimulating hormone (FSH) could directly affect skeletal remodelling by stimulating the formation and the function of osteoclasts in vitro and in vivo. However, the effect of FSH on periapical bone loss remained to be fully elucidated. In the current study, a rat model was established in order to verify the effect of FSH in experimental periapical lesions. It was identified that FSH aggravated the bone loss of periapical lesions. In addition, RANKL-, TRAP-, TNF-α- and IL-1β-positive cells were increased significantly in FSH-treated groups, which indicated that the function of FSH in bone loss may be mediated through the increasing activity of osteoclasts and the increased secretion of inflammatory cytokines. The results of the current study suggested that FSH, independent of oestrogen, may aggravate periapical bone loss by FSH receptors, which may serve an important role in the immune and inflammatory response of the host to root canal and periradicular infection during menopause.
Collapse
|