1
|
Yang L, Wu L, Li Y, Yang Y, Gu Y, Yang J, Zhang L, Meng F. Comprehensive Secondary Metabolite Profiling and Antioxidant Activity of Aqueous and Ethanol Extracts of Neolamarckia cadamba (Roxb.) Bosser Fruits. Metabolites 2024; 14:511. [PMID: 39330518 PMCID: PMC11434403 DOI: 10.3390/metabo14090511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Neolamarckia cadamba (Rubiaceae) is a well-recognized medicinal plant with recorded therapeutical attributes. However, a thorough assessment of active compounds in its fruits is lacking, limiting their use and valorization in pharmacological industries. METHODS Thus, this study investigated variations in the fruits' secondary metabolite (SM) profiles, as well as antioxidant activities in aqueous (WA) and ethanol (ET) extracts. RESULTS Liquid chromatography-electrospray ionization tandem mass spectrometry identified 541 SMs, of which 14 and 1 (di-O-glucosylquinic acid) were specifically detected in ET and WA, respectively. Phenolic acids (36.97%), flavonoids (28.10%), terpenoids (12.20%), and alkaloids (9.98%) were the dominant SMs. The SM profiles of the fruits in WA and ET were quite different. We revealed 198 differentially extracted (DE) metabolites between WA and ET, including 62 flavonoids, 57 phenolic acids, 45 terpenoids, 14 alkaloids, etc. Most DE flavones (36 out of 40), terpenoids (45 out of 45), and alkaloids (12 out of 14) had higher content in ET. Catechin and its derivatives, procyanidins, and tannins had higher content in WA. ABTS and DPPH assays showed that the antioxidant activity of ET was significantly higher than that of WA. CONCLUSIONS Our findings will facilitate the efficient extraction and evaluation of specific active compounds in N. cadamba.
Collapse
Affiliation(s)
- Lin Yang
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China (L.W.)
| | - Liyan Wu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China (L.W.)
| | - Yongxin Li
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuhui Yang
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Gu
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jialin Yang
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China (L.W.)
- College of Life Science, Jilin University, Changchun 130000, China
| | - Luzy Zhang
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China (L.W.)
| | - Fanxin Meng
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China (L.W.)
| |
Collapse
|
2
|
Domingues Neto FJ, Pimentel Junior A, Borges CV, Rodrigues JD, Figueira R, Moura MF, Minatel IO, Nunes A, Lima GPP, Tecchio MA. Polyphenolic Profile and Antioxidant Activity of Whole Grape Juices from Vitis labrusca and Brazilian Hybrid Grapes in Two Training Systems. Antioxidants (Basel) 2024; 13:1132. [PMID: 39334791 PMCID: PMC11428776 DOI: 10.3390/antiox13091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The phenolic profile and antioxidant activity of whole grape juices from Vitis labrusca and Brazilian hybrids in two training systems were analyzed. Genotypes of V. labrusca ('Bordô' and 'Isabel') and Brazilian hybrids ('IAC 138-22 Máximo' and 'BRS Violeta') were grafted onto the rootstock 'IAC 766 Campinas' (106-8 'Mgt' × Vitis caribaea) and trained on low and high trellis. After harvest, the grapes were destemmed and the berries macerated in a roller crusher. Following hot extraction without pressurization of the pomace and gentle pressing of the blend (skins, must, and seeds), the juices were bottled in amber glass bottles and pasteurized. The physicochemical and colorimetric parameters of the juices, as well as the levels of flavonoids, phenolic compounds, total monomeric anthocyanins, antioxidant activity, and polyphenolic profile, were evaluated. The juices were also subjected to sensory analysis (CAAE: 65549817.7.0000.5411). There was broad variation in all assessed characteristics. The results obtained demonstrate that the training system and grape genotype used in juice production are highly related to the presence of sugars, acidity, and bioactive compounds. Juices made from 'Bordô', 'IAC 138-22 Máximo' and 'BRS Violeta' grapes stood out from 'Isabel' juices, the main grape variety used in Brazilian juice and wine production. All juices contain bioactive compounds in considerable concentrations, indicating beverages with high antioxidant activity and, consequently, high biological potential, with the use of high trellis in vine cultivation potentially increasing concentrations.
Collapse
Affiliation(s)
- Francisco José Domingues Neto
- School of Agricultural Sciences, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.J.D.N.); (A.P.J.); (R.F.); (M.A.T.)
| | - Adilson Pimentel Junior
- School of Agricultural Sciences, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.J.D.N.); (A.P.J.); (R.F.); (M.A.T.)
| | - Cristine Vanz Borges
- School of Agriculture Sciences, Alto Vale do Rio do Peixe University (UNIARP), Caçador 89500-199, SC, Brazil;
| | - João Domingos Rodrigues
- Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil; (J.D.R.); (I.O.M.); (A.N.)
| | - Ricardo Figueira
- School of Agricultural Sciences, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.J.D.N.); (A.P.J.); (R.F.); (M.A.T.)
| | | | - Igor Otavio Minatel
- Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil; (J.D.R.); (I.O.M.); (A.N.)
| | - Aline Nunes
- Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil; (J.D.R.); (I.O.M.); (A.N.)
| | - Giuseppina Pace Pereira Lima
- Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil; (J.D.R.); (I.O.M.); (A.N.)
| | - Marco Antonio Tecchio
- School of Agricultural Sciences, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.J.D.N.); (A.P.J.); (R.F.); (M.A.T.)
| |
Collapse
|
3
|
Wang M, Chen R, Wang S, Cui J, Lian D, Li L. Comparative Study of Binding Behaviors of Cyanidin, Cyanidin-3-Galactoside, Peonidin with Tyrosinase. J Fluoresc 2024; 34:1747-1760. [PMID: 37603228 DOI: 10.1007/s10895-023-03384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
Cyanidin, peonidin and cyanidin-3-galactoside are the common anthocyanins with a variety of biological activities. Tyrosinase is a speed-limiting enzyme associated with melanin production. The inhibition of tyrosinase activity can prevent melanin disease while contributing to whitening. The interaction behaviors of the three anthocyanins against tyrosinase have been discussed in this paper. Cyanidin has strongest inhibitory effect on tyrosinase, and then peonidin, cyanidin-3-galactoside. Furthermore, the inhibition of tyrosinase by the three anthocyanins is mixed modes. The three anthocyanins can induce the static fluorescence quenching of tyrosinase. Cyanidin exhibits strongest binding affinity on tyrosinase, and then peonidin, cyanidin-3-galactoside based on Ka values obtain by fluorescence analysis. The binding of all anthocyanin to tyrosinase induce its conformation changes. According to molecular docking and fluorescence studies, they bind to tyrosinase by hydrogen bond and van der Waals force. In addition, the optimal modes of the three anthocyanins with tyrosinase are predicated by molecular docking. This work emphasizes that cyanidin, peonidin and cyanidin-3-galactoside may be potential drugs for the treatment of diseases caused by melanin.
Collapse
Affiliation(s)
- Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
- Zhaoqing Xuanqing Middle School, Zhaoqing, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
4
|
Li J, Guo X, Wang R, Geng Z, Jia J, Pang S, Du Y, Jia S, Cui J. Ultrasonic assisted extraction of anthocyanins from rose flower petal in DES system and enzymatic acylation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Pomilio AB, Szewczuk NA, Duchowicz PR. Dietary anthocyanins balance immune signs in osteoarthritis and obesity - update of human in vitro studies and clinical trials. Crit Rev Food Sci Nutr 2022; 64:2634-2672. [PMID: 36148839 DOI: 10.1080/10408398.2022.2124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are known to change ligand-receptor bindings, cell membrane permeability, and intracellular signaling pathways. The beneficial effects of dietary anthocyanins have been chronologically demonstrated in interventional and observational studies, including fourteen human chondrocyte studies and related cell culture assays, nineteen human clinical trials in osteoarthritis patients, seven in vivo obesity assays, nineteen in vitro assays in preadipocytes and related cells, and twenty-two clinical trials in overweight/obese subjects, which are critically discussed in this update. Strawberries, cherries, berries, pomegranate, tropical fruits, rosehip, purple rice, purple corn, red beans, and black soybean, together with cyanidin, delphinidin, malvidin, peonidin, some 3-O-glycosides, metabolites, and acylated anthocyanins from a potato cultivar have shown the best outcomes. The set of these five key tests and clinical trials, taken together, contributes to the understanding of the underlying mechanisms and pathways involved. Furthermore, this set shows the value of anthocyanins in counteracting the progression of osteoarthritis/obesity. The interplay between the inflammation of osteoarthritis and obesity, and the subsequent regulation/immunomodulation was performed through isolated and food anthocyanins. The antioxidant, anti-inflammatory, and immunomodulatory properties of anthocyanins explain the findings of the studies analyzed. However, further interventional studies should be conducted to finally establish the appropriate doses for anthocyanin supplementation, dose-response, and length of consumption, to include dietary recommendations for osteoarthritis/obese patients for preventive and management purposes.
Collapse
Affiliation(s)
- Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, CONICET, Área Hematología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas A Szewczuk
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| | - Pablo R Duchowicz
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| |
Collapse
|
6
|
Pemmari T, Hämäläinen M, Ryyti R, Peltola R, Moilanen E. Dried Bilberry (Vaccinium myrtillus L.) Alleviates the Inflammation and Adverse Metabolic Effects Caused by a High-Fat Diet in a Mouse Model of Obesity. Int J Mol Sci 2022; 23:ijms231911021. [PMID: 36232316 PMCID: PMC9569776 DOI: 10.3390/ijms231911021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is an increasing problem worldwide. It is often associated with co-morbidities such as type II diabetes, atherosclerotic diseases, and non-alcoholic fatty liver disease. The risk of these diseases can be lowered by relieving the systemic low-grade inflammation associated with obesity, even without noticeable weight loss. Bilberry is an anthocyanin-rich wild berry with known antioxidant and anti-inflammatory properties. In the present study, a high-fat-diet-induced mouse model of obesity was used to investigate the effects of air-dried bilberry powder on weight gain, systemic inflammation, lipid and glucose metabolism, and changes in the gene expression in adipose and hepatic tissues. The bilberry supplementation was unable to modify the weight gain, but it prevented the increase in the hepatic injury marker ALT and many inflammatory factors like SAA, MCP1, and CXCL14 induced by the high-fat diet. The bilberry supplementation also partially prevented the increase in serum cholesterol, glucose, and insulin levels. In conclusion, the bilberry supplementation alleviated the systemic and hepatic inflammation and retarded the development of unwanted changes in the lipid and glucose metabolism induced by the high-fat diet. Thus, the bilberry supplementation seemed to support to retain a healthier metabolic phenotype during developing obesity, and that effect might have been contributed to by bilberry anthocyanins.
Collapse
Affiliation(s)
- Toini Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Rainer Peltola
- Bioeconomy and Environment, Natural Resources Institute Finland, 96100 Rovaniemi, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
- Correspondence:
| |
Collapse
|
7
|
Segla Koffi Dossou S, Xu F, You J, Zhou R, Li D, Wang L. Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities. Food Res Int 2022; 151:110850. [PMID: 34980388 DOI: 10.1016/j.foodres.2021.110850] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 11/28/2022]
Abstract
Sesame seeds are considered worldwide as a functional food due to their nutritional and therapeutical values. Several physiological functions are being associated with sesame seeds and their derived products. However, the phytochemicals responsible for these various proprieties are not well understood. Thus, to acknowledge the diversity and variability of metabolites in sesame seeds of different colors and reveal key metabolites and pathways contributing to differences in antioxidant activities, black, brown, yellow, and white sesame seeds from 12 varieties were subjected to LC-MS/MS-based widely targeted metabolomics analysis. Totally, 671 metabolites were identified and chemically classified. The metabolic compounds varied significantly with the seed coat color and genotype. Many flavonoids, amino acids, and terpenoids were up-regulated in dark seeds. Sixty key differential metabolites were filtered out. Phenylpropanoid biosynthesis, amino acids biosynthesis, and tyrosine metabolism were the main differently regulated pathways. The DPPH, ABTS, and FRAP assays showed that the antioxidant activities of the seeds increased with the seed coat darkness. Therefore, the pharmacological proprieties of black seeds might be related to their high content of flavonoids and essential amino acids mostly. These findings expand phytochemicals composition information of different colored sesame seeds and provide resources for their comprehensive use and quality improvement.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Fangtao Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
8
|
Kumar M, Dahuja A, Tiwari S, Punia S, Tak Y, Amarowicz R, Bhoite AG, Singh S, Joshi S, Panesar PS, Prakash Saini R, Pihlanto A, Tomar M, Sharifi-Rad J, Kaur C. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chem 2021; 353:129431. [PMID: 33714109 DOI: 10.1016/j.foodchem.2021.129431] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Phenolic compounds from plant sources have significant health-promoting properties and are known to be an integral part of folk and herbal medicines. Consumption of phenolics is known to alleviate the risk of various lifestyle diseases including cancer, cardiovascular, diabetes, and Alzheimer's. In this context, numerous plant crops have been explored and characterized based on phenolic compounds for their use as supplements, nutraceutical, and pharmaceuticals. The present review highlights some important source of bioactive phenolic compounds and novel technologies for their efficient extraction. These techniques include the use of microwave, ultrasound, and supercritical methods. Besides, the review will also highlight the use of response surface methodology (RSM) as a statistical tool for optimizing the recoveries of the phenolic bioactives from plant-based matrices.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India; Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Anil Dahuja
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Sudha Tiwari
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India; Department of Food, Nutrition, & Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Yamini Tak
- Department of Biochemistry, Agriculture University, Kota 324001, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anilkumar G Bhoite
- Department of Agricultural Botany, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Shourabh Joshi
- Department of Basic Sciences, College of Agriculture, Nagaur, Agricultural University, Jodhpur 341001, Rajasthan, India
| | - Parmjit S Panesar
- Department of Food Engg. & Technology, S.L. Institute of Engg. & Technology, Longowal 148 106, Punjab, India
| | - Ravi Prakash Saini
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Anne Pihlanto
- Natural Resources Institute Finland, Myllytie, Finland
| | - Maharishi Tomar
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Charanjit Kaur
- Division of Food Science and Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
9
|
Zhou Y, Long S, Xu Q, Yan C, Yang J, Zhou Y. Optimization and application of HPLC for simultaneous separation of six well-known major anthocyanins in blueberry. Prep Biochem Biotechnol 2021; 51:961-970. [PMID: 33626297 DOI: 10.1080/10826068.2021.1881906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anthocyanins have attracted great attention because of their potential therapeutic benefit. However, the effective technique for simultaneous separation and preparation multiple anthocyanin monomers with high purity and high yield is still deficient. In this study, the chromatographic conditions of HPLC were optimized to investigate six well-known major anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, petunidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-glucoside and malvidin-3-O-glucoside) in blueberry. The separation conditions were optimized in analytical HPLC and further applied in semi-preparative HPLC to prepare anthocyanin monomers. The results showed that six well-known major anthocyanins were well separated under the condition of using acetonitrile-water (contained 0.3% phosphoric acid) as a mobile phase with gradient elution at a detection wavelength of 520 nm. The method showed good linear correlations between the concentrations and peak areas of the six components with correlation coefficients greater than 0.9994, and the detection limits of the six anthocyanins were 0.010-0.035 μg/mL, and the quantification limits were 0.033-0.117 μg/mL, which was suitable for the determination of anthocyanins in products. In the same experimental conditions, six well-known major anthocyanins were simultaneously prepared by semi-preparative HPLC with high purity to 99% and high yield to 22.5%. This study provides a practical and valuable method for simultaneous determination and preparation of six well-known major anthocyanins.
Collapse
Affiliation(s)
- Yuanjing Zhou
- Guizhou Academy of Analysis and Testing, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Shangjun Long
- Guizhou Academy of Analysis and Testing, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Qing Xu
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Changrui Yan
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Jiang Yang
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Yousong Zhou
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| |
Collapse
|
10
|
Gomes JVP, Rigolon TCB, Souza MSDS, Alvarez-Leite JI, Lucia CMD, Martino HSD, Rosa CDOB. Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review. Nutrition 2019; 66:192-202. [DOI: 10.1016/j.nut.2019.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
|
11
|
He G, Ma R. Overview of Molecular Mechanisms Involved in Herbal Compounds for Inhibiting Osteoclastogenesis from Macrophage Linage RAW264.7. Curr Stem Cell Res Ther 2019; 15:570-578. [PMID: 31269885 DOI: 10.2174/1574888x14666190703144917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Differentiation from RAW264.7 cells to osteoclasts rely on many signaling pathways, such as NF-κB, MAPK, Akt and others. However, the specific underlying mechanisms are not clear. Recently, much works have focused on the inhibitory effects of plant derived compounds in the differentiation from RAW264.7 to osteoclasts. However, the specific mechanisms remain unclear. In this paper, we summarize a lot of plant derived compounds which exert blocking effect on the progression of differentiation via signaling pathways.
Collapse
Affiliation(s)
- Gaole He
- Department of Spine, Honghui-Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Rui Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
12
|
Jiang X, Li X, Zhu C, Sun J, Tian L, Chen W, Bai W. The target cells of anthocyanins in metabolic syndrome. Crit Rev Food Sci Nutr 2018; 59:921-946. [DOI: 10.1080/10408398.2018.1491022] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Cuijuan Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| |
Collapse
|
13
|
Chiou YS, Lee PS, Pan MH. Food Bioactives and Their Effects on Obesity-Accelerated Inflammatory Bowel Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:773-779. [PMID: 29295622 DOI: 10.1021/acs.jafc.7b05854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Current views support the concept that obesity is linked to a worsening of the course of inflammatory bowel diseases (IBDs). Gut microbiota and adipose tissue macrophage (ATM) are considered key mediators or contributors in obesity-associated intestinal inflammation. Dietary components can have direct or indirect effects on "normal" or "healthy" microbial composition and participate in adiposity and metabolic status with gut inflammation. In this perspective, we highlight food-derived bioactives that have a potential application in the prevention of obesity-exacerbated IBD, targeting energy metabolism, M1 (classical activated)-M2 (alternatively activated) macrophage polarization, and gut microbiota.
Collapse
Affiliation(s)
- Yi-Shiou Chiou
- Institute of Food Science and Technology, National Taiwan University , Taipei 10617, Taiwan
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University , Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University , Taipei 10617, Taiwan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University , Huanggang, Hubei 438000, People's Republic of China
- Department of Medical Research, China Medical University Hospital, China Medical University , Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University , Taichung 41354, Taiwan
| |
Collapse
|