1
|
García-Beltrán A, Lozano Melero A, Martínez Martínez R, Porres Foulquie JM, López Jurado Romero de la Cruz M, Kapravelou G. A Systematic Review of the Beneficial Effects of Berry Extracts on Non-Alcoholic Fatty Liver Disease in Animal Models. Nutr Rev 2024:nuae132. [PMID: 39365946 DOI: 10.1093/nutrit/nuae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries and is strongly associated with several metabolic disorders. Plant-derived bioactive extracts, such as berry extracts, with high antioxidant capacity have been used for the treatment and prevention of this pathology. Moreover, they promote circular economy and sustainability. OBJECTIVE To study the beneficial effects of extracts from different parts of berry plants in animal models of NAFLD. DATA SOURCES A systematic research of the MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2011. In vivo animal studies of NAFLD were included in which berry extracts of different parts of the plant were administered and significantly improved altered biomarkers related to the pathology, such as lipid metabolism and hepatic steatosis, glucose and glycogen metabolism, and antioxidant and anti-inflammatory biomarkers. DATA EXTRACTION Of a total of 203 articles identified, 31 studies were included after implementation of the inclusion and exclusion criteria. DATA ANALYSIS Most of the studies showed a decrease in steatosis and a stimulation of genes related to β-oxidation and downregulation of lipogenic genes, with administration of berry extracts. Berry extracts also attenuated inflammation and oxidative stress. CONCLUSIONS Administration of berry extracts seems to have promising potential in the design of enriched foodstuffs or nutraceuticals for the treatment of NAFLD.
Collapse
Affiliation(s)
- Alejandro García-Beltrán
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Aida Lozano Melero
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | | | | | - Garyfallia Kapravelou
- Department of Physiology, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52005 Granada, Spain
| |
Collapse
|
2
|
Santoso I, Suprayogi S, Sulianto AA, Widyastuti E, Choirun A, Lestari K, A’yuniah S, Kusumaningtyas OW. Exploring antioxidant potential of agricultural by-products: a systematic review. F1000Res 2024; 13:1008. [PMID: 39410978 PMCID: PMC11474157 DOI: 10.12688/f1000research.145702.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Background Agricultural waste sourced from various activities that occur along the agricultural supply chain including post-harvest, processing, and consumption processes, can pose a threat to ecosystem balance and community welfare. Data shows that agricultural by-products have the potential to be utilized because they contain antioxidant compounds. This systematic review study aims to identify and assess the antioxidant activity of agricultural by-products through various extraction methods. Methods This systematic review collected literature in the last 10 years (2013-2023) from Google Scholar, Semantic, and Scopus-indexed articles with the help of Publish or Perish. Using the help of boolean operators (AND) and (OR) in searching using keywords. The steps applied adapt the PRISMA method (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), including identification, screening, eligibility, and inclusion. Results Literature collection data shows that the dominant processing method used is the solvent extraction method to determine the antioxidant value of various agricultural waste by-products. Followed by microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) methods. A wide range of antioxidant activity values were found depending on the type of agricultural waste and processing technique. One potential utilization of agricultural wastes rich in antioxidant content is as additives in formulations in the cosmetic industry. Conclusion Agricultural waste by-products have high potential of antioxidant content, depending on the type of waste and extraction method. The dominant agricultural waste used is by-products from the fruit group. The utilization of agricultural waste that is rich in antioxidants has the potential to be utilized in the cosmetic industry.
Collapse
Affiliation(s)
- Imam Santoso
- Agroindustrial Technology, Brawijaya University, Malang, East Java, 65145, Indonesia
| | - Suprayogi Suprayogi
- Agroindustrial Technology, Brawijaya University, Malang, East Java, 65145, Indonesia
| | - Akhmad Adi Sulianto
- Biosystem Engineering, Brawijaya University, Malang, East Java, 65145, Indonesia
| | - Endrika Widyastuti
- Food Science and Biotechnology, Brawijaya University, Malang, East Java, 65145, Indonesia
| | - Annisa’U Choirun
- Agricultural Technology, Politeknik Negeri Jember, Jember, East Java, 68121, Indonesia
| | - Khairunnisa Lestari
- Agroindustrial Technology, Brawijaya University, Malang, East Java, 65145, Indonesia
| | - Syairil A’yuniah
- Agroindustrial Technology, Brawijaya University, Malang, East Java, 65145, Indonesia
| | | |
Collapse
|
3
|
Gauttam VK, Munjal K, Chopra H, Ahmad A, Rana MK, Kamal MA. A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome. Curr Pharm Des 2024; 30:10-30. [PMID: 38155468 DOI: 10.2174/0113816128274446231220113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.
Collapse
Affiliation(s)
- Vinod Kumar Gauttam
- Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Hmachal Pradesh, India
| | - Kavita Munjal
- Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Aftab Ahmad
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahesh Kumar Rana
- Department of Agriculture, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
4
|
Yang C, Han Y, Tian X, Sajid M, Mehmood S, Wang H, Li H. Phenolic composition of grape pomace and its metabolism. Crit Rev Food Sci Nutr 2022; 64:4865-4881. [PMID: 36398354 DOI: 10.1080/10408398.2022.2146048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Grape pomace is the most important residual after wine making, and it is considered to be a very abundant source for the extraction of a wide range of polyphenols. These polyphenols exhibit a variety of bioactivities, such as antioxidant, anti-inflammatory, and anti-cancer. They are also beneficial in alleviating metabolic syndrome and regulating intestinal flora, etc. These health effects are most likely contributed by polyphenol metabolite, which are formed by the grape pomace phenolics after a complex metabolic process in vivo. Therefore, understanding the phenolic composition of grape pomace and its metabolism is the basis for an in-depth study of the biological activity of grape pomace polyphenols. In this paper, we first summarize the composition of phenolics in grape pomace, then review the recent studies on the metabolism of grape pomace phenolics, including changes in phenolics in the gastrointestinal tract, their pharmacokinetics in the systemic circulation, the tissue distribution of phenolic metabolites, and the beneficial effects of metabolites on intestinal health, and finally summarize the effects of human health status and dietary fiber on the metabolism of grape polyphenols. It is expected to provide help for the in-depth research on the metabolism and biological activity of grape pomace polyphenol extracts, and to provide theoretical support for the development and utilization of grape pomace.
Collapse
Affiliation(s)
- Chenlu Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yulei Han
- College of Enology, Northwest A&F University, Yangling, China
| | - Xuelin Tian
- College of Enology, Northwest A&F University, Yangling, China
| | - Marina Sajid
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajid Mehmood
- College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
5
|
Teng Y, He J, Zhong Q, Zhang Y, Lu Z, Guan T, Pan Y, Luo X, Feng W, Ou C. Grape exosome-like nanoparticles: A potential therapeutic strategy for vascular calcification. Front Pharmacol 2022; 13:1025768. [PMID: 36339605 PMCID: PMC9634175 DOI: 10.3389/fphar.2022.1025768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 02/12/2024] Open
Abstract
Vascular calcification (VC) is prevalent in hypertension, diabetes mellitus, chronic kidney disease, and aging and has been identified as an important predictor of adverse cardiovascular events. With the complicated mechanisms involved in VC, there is no effective therapy. Thus, a strategy for attenuating the development of VC is of clinical importance. Recent studies suggest that grape exosome-like nanoparticles (GENs) are involved in cell-cell communication as a means of regulating oxidative stress, inflammation, and apoptosis, which are known to modulate VC development. In this review, we discuss the roles of GENs and their potential mechanisms in the development of VC.
Collapse
Affiliation(s)
- Yintong Teng
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi He
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Zhong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yangmei Zhang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenxing Lu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianwang Guan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxuan Pan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaodi Luo
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Weijing Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiwen Ou
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Malay apple (Syzygium malaccense) promotes changes in lipid metabolism and a hepatoprotective effect in rats fed a high-fat diet. Food Res Int 2022; 155:110994. [DOI: 10.1016/j.foodres.2022.110994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 01/24/2023]
|
7
|
Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells 2021; 10:cells10061474. [PMID: 34208379 PMCID: PMC8231211 DOI: 10.3390/cells10061474] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) and obesity are relevant worldwide chronic diseases. A common complication in both pathologies is the dysregulation of the insulin-signaling pathway that is crucial to maintain an accurate glucose homeostasis. Flavonoids are naturally occurring phenolic compounds abundant in fruits, vegetables and seeds. Rising evidence supports a role for the flavonoids against T2D and obesity, and at present, these compounds are considered as important potential chemopreventive agents. This review summarizes in vitro and in vivo studies providing data related to the effects of flavonoids and flavonoid-rich foods on the modulation of the insulin route during T2D and obesity. Notably, few human studies have evaluated the regulatory effect of these phenolic compounds at molecular level on the insulin pathway. In this context, it is also important to note that the mechanism of action for the flavonoids is not fully characterized and that a proper dosage to obtain a beneficial effect on health has not been defined yet. Further investigations will contribute to solve all these critical challenges and will enable the use of flavonoids to prevent, delay or support the treatment of T2D and obesity.
Collapse
|
8
|
Konda PY, Chennupati V, Dasari S, Sharma N, Muthulingam M, Ramakrishnan R, Sade A, Jagadheeshkumar V, Natesan V, Jaiswal KK. Ethno-pharmacological insulin signaling induction of aqueous extract of Syzygium paniculatum fruits in a high-fat diet induced hepatic insulin resistance. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113576. [PMID: 33171270 DOI: 10.1016/j.jep.2020.113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ethnopharmacological significance of the fruits of Syzygium paniculatum Gaertn (Magenta Cherry) is widely recognized in the Indian traditional medicine system to treat various disorders, such as diabetes, hyperlipidaemia, hypertension, and cardiovascular problems. AIM OF THE STUDY This research work investigated the supplementation of the aqueous extract of S. paniculatum fruit (AESPF) on liver function; the molecular effects on the expression of the protein of insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) in high-fat diet-induced hepatic insulin resistance in the rat model. MATERIALS AND METHODS High-fat diet was used to induce obesity in albino Wistar for 120 days. Biochemical, enzymatic, and histopathological analysis, as well as analysis of hepatic insulin resistance proteins and expression of IRS-1, were performed. RESULTS The supplementation of AESPF with a dose of 100 mg/kg bw significantly reduced bodyweight, blood sugar, insulin, lipid profiles, and liver enzymes. Hepatic insulin resistance was improved with a reduced level of IR and IRS-1 to protein levels. HFD alters the sensitivity of hepatocytes to insulin due to the down-regulation of insulin receptor proteins. CONCLUSIONS The fruits of S. paniculatum possess biological activities to alleviate all risky effects by regulating hepatic lipogenesis activity that can be used in the progress of medication for HFD-induced hepatic insulin resistance and metabolic disorders.
Collapse
Affiliation(s)
| | - Vidyasagar Chennupati
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | - Sreenivasulu Dasari
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | - Nishesh Sharma
- Department of Biotechnology, Uttaranchal University, Dehradun, Uttarakhand, 248 007, India
| | - Muthukumaran Muthulingam
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605 014, India
| | - Ranjani Ramakrishnan
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | - Ankanna Sade
- Department of Botany, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | | | - Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608 002, India.
| | - Krishna Kumar Jaiswal
- Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, 248 007, India.
| |
Collapse
|
9
|
Vitis labrusca Extract (HP01) Improves Blood Circulation and Lipid Metabolism in Hyperlipidemic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:6180310. [PMID: 33424986 PMCID: PMC7781693 DOI: 10.1155/2020/6180310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Excessive intake of high-lipid foods and lifestyle changes can easily cause hyperlipidemia. Hyperlipidemia is clinically considered a major risk factor for cardiovascular disease, which is the second leading cause of death worldwide. In this study, the effects of a Vitis labrusca extract (HP01) on coagulation, platelet aggregation, and lipid metabolism were investigated in hyperlipidemic rats. A rat model of high-fat diet- (HFD-) induced hyperlipidemia was used. Hemostatic parameters and lipid levels were investigated after HP01 treatment of hyperlipidemic rats. Different doses of HP01 (200 mg/kg/day and 400 mg/kg/day, p.o.) were administered for 3 weeks, and prothrombin time (PT), activated partial thromboplastin time (aPTT), and platelet aggregation and bleed time (BT) were determined. The levels of thromboxane B(2) (TXB(2)) and serotonin were measured using enzyme-linked immunosorbent assay kits. Simultaneously, hepatic function and blood fat indexes, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), malondialdehyde (MDA), and glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were also measured. In comparison with the data obtained for rats in the untreated HFD group, HP01 (200 mg/kg) treatment prolonged PT but did not affect aPTT. HP01 treatment did not alter plasma TXB(2), PGI2, or serotonin levels. However, HP01 showed some effects in improving liver function by reducing the levels of hepatic lipids. ALT, MDA, and hepatic TG levels significantly decreased, whereas GSH, GPx, CAT, and SOD levels significantly increased. These results confirm the HP01 extract will improve thromboplastic and the liver metabolic disorders in hyperlipidemia by oxidative stress response.
Collapse
|
10
|
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes (Basel) 2020. [DOI: 10.3390/pr8121566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules extracted from plant waste are presented here.
Collapse
|
11
|
Ballard CR, Dos Santos EF, Dubois MJ, Pilon G, Cazarin CBB, Maróstica Junior MR, Marette A. Two polyphenol-rich Brazilian fruit extracts protect from diet-induced obesity and hepatic steatosis in mice. Food Funct 2020; 11:8800-8810. [PMID: 32959866 DOI: 10.1039/d0fo01912g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consumption of polyphenol-rich food is associated with better metabolic health. Tucum-do-Pantanal (Bactris setosa Mart) and taruma-do-cerrado (Vitex cymosa Bertero ex Spreng) are underexploited native Brazilian fruits with an important source of phytochemicals. In this study, we assessed the effects of 100 mg kg-1 tucum (TPE) and taruma (TCE) extracts on diet-induced obesity (DIO) C57BL/6J mice. After 8 weeks of daily treatment, TPE and TCE were found to significantly prevented the diet-induced body weight gain and fully protected against hepatic steatosis associated with a tendency to stimulate hepatic AMPK phosphorylation. TPE reduced visceral obesity and improved glucose metabolism as revealed by an improvement of the insulin tolerance test, a reduction in the insulin fasting level, and a decreased glucose-induced hyperinsulinemia during an oral glucose tolerance test. TPE and TCE showed promising effects on the treatment of obesity and NAFLD, furthermore, TPE on insulin resistance.
Collapse
Affiliation(s)
- Cíntia Reis Ballard
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Elisvânia Freitas Dos Santos
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, S/N Costa e Silva, 79070-900, Mato Grosso do Sul, Brazil.
| | - Marie-Julie Dubois
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| | - Geneviève Pilon
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| | - Cinthia Baú Betim Cazarin
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Mário Roberto Maróstica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Andre Marette
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| |
Collapse
|
12
|
da Costa GF, Ognibene DT, da Costa CA, Teixeira MT, Cordeiro VDSC, de Bem GF, Moura AS, Resende ADC, de Moura RS. Vitis vinifera L. Grape Skin Extract Prevents Development of Hypertension and Altered Lipid Profile in Spontaneously Hypertensive Rats: Role of Oxidative Stress. Prev Nutr Food Sci 2020; 25:25-31. [PMID: 32292752 PMCID: PMC7143014 DOI: 10.3746/pnf.2020.25.1.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigated the protective effect of a Vitis vinifera L. grape skin extract (ACH09) on blood pressure, lipid profile, and oxidative status in spontaneously hypertensive rats (SHR). Systolic blood pressure (SBP), total cholesterol, triglyceride, and glucose levels, as well as oxidative damage and antioxidant activity in the plasma and kidney, were evaluated in four experimental groups: control Wistar rats (W-C) and SHR-C that received water, and Wistar rats and SHR treated with ACH09 (200 mg/kg/d) in drinking water for 12 weeks (W-ACH09 and SHR-ACH09, respectively). SBP increased in the SHR group compared with the W groups and the treatment with ACH09 prevented the development of hypertension. Plasma triglyceride and total cholesterol levels increased in SHR compared with W-C rats; these changes prevented by treatment with ACH09. Glucose levels did not differ between the groups. The SHR group had increased oxidative damage in plasma, as expressed by 2-thiobarbituric acid reactive substances (TBARS) levels, and this prevented by ACH09. Levels of TBARS in the kidneys were lower in the SHR-ACH09 group than in the SHR-C group. Further, ACH09 increased the superoxide dismutase activity in both the plasma and kidneys of both SHR and Wistar rats. These results suggest that ACH09 is protective against disruption of blood pressures, oxidant status, and lipid profile in SHR, and provide important evidence on the benefits of ACH09 on hypertension and associated cardiovascular complications.
Collapse
Affiliation(s)
| | | | | | - Michelle Teixeira Teixeira
- Department of Nutrition and Public Health, Federal University of the State of Rio de Janeiro, RJ 22290-240, Brazil
| | | | | | - Aníbal Sanchez Moura
- Department of Physiological Sciences, Rio de Janeiro State University, RJ 20551-030, Brazil
| | | | | |
Collapse
|
13
|
Ballard CR, Galvão TF, Cazarin CB, Maróstica MR. Effects of Polyphenol-Rich Fruit Extracts on Diet-Induced Obesity in Rodents: Systematic Review and Meta-Analysis. Curr Pharm Des 2019; 25:3484-3497. [DOI: 10.2174/1381612824666191010170100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Background::Obesity is a complex condition of high prevalence and cost to the public health system. Recent research has demonstrated the potential of natural products, such as polyphenol-rich fruit extracts, for use in the treatment of obesity. The goal of this systematic review and meta-analysis is to determine the metabolic effects of polyphenol-rich fruit extracts on diet-induced obesity (DIO) in rodents.Methods:We searched MEDLINE, EMBASE, and Web of Science databases to identify preclinical studies that assessed polyphenol-rich fruit extracts compared to placebo on DIO in rodents in December 2018. Two researchers selected the studies, extracted the data, and assessed the quality of studies. Meta-analyses of standardized mean difference (SMD) of outcomes were calculated in Stata 11, and causes of heterogeneity were assessed by meta-regression.Results:We included 14 studies in the systematic review and 13 studies with 21 matched groups in the metaanalysis. Polyphenol-rich fruit extracts reduced the total body weight gain (SMD = -1.48; confidence interval: - 1.95, -1.01), energy intake (SMD = -0.42; -0.67, -0.17), visceral adipose tissue (SMD = -0.96; -1.25, -0.66), triglycerides (SMD = -1.00; -1.39, -0.62), cholesterol (SMD = -1.18, -1.66, -0.69), LDL- c (SMD = -1.15; -1.65, - 0.65), fasting glucose (SMD = -1.05; -1.65, -0.46), and fasting insulin (SMD = -1.40; -1.80, -1.00) when compared to vehicle.Conclusion:Polyphenol-rich fruit extract had positive effects on weight gain, dyslipidaemia, insulin resistance at different doses, and fruit source in male mice.
Collapse
Affiliation(s)
- Cíntia R. Ballard
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Tais F. Galvão
- School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Cinthia B.B. Cazarin
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Mário R. Maróstica
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
14
|
Su Z, Nie Y, Huang X, Zhu Y, Feng B, Tang L, Zheng G. Mitophagy in Hepatic Insulin Resistance: Therapeutic Potential and Concerns. Front Pharmacol 2019; 10:1193. [PMID: 31649547 PMCID: PMC6795753 DOI: 10.3389/fphar.2019.01193] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022] Open
Abstract
Metabolic syndrome, characterized by central obesity, hypertension, and hyperlipidemia, increases the morbidity and mortality of cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and other metabolic diseases. It is well known that insulin resistance, especially hepatic insulin resistance, is a risk factor for metabolic syndrome. Current research has shown that hepatic fatty acid accumulation can cause hepatic insulin resistance through increased gluconeogenesis, lipogenesis, chronic inflammation, oxidative stress and endoplasmic reticulum stress, and impaired insulin signal pathway. Mitochondria are the major sites of fatty acid β-oxidation, which is the major degradation mechanism of fatty acids. Mitochondrial dysfunction has been shown to be involved in the development of hepatic fatty acid–induced hepatic insulin resistance. Mitochondrial autophagy (mitophagy), a catabolic process, selectively degrades damaged mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial dynamics and function. Therefore, mitophagy can promote mitochondrial fatty acid oxidation to inhibit hepatic fatty acid accumulation and improve hepatic insulin resistance. Here, we review advances in our understanding of the relationship between mitophagy and hepatic insulin resistance. Additionally, we also highlight the potential value of mitophagy in the treatment of hepatic insulin resistance and metabolic syndrome.
Collapse
Affiliation(s)
- Zuqing Su
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yutong Nie
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiufang Huang
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Bomfim GHS, Musial DC, Miranda-Ferreira R, Nascimento SR, Jurkiewicz A, Jurkiewicz NH, de Moura RS. Antihypertensive effects of the Vitis vinifera grape skin (ACH09) extract consumption elicited by functional improvement of P1 (A1) and P2 (P2X1) purinergic receptors in diabetic and hypertensive rats. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Kasprzak K, Wojtunik-Kulesza K, Oniszczuk T, Kuboń M, Oniszczuk A. Secondary Metabolites, Dietary Fiber and Conjugated Fatty Acids as Functional Food Ingredients against Overweight and Obesity. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300836] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Obesity is a common serious health problem leading to many serious health disorders. This phenomenon is defined as the over-storage of lipids in adipose tissue that occurs when there is an imbalance between the energy intake and energy used. During obesity, many metabolic alterations occur that can damage several organs, such as vascular or skeletal muscle resulting in the dysfunction of these tissues. In this review, we will discuss molecular genetics and causes of obesity, some of the disorders related to human obesity as well as anti-obesity tool. An interesting solution to the obesity problem is natural substances, revealing anti-obesity activity, as well as functional food enriched with aforementioned substances. Functional foods are products exhibiting a potentially positive effect on health beyond basic nutrition. They contain well-known biologically active natural compounds, which promote optimal health and reduce the risk of many diseases, including obesity.
Collapse
Affiliation(s)
- Kamila Kasprzak
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | | | - Tomasz Oniszczuk
- Department of Food Process Engineering, Lublin University of Life Sciences, 44 Doświadczalna Street, 20-236 Lublin, Poland
| | - Maciej Kuboń
- Department of Agricultural Engineering and Informatics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, ul. Balicka 116B 30-149, Kraków, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
17
|
Aging affects the response of female rats to a hypercaloric diet. Exp Gerontol 2018; 101:7-12. [DOI: 10.1016/j.exger.2017.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023]
|
18
|
Caulerpa okamurae extract inhibits adipogenesis in 3T3-L1 adipocytes and prevents high-fat diet–induced obesity in C57BL/6 mice. Nutr Res 2017; 47:44-52. [DOI: 10.1016/j.nutres.2017.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/29/2022]
|