1
|
Renner A, Stahringer A, Ruppel KE, Fricke S, Koehl U, Schmiedel D. Development of KoRV-pseudotyped lentiviral vectors for efficient gene transfer into freshly isolated immune cells. Gene Ther 2024; 31:378-390. [PMID: 38684788 PMCID: PMC11257948 DOI: 10.1038/s41434-024-00454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Allogeneic cell therapies, such as those involving macrophages or Natural Killer (NK) cells, are of increasing interest for cancer immunotherapy. However, the current techniques for genetically modifying these cell types using lenti- or gamma-retroviral vectors present challenges, such as required cell pre-activation and inefficiency in transduction, which hinder the assessment of preclinical efficacy and clinical translation. In our study, we describe a novel lentiviral pseudotype based on the Koala Retrovirus (KoRV) envelope protein, which we identified based on homology to existing pseudotypes used in cell therapy. Unlike other pseudotyped viral vectors, this KoRV-based envelope demonstrates remarkable efficiency in transducing freshly isolated primary human NK cells directly from blood, as well as freshly obtained monocytes, which were differentiated to M1 macrophages as well as B cells from multiple donors, achieving up to 80% reporter gene expression within three days post-transduction. Importantly, KoRV-based transduction does not compromise the expression of crucial immune cell receptors, nor does it impair immune cell functionality, including NK cell viability, proliferation, cytotoxicity as well as phagocytosis of differentiated macrophages. Preserving immune cell functionality is pivotal for the success of cell-based therapeutics in treating various malignancies. By achieving high transduction rates of freshly isolated immune cells before expansion, our approach enables a streamlined and cost-effective automated production of off-the-shelf cell therapeutics, requiring fewer viral particles and less manufacturing steps. This breakthrough holds the potential to significantly reduce the time and resources required for producing e.g. NK cell therapeutics, expediting their availability to patients in need.
Collapse
Affiliation(s)
- Alexander Renner
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Anika Stahringer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Katharina Eva Ruppel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, CIMD, Leipzig, Deutschland
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, CIMD, Leipzig, Deutschland
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany.
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Picard MAL, Leblay F, Cassan C, Willemsen A, Daron J, Bauffe F, Decourcelle M, Demange A, Bravo IG. Transcriptomic, proteomic, and functional consequences of codon usage bias in human cells during heterologous gene expression. Protein Sci 2023; 32:e4576. [PMID: 36692287 PMCID: PMC9926478 DOI: 10.1002/pro.4576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
Differences in codon frequency between genomes, genes, or positions along a gene, modulate transcription and translation efficiency, leading to phenotypic and functional differences. Here, we present a multiscale analysis of the effects of synonymous codon recoding during heterologous gene expression in human cells, quantifying the phenotypic consequences of codon usage bias at different molecular and cellular levels, with an emphasis on translation elongation. Six synonymous versions of an antibiotic resistance gene were generated, fused to a fluorescent reporter, and independently expressed in HEK293 cells. Multiscale phenotype was analyzed by means of quantitative transcriptome and proteome assessment, as proxies for gene expression; cellular fluorescence, as a proxy for single-cell level expression; and real-time cell proliferation in absence or presence of antibiotic, as a proxy for the cell fitness. We show that differences in codon usage bias strongly impact the molecular and cellular phenotype: (i) they result in large differences in mRNA levels and protein levels, leading to differences of over 15 times in translation efficiency; (ii) they introduce unpredicted splicing events; (iii) they lead to reproducible phenotypic heterogeneity; and (iv) they lead to a trade-off between the benefit of antibiotic resistance and the burden of heterologous expression. In human cells in culture, codon usage bias modulates gene expression by modifying mRNA availability and suitability for translation, leading to differences in protein levels and eventually eliciting functional phenotypic changes.
Collapse
Affiliation(s)
- Marion A. L. Picard
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Fiona Leblay
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Cécile Cassan
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Anouk Willemsen
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Josquin Daron
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Frédérique Bauffe
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Mathilde Decourcelle
- BioCampus Montpellier (University of Montpellier, CNRS, INSERM)MontpellierFrance
| | - Antonin Demange
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Ignacio G. Bravo
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| |
Collapse
|
3
|
Saunderson SC, Hosseini-Rad SMA, McLellan AD. Noise-Reduction and Sensitivity-Enhancement of a Sleeping Beauty-Based Tet-On System. Genes (Basel) 2022; 13:genes13101679. [PMID: 36292564 PMCID: PMC9602432 DOI: 10.3390/genes13101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Tetracycline-inducible systems are widely used control elements for mammalian gene expression. Despite multiple iterations to improve inducibility, their use is still compromised by basal promoter activity in the absence of tetracyclines. In a mammalian system, we previously showed that the introduction of the G72V mutation in the rtTA-M2 tetracycline activator lowers the basal level expression and increases the fold-induction of multiple genetic elements in a long chimeric antigen receptor construct. In this study, we confirmed that the G72V mutation was effective in minimising background expression in the absence of an inducer, resulting in an increase in fold-expression. Loss of responsiveness due to the G72V mutation was compensated through the incorporation of four sensitivity enhancing (SE) mutations, without compromising promoter tightness. However, SE mutations alone (without G72V) led to undesirable leakiness. Although cryptic splice site removal from rtTA did not alter the inducible control of the luciferase reporter gene in this simplified vector system, this is still recommended as a precaution in more complex multi-gene elements that contain rtTA. The optimized expression construct containing G72V and SE mutations currently provides the best improvement of fold-induction mediated by the rtTA-M2 activator in a mammalian system.
Collapse
Affiliation(s)
- Sarah C. Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| | - SM Ali Hosseini-Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Centre of Excellence in Immunology and Immune-Mediated Diseases, University of Chulalongkorn, Bangkok 10330, Thailand
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Katneni UK, Alexaki A, Hunt RC, Hamasaki-Katagiri N, Hettiarachchi GK, Kames JM, McGill JR, Holcomb DD, Athey JC, Lin B, Parunov LA, Kafri T, Lu Q, Peters R, Ovanesov MV, Freedberg DI, Bar H, Komar AA, Sauna ZE, Kimchi-Sarfaty C. Structural, functional, and immunogenicity implications of F9 gene recoding. Blood Adv 2022; 6:3932-3944. [PMID: 35413099 PMCID: PMC9278298 DOI: 10.1182/bloodadvances.2022007094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
Hemophilia B is a blood clotting disorder caused by deficient activity of coagulation factor IX (FIX). Multiple recombinant FIX proteins are currently approved to treat hemophilia B, and several gene therapy products are currently being developed. Codon optimization is a frequently used technique in the pharmaceutical industry to improve recombinant protein expression by recoding a coding sequence using multiple synonymous codon substitutions. The underlying assumption of this gene recoding is that synonymous substitutions do not alter protein characteristics because the primary sequence of the protein remains unchanged. However, a critical body of evidence shows that synonymous variants can affect cotranslational folding and protein function. Gene recoding could potentially alter the structure, function, and in vivo immunogenicity of recoded therapeutic proteins. Here, we evaluated multiple recoded variants of F9 designed to further explore the effects of codon usage bias on protein properties. The detailed evaluation of these constructs showed altered conformations, and assessment of translation kinetics by ribosome profiling revealed differences in local translation kinetics. Assessment of wild-type and recoded constructs using a major histocompatibility complex (MHC)-associated peptide proteomics assay showed distinct presentation of FIX-derived peptides bound to MHC class II molecules, suggesting that despite identical amino acid sequence, recoded proteins could exhibit different immunogenicity risks. Posttranslational modification analysis indicated that overexpression from gene recoding results in suboptimal posttranslational processing. Overall, our results highlight potential functional and immunogenicity concerns associated with gene-recoded F9 products. These findings have general applicability and implications for other gene-recoded recombinant proteins.
Collapse
Affiliation(s)
- Upendra K. Katneni
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Aikaterini Alexaki
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Ryan C. Hunt
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Nobuko Hamasaki-Katagiri
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Gaya K. Hettiarachchi
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Jacob M. Kames
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Joseph R. McGill
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - David D. Holcomb
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - John C. Athey
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Brian Lin
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Leonid A. Parunov
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | - Mikhail V. Ovanesov
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Darón I. Freedberg
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT; and
| | - Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
| | - Zuben E. Sauna
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| |
Collapse
|
5
|
Feng S, Wang Z, Li A, Xie X, Liu J, Li S, Li Y, Wang B, Hu L, Yang L, Guo T. Strategies for High-Efficiency Mutation Using the CRISPR/Cas System. Front Cell Dev Biol 2022; 9:803252. [PMID: 35198566 PMCID: PMC8860194 DOI: 10.3389/fcell.2021.803252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems have revolutionized traditional gene-editing tools and are a significant tool for ameliorating gene defects. Characterized by high target specificity, extraordinary efficiency, and cost-effectiveness, CRISPR/Cas systems have displayed tremendous potential for genetic manipulation in almost any organism and cell type. Despite their numerous advantages, however, CRISPR/Cas systems have some inherent limitations, such as off-target effects, unsatisfactory efficiency of delivery, and unwanted adverse effects, thereby resulting in a desire to explore approaches to address these issues. Strategies for improving the efficiency of CRISPR/Cas-induced mutations, such as reducing off-target effects, improving the design and modification of sgRNA, optimizing the editing time and the temperature, choice of delivery system, and enrichment of sgRNA, are comprehensively described in this review. Additionally, several newly emerging approaches, including the use of Cas variants, anti-CRISPR proteins, and mutant enrichment, are discussed in detail. Furthermore, the authors provide a deep analysis of the current challenges in the utilization of CRISPR/Cas systems and the future applications of CRISPR/Cas systems in various scenarios. This review not only serves as a reference for improving the maturity of CRISPR/Cas systems but also supplies practical guidance for expanding the applicability of this technology.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Efficient Pseudotyping of Different Retroviral Vectors Using a Novel, Codon-Optimized Gene for Chimeric GALV Envelope. Viruses 2021; 13:v13081471. [PMID: 34452336 PMCID: PMC8402753 DOI: 10.3390/v13081471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 12/26/2022] Open
Abstract
The Gibbon Ape Leukemia Virus envelope protein (GALV-Env) mediates efficient transduction of human cells, particularly primary B and T lymphocytes, and is therefore of great interest in gene therapy. Using internal domains from murine leukemia viruses (MLV), chimeric GALV-Env proteins such as GALV-C4070A were derived, which allow pseudotyping of lentiviral vectors. In order to improve expression efficiency and vector titers, we developed a codon-optimized (co) variant of GALV-C4070A (coGALV-Env). We found that coGALV-Env mediated efficient pseudotyping not only of γ-retroviral and lentiviral vectors, but also α-retroviral vectors. The obtained titers on HEK293T cells were equal to those with the classical GALV-Env, whereas the required plasmid amounts for transient vector production were significantly lower, namely, 20 ng coGALV-Env plasmid per 106 293T producer cells. Importantly, coGALV-Env-pseudotyped γ- and α-retroviral, as well as lentiviral vectors, mediated efficient transduction of primary human T cells. We propose that the novel chimeric coGALV-Env gene will be very useful for the efficient production of high-titer vector preparations, e.g., to equip human T cells with novel specificities using transgenic TCRs or CARs. The considerably lower amount of plasmid needed might also result in a significant cost advantage for good manufacturing practice (GMP) vector production based on transient transfection.
Collapse
|
7
|
Immunogenicity and Protective Activity of Pigeon Circovirus Recombinant Capsid Protein Virus-Like Particles (PiCV rCap-VLPs) in Pigeons ( Columba livia) Experimentally Infected with PiCV. Vaccines (Basel) 2021; 9:vaccines9020098. [PMID: 33525416 PMCID: PMC7912323 DOI: 10.3390/vaccines9020098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
Pigeon circovirus (PiCV) is the most recurrent virus diagnosed in pigeons and is among the major causative agents of young pigeon disease syndrome (YPDS). Due to the lack of an established laboratory protocol for PiCV cultivation, development of prophylaxis is hampered. Alternatively, virus-like particles (VLPs), which closely resemble native viruses but lack the viral genetic material, can be generated using a wide range of expression systems and are shown to have strong immunogenicity. Therefore, the use of VLPs provides a promising prospect for vaccine development. In this study, transfected human embryonic kidney (HEK-293) cells, a mammalian expression system, were used to express the PiCV capsid protein (Cap), which is a major component of PiCV and believed to contain antibody epitopes, to obtain self-assembled VLPs. The VLPs were observed to have a spherical morphology with diameters ranging from 12 to 26 nm. Subcutaneous immunization of pigeons with 100 µg PiCV rCap-VLPs supplemented with water-in-oil-in-water (W/O/W) adjuvant induced specific antibodies against PiCV. Observations of the cytokine expression and T-cell proliferation levels in spleen samples showed significantly higher T-cell proliferation and IFN- γ expression in pigeons immunized with VLPs compared to the controls (p < 0.05). Experimentally infected pigeons that were vaccinated with VLPs also showed no detectable viral titer. The results of the current study demonstrated the potential use of PiCV rCap-VLPs as an effective vaccine candidate against PiCV.
Collapse
|
8
|
Lee H, Hwang IS, Vasamsetti BMK, Rallabandi HR, Park MR, Byun SJ, Yang H, Ock SA, Lee HC, Woo JS, Hwang S, Oh KB. Codon optimized membrane cofactor protein expression in α 1, 3 galactosyltransferase knockout pig cells improve protection against cytotoxicity of monkey serum. 3 Biotech 2020; 10:108. [PMID: 32095422 DOI: 10.1007/s13205-020-2091-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, we attempted to upgrade GT -MCP/-MCP pig genetically to express MCP at a higher level and additionally thrombomodulin (TBM), which have respective roles as a complement regulatory protein and a coagulation inhibitor. We constructed a dicistronic cassette consisting of codon-optimized MCP (mMCP) and TBM (m-pI2), designed for ubiquitous expression of MCP and endothelium specific expression of TBM. The cassette was confirmed to allow extremely increased MCP expression compared with non-modified MCP, and an endothelial-specific TBM expression. We thus transfected m-pI2 into ear-skin fibroblasts isolated from a GT -MCP/-MCP pig. By twice selection using magnetically activated cell sorting (MACS), and single-cell culture, we were able to obtain clones over 90% expressing MCP. The cells of a clone were provided as a donor for nuclear transfer resulting in the generation of a GT -MCP/-MCP /mMCP/TBM pig, which was confirmed to be carrying cells expressing MCP and functioning as an inhibitor against the cytotoxic effect of normal monkey serum, comparable with donor cells. Collectively, these results demonstrated an effective approach for upgrading transgenic pig, and we assumed that upgraded pig would increase graft survival.
Collapse
Affiliation(s)
- Heasun Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Bala Murali Krishna Vasamsetti
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Harikrishna Reddy Rallabandi
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Sung-June Byun
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Hwi-Cheul Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Jae-Seok Woo
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| |
Collapse
|
9
|
Mauro VP. Codon Optimization in the Production of Recombinant Biotherapeutics: Potential Risks and Considerations. BioDrugs 2018; 32:69-81. [PMID: 29392566 DOI: 10.1007/s40259-018-0261-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biotherapeutics are increasingly becoming the mainstay in the treatment of a variety of human conditions, particularly in oncology and hematology. The production of therapeutic antibodies, cytokines, and fusion proteins have markedly accelerated these fields over the past decade and are probably the major contributor to improved patient outcomes. Today, most protein therapeutics are expressed as recombinant proteins in mammalian cell lines. An expression technology commonly used to increase protein levels involves codon optimization. This approach is possible because degeneracy of the genetic code enables most amino acids to be encoded by more than one synonymous codon and because codon usage can have a pronounced influence on levels of protein expression. Indeed, codon optimization has been reported to increase protein expression by > 1000-fold. The primary tactic of codon optimization is to increase the rate of translation elongation by overcoming limitations associated with species-specific differences in codon usage and transfer RNA (tRNA) abundance. However, in mammalian cells, assumptions underlying codon optimization appear to be poorly supported or unfounded. Moreover, because not all synonymous codon mutations are neutral, codon optimization can lead to alterations in protein conformation and function. This review discusses codon optimization for therapeutic protein production in mammalian cells.
Collapse
|
10
|
Mauro VP, Chappell SA. Considerations in the Use of Codon Optimization for Recombinant Protein Expression. Methods Mol Biol 2018; 1850:275-288. [PMID: 30242693 DOI: 10.1007/978-1-4939-8730-6_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Codon optimization is a gene engineering approach that is commonly used for enhancing recombinant protein expression. This approach is possible because (1) degeneracy of the genetic code enables most amino acids to be encoded by multiple codons and (2) different mRNAs encoding the same protein can vary dramatically in the amount of protein expressed. However, because codon optimization potentially disrupts overlapping information encoded in mRNA coding regions, protein structure and function may be altered. This chapter discusses the use of codon optimization for various applications in mammalian cells as well as potential consequences, so that informed decisions can be made on the appropriateness of using this approach in each case.
Collapse
|