1
|
Agioti S, Zaravinos A. Immune Cytolytic Activity and Strategies for Therapeutic Treatment. Int J Mol Sci 2024; 25:3624. [PMID: 38612436 PMCID: PMC11011457 DOI: 10.3390/ijms25073624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Intratumoral immune cytolytic activity (CYT), calculated as the geometric mean of granzyme-A (GZMA) and perforin-1 (PRF1) expression, has emerged as a critical factor in cancer immunotherapy, with significant implications for patient prognosis and treatment outcomes. Immune checkpoint pathways, the composition of the tumor microenvironment (TME), antigen presentation, and metabolic pathways regulate CYT. Here, we describe the various methods with which we can assess CYT. The detection and analysis of tumor-infiltrating lymphocytes (TILs) using flow cytometry or immunohistochemistry provide important information about immune cell populations within the TME. Gene expression profiling and spatial analysis techniques, such as multiplex immunofluorescence and imaging mass cytometry allow the study of CYT in the context of the TME. We discuss the significant clinical implications that CYT has, as its increased levels are associated with positive clinical outcomes and a favorable prognosis. Moreover, CYT can be used as a prognostic biomarker and aid in patient stratification. Altering CYT through the different methods targeting it, offers promising paths for improving treatment responses. Overall, understanding and modulating CYT is critical for improving cancer immunotherapy. Research into CYT and the factors that influence it has the potential to transform cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Stephanie Agioti
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| |
Collapse
|
2
|
Zhu I, Piraner DI, Roybal KT. Synthesizing a Smarter CAR T Cell: Advanced Engineering of T-cell Immunotherapies. Cancer Immunol Res 2023; 11:1030-1043. [PMID: 37429007 PMCID: PMC10527511 DOI: 10.1158/2326-6066.cir-22-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/15/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
The immune system includes an array of specialized cells that keep us healthy by responding to pathogenic cues. Investigations into the mechanisms behind immune cell behavior have led to the development of powerful immunotherapies, including chimeric-antigen receptor (CAR) T cells. Although CAR T cells have demonstrated efficacy in treating blood cancers, issues regarding their safety and potency have hindered the use of immunotherapies in a wider spectrum of diseases. Efforts to integrate developments in synthetic biology into immunotherapy have led to several advancements with the potential to expand the range of treatable diseases, fine-tune the desired immune response, and improve therapeutic cell potency. Here, we examine current synthetic biology advances that aim to improve on existing technologies and discuss the promise of the next generation of engineered immune cell therapies.
Collapse
Affiliation(s)
- Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Dan I. Piraner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA 8Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Gladstone UCSF Institute for Genetic Immunology, San Francisco, CA 94107, USA
- UCSF Cell Design Institute, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Xie T, Feng W, He M, Zhan X, Liao S, He J, Qin Z, Li F, Xu J, Liu Y, Wei Q. Analysis of scRNA-seq and bulk RNA-seq demonstrates the effects of EVI2B or CD361 on CD8 + T cells in osteosarcoma. Exp Biol Med (Maywood) 2023; 248:130-145. [PMID: 36511103 PMCID: PMC10041056 DOI: 10.1177/15353702221142607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a common primary malignant tumor of the bone in children and adolescents. The five-year survival rate is estimated to be ~70% based on the currently available treatment modalities. It is well known that tumor-infiltrating immune cells (TIICs) that are the most important components in the tumor microenvironment can exert a killing effect on tumor cells. Therefore, in the present study, 85 RNA-sequencing OS samples were categorized into high- and low-immune score groups with ESTIAMATE. Based on the immune score groups, 474 differentially expressed genes (DEGs) were acquired using the LIMMA package of R language. Subsequently, 86 DEGs were taken through univariate COX regression analysis, of which 14 were screened out by least absolute shrinkage and selection operator regression analysis. Furthermore, multivariate COX regression analysis was performed to obtain 4 DEGs. Finally, ecotropic virus integration site 2B (EVI2B) or CD361 gene was screened out via Kaplan-Meier analysis. In addition, CIBERSORT algorithm was used to evaluate the proportion of 22 kinds of TIICs in OS. Correlation analysis revealed that the high expression level of EVI2B can elevate the infiltrated proportion of CD8+ T cells. Moreover, analysis of single cell RNA-sequencing transcriptome datasets and immunohistochemical staining uncovered that EVI2B was mainly expressed on CD8+ T cells and that EVI2B could promote the expression of granzyme A and K of CD8+ T cells to exhibit a potent killing effect on tumor cells. Therefore, EVI2B was identified as a protective immune-related gene and contributed to good prognosis in OS patients.
Collapse
Affiliation(s)
- Tianyu Xie
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wenyu Feng
- Department of Orthopaedic, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530005, China
| | - Mingwei He
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinli Zhan
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shijie Liao
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Juliang He
- Department of Bone and Soft Tissue, Affiliated Tumour Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhaojie Qin
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Feicui Li
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Yun Liu
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingjun Wei
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
4
|
Hu Q, Nonaka K, Wakiyama H, Miyashita Y, Fujimoto Y, Jogo T, Hokonohara K, Nakanishi R, Hisamatsu Y, Ando K, Kimura Y, Masuda T, Oki E, Mimori K, Oda Y, Mori M. Cytolytic activity score as a biomarker for antitumor immunity and clinical outcome in patients with gastric cancer. Cancer Med 2021; 10:3129-3138. [PMID: 33769705 PMCID: PMC8085935 DOI: 10.1002/cam4.3828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A simple measure of immune cytolytic activity (CYT) base on mRNA expression levels of two genes, GZMA and PRF1, was recently reported. Here, we aimed to evaluate the CYT score's potential as a measure of antitumor immunity and predictor of clinical outcome in gastric cancer (GC) patients. MATERIALS AND METHODS We evaluated the correlations between tumor-infiltrating immune cells and the CYT score in 238 GC samples from The Cancer Genome Atlas (TCGA). Next, we investigated CYT score associations with molecular subtypes, somatic mutation load, and immune checkpoint molecules in GC samples from TCGA and Asian Cancer Research Group (ACRG). Moreover, we evaluated the clinical significance of the CYT score calculated by reverse transcription (RT)-quantitative PCR (qPCR) data in 123 GC samples and the association of the CYT score with the response to anti-PD-1 therapy in 7 GC samples from Kyushu University Hospital. RESULTS The CYT score positively correlated with the proportions of tumor-infiltrating CD8+ T cells and macrophages and negatively correlated with the proportion of regulatory T cells in GC tissues. A high CYT score was associated with common immune checkpoint molecules, a high mutation, the Epstein-Barr virus subtype, and the microsatellite instability subtype in GC. Moreover, a low CYT score was a poor prognosis factor in patients with GC. Finally, the CYT score was higher in a responder to anti-PD-1 therapy compared to nonresponders. CONCLUSION The CYT score reflects antitumor immunity and predicts clinical outcome in GC patients.
Collapse
Affiliation(s)
- Qingjiang Hu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Nonaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Wakiyama
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yu Miyashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Fujimoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Jogo
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Hokonohara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Nakanishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Hisamatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasue Kimura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Roufas C, Georgakopoulos-Soares I, Zaravinos A. Molecular correlates of immune cytolytic subgroups in colorectal cancer by integrated genomics analysis. NAR Cancer 2021; 3:zcab005. [PMID: 34316699 PMCID: PMC8210146 DOI: 10.1093/narcan/zcab005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Although immune checkpoint inhibition (ICI) has shown promising results in metastatic dMMR/MSI-H colorectal cancer (CRC), the majority of pMMR/MSS patients do not respond to such therapies. To systematically evaluate the determinants of immune response in CRC, we explored whether patients with diverse levels of immune cytolytic activity (CYT) have different patterns of chromothripsis and kataegis. Analysis of CRC genomic data from the TCGA, indicated an excess of chromothriptic clusters among CYT-low colon adenocarcinomas, affecting known cancer drivers (APC, KRAS, BRAF, TP53 and FBXW7), immune checkpoints (CD274, PDCD1LG2, IDO1/2 and LAG3) and immune-related genes (ENTPD1, PRF1, NKG7, FAS, GZMA/B/H/K and CD73). CYT-high tumors were characterized by hypermutation, enrichment in APOBEC-associated mutations and kataegis events, as well as APOBEC activation. We also assessed differences in the most prevalent mutational signatures (SBS15, SBS20, SBS54 and DBS2) across cytolytic subgroups. Regarding the composition of immune cells in the tumor milieu, we found enrichment of M1 macrophages, CD8+ T cells and Tregs, as well as higher CD8+ T-cells/Tregs ratio among CYT-high tumors. CYT-high patients had higher immunophenoscores, which is predictive of their responsiveness if they were to be treated with anti-PD-1 alone or in combination with anti-CTLA-4 drugs. These results could have implications for patient responsiveness to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Constantinos Roufas
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Apostolos Zaravinos
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
6
|
Fu X, Wang X, Duanmu J, Li T, Jiang Q. KRAS mutations are negatively correlated with immunity in colon cancer. Aging (Albany NY) 2020; 13:750-768. [PMID: 33254149 PMCID: PMC7834984 DOI: 10.18632/aging.202182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
The heterogeneity of colon cancer tumors suggests that therapeutics targeting specific molecules may be effective in only a few patients. It is therefore necessary to explore gene mutations in colon cancer. In this study, we obtained colon cancer samples from The Cancer Genome Atlas, and the International Cancer Genome Consortium. We evaluated the landscape of somatic mutations in colon cancer and found that KRAS mutations, particularly rs121913529, were frequent and had prognostic value. Using ESTIMATE analysis, we observed that the KRAS-mutated group had higher tumor purity, lower immune score, and lower stromal score than the wild-type group. Through single-sample Gene Set Enrichment Analysis and Gene Set Enrichment Analysis, we found that KRAS mutations negatively correlated with enrichment levels of tumor infiltrating lymphocytes, inflammation, and cytolytic activities. HLA gene expression and checkpoint-related genes were also lower in the KRAS-mutated group. Finally, we found 24 immune-related genes that differed in expression between the KRAS-mutated and wild-type samples, which may provide clues to the mechanism of KRAS-related immune alteration. Our findings are indicative of the prognostic and predictive value of KRAS and illustrate the relationship between KRAS mutations and immune activity in colon cancer.
Collapse
Affiliation(s)
- Xiaorui Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Queen Mary College, Medical Department, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xinyi Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Queen Mary College, Medical Department, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jinzhong Duanmu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Taiyuan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
7
|
Zaravinos A, Roufas C, Nagara M, de Lucas Moreno B, Oblovatskaya M, Efstathiades C, Dimopoulos C, Ayiomamitis GD. Cytolytic activity correlates with the mutational burden and deregulated expression of immune checkpoints in colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:364. [PMID: 31429779 PMCID: PMC6701076 DOI: 10.1186/s13046-019-1372-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
Background Microsatellite unstable colorectal cancers (MSI+ CRCs) expressing PD-L1, respond to anti-PD-1 or anti-PD-L1 checkpoint blockade, whereas microsatellite-stable tumors do not respond the same. Our aim was to examine how the immune landscape relates to different aspects of the CRC’s biology, including neoepitope burden. Methods We used TCGA data to stratify patients based on a cytolytic T-cell activity expression index and correlated immune cytolytic activity (CYT) with mutational, structural, and neoepitope features of each tumor sample. The expression of several immune checkpoints was verified in an independent cohort of 72 CRC patients, relative to their MSI status, using immunohistochemistry and RT-qPCR. Results CRC exhibits a range of intertumoral cytolytic T-cell activity, with lower cytolytic levels in the tumor, compared to the normal tissue. We separated CRC patients into CYT-high and CYT-low subgroups. High cytolytic activity correlated with increased mutational load in colon tumors, the count of MHC-I/−II classically defined and alternatively defined neoepitopes, high microsatellite instability and deregulated expression of several inhibitory immune checkpoints (VISTA, TIGIT, PD-1, IDO1, CTLA-4, and PD-L1, among others). Many immune checkpoint molecules (IDO1, LAG3, TIGIT, VISTA, PD-1, PD-L1 and CTLA-4) expressed significantly higher in MSI+ CRCs compared to MSS tumors. The expression of Treg markers was also significantly higher in CYT-high tumors. Both individual and simultaneous high levels of CTLA-4 and PD-L1 had a positive effect on the patients’ overall survival. On the reverse, simultaneous low expression of both genes led to a significant shift towards negative effect. Assessed globally, CYT-low CRCs contained more recurrent somatic copy number alterations. PD-L1 protein was absent in most samples in the independent cohort and stained lowly in 33% of MSI CRCs. PD-L1+ CRCs stained moderately for CD8 and weakly for FOXP3. CYT-high colon tumors had higher TIL load, whereas CYT-high rectum tumors had higher TAN load compared to their CYT-low counterparts. Conclusions Overall, we highlight the link between different genetic events and the immune microenvironment in CRC, taking into consideration the status of microsatellite instability. Our data provide further evidence that MSI+ and CYT-high tumors are better candidates for combinatorial checkpoint inhibition. Electronic supplementary material The online version of this article (10.1186/s13046-019-1372-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516, Nicosia, Cyprus. .,Centre for Risk and Decision Sciences (CERIDES), 2404, Nicosia, Cyprus.
| | - Constantinos Roufas
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516, Nicosia, Cyprus.,Department of Computer Science & Engineering, European University Cyprus, 1516, Nicosia, Cyprus
| | - Majdi Nagara
- Inserm, UMR-S 1251, MMG, Faculté de Médecine, Aix Marseille University, Marseille, France
| | - Beatriz de Lucas Moreno
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516, Nicosia, Cyprus.,Center for Research in Health and Life Sciences, European University Madrid, 28670, Madrid, Spain
| | - Maria Oblovatskaya
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516, Nicosia, Cyprus
| | - Christodoulos Efstathiades
- Centre for Risk and Decision Sciences (CERIDES), 2404, Nicosia, Cyprus.,Department of Computer Science & Engineering, European University Cyprus, 1516, Nicosia, Cyprus
| | - Christos Dimopoulos
- Centre for Risk and Decision Sciences (CERIDES), 2404, Nicosia, Cyprus.,Department of Computer Science & Engineering, European University Cyprus, 1516, Nicosia, Cyprus
| | | |
Collapse
|
8
|
Azimi CS, Tang Q, Roybal KT, Bluestone JA. NextGen cell-based immunotherapies in cancer and other immune disorders. Curr Opin Immunol 2019; 59:79-87. [PMID: 31071513 DOI: 10.1016/j.coi.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 12/27/2022]
Abstract
T lymphocyte and other cell therapies have the potential to transform how we treat cancers and other diseases that have few therapeutic options. Here, we review the current progress in engineered T cell therapies and look to the future of what will establish cell therapy as the next pillar of medicine. The tools of synthetic biology along with fundamental knowledge in cell biology and immunology have enabled the development of approaches to engineer cells with enhanced capacity to recognize and treat disease safely and effectively. This along with new modes of engineering cells with CRISPR and strategies to make universal 'off-the-shelf' cell therapies will provide more rapid, flexible, and cheaper translation to the clinic.
Collapse
Affiliation(s)
- Camillia S Azimi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Qizhi Tang
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Jeffrey A Bluestone
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Vahedi F, Nassiri M, Ghovvati S, Javadmanesh A. Evaluation of Different Signal Peptides Using Bioinformatics Tools to Express Recombinant Erythropoietin in Mammalian Cells. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9746-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Narayanan S, Kawaguchi T, Yan L, Peng X, Qi Q, Takabe K. Cytolytic Activity Score to Assess Anticancer Immunity in Colorectal Cancer. Ann Surg Oncol 2018; 25:2323-2331. [PMID: 29770915 DOI: 10.1245/s10434-018-6506-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Elevated tumor-infiltrating lymphocytes (TILs) within the tumor microenvironment is a known positive prognostic factor in colorectal cancer (CRC). We hypothesized that since cytotoxic T cells release cytolytic proteins such as perforin (PRF1) and pro-apoptotic granzymes (GZMA) to attack cancer cells, a cytolytic activity score (CYT) would be a useful tool to assess anticancer immunity. METHODS Genomic expression data were obtained from 456 patients from The Cancer Genome Atlas (TCGA). CYT was defined by GZMA and PRF1 expression, and CIBERSORT was used to evaluate intratumoral immune cell composition. RESULTS High CYT was associated with high microsatellite instability (MSI-H), as well as high levels of activated memory CD4+T cells, gamma-delta T cells, and M1 macrophages. CYT-high CRC patients had improved overall survival (p = 0.019) and disease-free survival (p = 0.016) compared with CYT-low CRC patients, especially in TIL-positive tumors. Multivariate analysis demonstrated that CYT- high associates with improved survival independently after controlling for age, lymphovascular invasion, colonic location, microsatellite instability, and TIL positivity. The levels of immune checkpoint molecules (ICMs)-programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), lymphocyte-activation gene 3 (LAG3), T cell immunoglobulin and mucin domain 3 (TIM3), and indoleamine 2,3-dioxygenase 1 (IDO1)-correlated significantly with CYT (p < 0.0001); with improved survival in CYT-high and ICM-low patients, and poorer survival in ICM-high patients. CONCLUSIONS High CYT within CRC is associated with improved survival, likely due to increased immunity and cytolytic activity of T cells and M1 macrophages. High CYT is also associated with high expression of ICMs; thus, further studies to elucidate the role of CYT as a predictive biomarker of the efficacy of immune checkpoint blockade are warranted.
Collapse
Affiliation(s)
- Sumana Narayanan
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Tsutomu Kawaguchi
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Xuan Peng
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Surgery, University at Buffalo, The State University of New York Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA. .,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan. .,Department of Surgery, Yokohama City University, Yokohama, Japan. .,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan. .,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|