1
|
Zakas PM, Cunningham SC, Doherty A, van Dijk EB, Ibraheim R, Yu S, Mekonnen BD, Lang B, English EJ, Sun G, Duncan MC, Benczkowski MS, Altshuler RC, Singh MJ, Kibbler ES, Tonga GY, Wang ZJ, Wang ZJ, Li G, An D, Rottman JB, Bhavsar Y, Purcell C, Jain R, Alberry R, Roquet N, Fu Y, Citorik RJ, Rubens JR, Holmes MC, Cotta-Ramusino C, Querbes W, Alexander IE, Salomon WE. Sleeping Beauty mRNA-LNP enables stable rAAV transgene expression in mouse and NHP hepatocytes and improves vector potency. Mol Ther 2024; 32:3356-3371. [PMID: 38981468 PMCID: PMC11489535 DOI: 10.1016/j.ymthe.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/05/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.
Collapse
Affiliation(s)
| | - Sharon C Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Ann Doherty
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Eva B van Dijk
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Raed Ibraheim
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Stephanie Yu
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | - Brendan Lang
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | - Gang Sun
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | | | | | | | | | - Gulen Y Tonga
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Zi Jun Wang
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Z Jane Wang
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Guangde Li
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Ding An
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | | | | | - Rachit Jain
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Ryan Alberry
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | - Yanfang Fu
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | | | | | | | | | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Westmead, NSW 2145, Australia.
| | | |
Collapse
|
2
|
Wang H, Georgakopoulou A, Nizamis E, Mok KW, Eluère R, Policastro RA, Valdmanis PN, Lieber A. Auto-expansion of in vivo HDAd-transduced hematopoietic stem cells by constitutive expression of tHMGA2. Mol Ther Methods Clin Dev 2024; 32:101319. [PMID: 39282078 PMCID: PMC11399618 DOI: 10.1016/j.omtm.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024]
Abstract
We developed an in vivo hematopoietic stem cell (HSC) gene therapy approach that does not require cell transplantation. To achieve therapeutically relevant numbers of corrected cells, we constructed HSC-tropic HDAd5/35++ vectors expressing a 3' UTR truncated HMGA2 gene and a GFP reporter gene. A SB100x transposase vector mediated random integration of the tHMGA2/GFP transgene cassette. HSCs in mice were mobilized by subcutaneous injections of G-CSF and AMD3100/Plerixafor and intravenously injected with the integrating tHMGA2/GFP vector. This resulted in a slow but progressive, competitive expansion of GFP+ PBMCs, reaching about 50% by week 44 with further expansion in secondary recipients. Expansion occurred at the level of HSCs as well as at the levels of myeloid, lymphoid, and erythroid progenitors within the bone marrow and spleen. Importantly, based on genome-wide integration site analyses, expansion was polyclonal, without any signs of clonal dominance. Whole-exome sequencing did not show significant differences in the genomic instability indices between tHGMGA2/GFP mice and untreated control mice. Auto-expansion by tHMGA2 was validated in humanized mice. This is the first demonstration that simple injections of mobilization drugs and HDAd vectors can trigger auto-expansion of in vivo transduced HSCs resulting in transgene-marking rates that, theoretically, are curative for hemoglobinopathies.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Aphrodite Georgakopoulou
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Evangelos Nizamis
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | | | | | | | - Paul N Valdmanis
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA 98195, USA
| |
Collapse
|
3
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
4
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
5
|
Bahlmann NA, Tsoukas RL, Erkens S, Wang H, Jönsson F, Aydin M, Naumova EA, Lieber A, Ehrhardt A, Zhang W. Properties of Adenovirus Vectors with Increased Affinity to DSG2 and the Potential Benefits of Oncolytic Approaches and Gene Therapy. Viruses 2022; 14:v14081835. [PMID: 36016457 PMCID: PMC9412290 DOI: 10.3390/v14081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Carcinomas are characterized by a widespread upregulation of intercellular junctions that create a barrier to immune response and drug therapy. Desmoglein 2 (DSG2) represents such a junction protein and serves as one adenovirus receptor. Importantly, the interaction between human adenovirus type 3 (Ad3) and DSG2 leads to the shedding of the binding domain followed by a decrease in the junction protein expression and transient tight junction opening. Junction opener 4 (JO-4), a small recombinant protein derived from the Ad3 fiber knob, was previously developed with a higher affinity to DSG2. JO-4 protein has been proven to enhance the effects of antibody therapy and chemotherapy and is now considered for clinical trials. However, the effect of the JO4 mutation in the context of a virus remains insufficiently studied. Therefore, we introduced the JO4 mutation to various adenoviral vectors to explore their infection properties. In the current experimental settings and investigated cell lines, the JO4-containing vectors showed no enhanced transduction compared with their parental vectors in DSG2-high cell lines. Moreover, in DSG2-low cell lines, the JO4 vectors presented a rather weakened effect. Interestingly, DSG2-negative cell line MIA PaCa-2 even showed resistance to JO4 vector infection, possibly due to the negative effect of JO4 mutation on the usage of another Ad3 receptor: CD46. Together, our observations suggest that the JO4 vectors may have an advantage to prevent CD46-mediated sequestration, thereby achieving DSG2-specific transduction.
Collapse
Affiliation(s)
- Nora A. Bahlmann
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Raphael L. Tsoukas
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Sebastian Erkens
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Franziska Jönsson
- Institute of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Ella A. Naumova
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Correspondence: (A.E.); (W.Z.)
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Correspondence: (A.E.); (W.Z.)
| |
Collapse
|
6
|
Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells 2022; 11:cells11111843. [PMID: 35681538 PMCID: PMC9180595 DOI: 10.3390/cells11111843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
Autologous hematopoietic stem cell (HSC)-targeted gene therapy provides a one-time cure for various genetic diseases including sickle cell disease (SCD) and β-thalassemia. SCD is caused by a point mutation (20A > T) in the β-globin gene. Since SCD is the most common single-gene disorder, curing SCD is a primary goal in HSC gene therapy. β-thalassemia results from either the absence or the reduction of β-globin expression, and it can be cured using similar strategies. In HSC gene-addition therapy, patient CD34+ HSCs are genetically modified by adding a therapeutic β-globin gene with lentiviral transduction, followed by autologous transplantation. Alternatively, novel gene-editing therapies allow for the correction of the mutated β-globin gene, instead of addition. Furthermore, these diseases can be cured by γ-globin induction based on gene addition/editing in HSCs. In this review, we discuss HSC-targeted gene therapy in SCD with gene addition as well as gene editing.
Collapse
|
7
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
8
|
Wang H, Li C, Obadan A, Frizzell H, Hsiang TY, Gil S, Germond A, Fountain C, Baldessari A, Roffler S, Kiem HP, Fuller D, Lieber A. In vivo HSC gene therapy for SARS-CoV2 infection using a decoy receptor. Hum Gene Ther 2022; 33:389-403. [PMID: 35057635 PMCID: PMC9063208 DOI: 10.1089/hum.2021.295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
While SARS-CoV2 vaccines have shown an unprecedented success, the ongoing emergence of new variants and necessity to adjust vaccines justify the development of alternative prophylaxis and therapy approaches. Hematopoietic stem cell (HSC) gene therapy using a secreted CoV2 decoy receptor protein (sACE2-Ig) would involve a one-time intervention resulting in long-term protection against airway infection, viremia, and extrapulmonary symptoms. We recently developed a technically simple and portable in vivo hematopoietic HSC transduction approach that involves HSC mobilization from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. Considering the abundance of erythrocytes, in this study, we directed sACE2-Ig expression to erythroid cells using strong β-globin transcriptional regulatory elements. We performed in vivo HSC transduction of CD46-transgenic mice with an HDAd-sACE2-Ig vector. Serum sACE2-Ig levels reached 500–1,300 ng/mL after in vivo selection. At 22 weeks, we used genetically modified HSCs from these mice to substitute the hematopoietic system in human ACE2-transgenic mice, thus creating a model that is susceptible to SARS-CoV2 infection. Upon challenge with a lethal dose of CoV2 (WA-1), sACE2-Ig expressed from erythroid cells of test mice diminishes infection sequelae. Treated mice lost significantly less weight, had less viremia, and displayed reduced cytokine production and lung pathology. The second objective of this study was to assess the safety of in vivo HSC transduction and long-term sACE2-Ig expression in a rhesus macaque. With appropriate cytokine prophylaxis, intravenous injection of HDAd-sACE2-Ig into the mobilized animal was well tolerated. In vivo transduced HSCs preferentially localized to and survived in the spleen. sACE2-Ig expressed from erythroid cells did not affect erythropoiesis and the function of erythrocytes. While these pilot studies are promising, the antiviral efficacy of the approach has to be improved, for example, by using of decoy receptors with enhanced neutralizing capacity and/or expression of multiple antiviral effector proteins.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, 7284, Seattle, Washington, United States
| | - chang Li
- University of Washington, 7284, Medicine, 1959 NE Pacific Street, HSB K-263, Box357720, Seattle, Washington, United States, 98195
| | - Adebimpe Obadan
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Hannah Frizzell
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Tien-Ying Hsiang
- University of Washington, 7284, Department of Immunology, Seattle, Washington, United States
| | - Sucheol Gil
- University of Washington, 7284, Department of Medicine, Seattle, Washington, United States
| | - Audrey Germond
- University of Washington, 7284, Washington National Primate Research Center , Seattle, Washington, United States
| | - Connie Fountain
- University of Washington, 7284, WaNPRC, Seattle, Washington, United States
| | - Audrey Baldessari
- University of Washington, 7284, WaNPRC, Seattle, Washington, United States
| | - Steve Roffler
- Academia Sinica Division Of Humanities and Social Sciences, 485001, Institute of Biomedical Sciences, Taipei, Taiwan,
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, 7286, Clinical Research Division, 1100 Fairview Avenue N, D1-100, Seattle, Washington, United States, 98109-1024
- University of Washington School of Medicine, 12353, Seattle, United States, 98195-6340
| | - Deborah Fuller
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Andre Lieber
- University of Washington, 7284, Department of Medicine, Box 357720, Seattle, Washington, United States, 98195
- University of Washington
| |
Collapse
|
9
|
Lee BC, Lozano RJ, Dunbar CE. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Mol Ther 2021; 29:3205-3218. [PMID: 34509667 DOI: 10.1016/j.ymthe.2021.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) gene therapies have recently moved beyond gene-addition approaches to encompass targeted genome modification or correction, based on the development of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas technologies. Advances in ex vivo HSPC manipulation techniques have greatly improved HSPC susceptibility to genetic modification. Targeted gene-editing techniques enable precise modifications at desired genomic sites. Numerous preclinical studies have already demonstrated the therapeutic potential of gene therapies based on targeted editing. However, several significant hurdles related to adverse consequences of gene editing on HSPC function and genomic integrity remain before broad clinical potential can be realized. This review summarizes the status of HSPC gene editing, focusing on efficiency, genomic integrity, and long-term engraftment ability related to available genetic editing platforms and HSPC delivery methods. The response of long-term engrafting HSPCs to nuclease-mediated DNA breaks, with activation of p53, is a significant challenge, as are activation of innate and adaptive immune responses to editing components. Lastly, we propose alternative strategies that can overcome current hurdles to HSPC editing at various stages from cell collection to transplantation to facilitate successful clinical applications.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Lozano
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Psatha N, Georgakopoulou A, Li C, Nandakumar V, Georgolopoulos G, Acosta R, Paschoudi K, Nelson J, Chee D, Athanasiadou A, Kouvatsi A, Funnell APW, Lieber A, Yannaki E, Papayannopoulou T. Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo. Blood 2021; 138:1540-1553. [PMID: 34086867 PMCID: PMC8554647 DOI: 10.1182/blood.2020010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Thalassemia or sickle cell patients with hereditary persistence of fetal hemoglobin (HbF) have an ameliorated clinical phenotype and, in some cases, can achieve transfusion independence. Inactivation via genome editing of γ-globin developmental suppressors, such as BCL11A or LRF/ZBTB7A, or of their binding sites, have been shown to significantly increase expression of endogenous HbF. To broaden the therapeutic window beyond a single-editing approach, we have explored combinations of cis- and trans-editing targets to enhance HbF reactivation. Multiplex mutagenesis in adult CD34+ cells was well tolerated and did not lead to any detectable defect in the cells' proliferation and differentiation, either in vitro or in vivo. The combination of 1 trans and 1 cis mutation resulted in high editing retention in vivo, coupled with almost pancellular HbF expression in NBSGW mice. The greater in vivo performance of this combination was also recapitulated using a novel helper-dependent adenoviral-CRISPR vector (HD-Ad-dualCRISPR) in CD34+ cells from β-thalassemia patients transplanted to NBSGW mice. A pronounced increase in HbF expression was observed in human red blood cells in mice with established predominant β0/β0-thalassemic hemopoiesis after in vivo injection of the HD-Ad-dualCRISPR vector. Collectively, our data suggest that the combination of cis and trans fetal globin reactivation mutations has the potential to significantly increase HbF both totally and on a per cell basis over single editing and could thus provide significant clinical benefit to patients with severe β-globin phenotype.
Collapse
Affiliation(s)
| | - Aphrodite Georgakopoulou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
| | - Chang Li
- Division of Medical Genetics and
| | | | | | - Reyes Acosta
- Altius Institute for Biomedical Sciences, Seattle, WA
| | - Kiriaki Paschoudi
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, WA
| | - Daniel Chee
- Altius Institute for Biomedical Sciences, Seattle, WA
| | - Anastasia Athanasiadou
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
| | - Anastasia Kouvatsi
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
- Division of Hematology, University of Washington, Seattle, WA
| | | |
Collapse
|
11
|
Yannaki E, Psatha N, Papadopoulou A, Athanasopoulos T, Gravanis A, Roubelakis MG, Tsirigotis P, Anagnostopoulos A, Anagnou NP, Vassilopoulos G. Success Stories and Challenges Ahead in Hematopoietic Stem Cell Gene Therapy: Hemoglobinopathies as Disease Models. Hum Gene Ther 2021; 32:1120-1137. [PMID: 34662232 DOI: 10.1089/hum.2021.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is a relatively novel field that amounts to around four decades of continuous growth with its good and bad moments. Currently, the field has entered the clinical arena with the ambition to fulfil its promises for a permanent fix of incurable genetic disorders. Hemoglobinopathies as target diseases and hematopoietic stem cells (HSCs) as target cells of genetic interventions had a major share in the research effort toward efficiently implementing gene therapy. Dissection of HSC biology and improvements in gene transfer and gene expression technologies evolved in an almost synchronous manner to a point where the two fields seem to be functionally intercalated. In this review, we focus specifically on the development of gene therapy for hemoglobin disorders and look at both gene addition and gene correction strategies that may dominate the field of HSC-directed gene therapy in the near future and transform the therapeutic landscape for genetic diseases.
Collapse
Affiliation(s)
- Evangelia Yannaki
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Nikoletta Psatha
- Altius Institute for Biomedical Sciences, Seattle, Washington, USA
| | - Anastasia Papadopoulou
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Takis Athanasopoulos
- Cell and Gene Therapy (CGT), Medicinal Science and Technology (MST), GlaxoSmithKline (GSK), Medicines Research Centre, Stevenage, United Kingdom
| | - Achilleas Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece and Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Panagiotis Tsirigotis
- 2nd Department of Internal Medicine, ATTIKO General University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Achilles Anagnostopoulos
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - George Vassilopoulos
- BRFAA, Cell and Gene Therapy Lab, Athens, Greece.,Department of Hematology, UHL, University of Thessaly Medical School, Athens, Greece
| |
Collapse
|
12
|
Drysdale CM, Nassehi T, Gamer J, Yapundich M, Tisdale JF, Uchida N. Hematopoietic-Stem-Cell-Targeted Gene-Addition and Gene-Editing Strategies for β-hemoglobinopathies. Cell Stem Cell 2021; 28:191-208. [PMID: 33545079 DOI: 10.1016/j.stem.2021.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sickle cell disease (SCD) is caused by a well-defined point mutation in the β-globin gene and therefore is an optimal target for hematopoietic stem cell (HSC) gene-addition/editing therapy. In HSC gene-addition therapy, a therapeutic β-globin gene is integrated into patient HSCs via lentiviral transduction, resulting in long-term phenotypic correction. State-of-the-art gene-editing technology has made it possible to repair the β-globin mutation in patient HSCs or target genetic loci associated with reactivation of endogenous γ-globin expression. With both approaches showing signs of therapeutic efficacy in patients, we discuss current genetic treatments, challenges, and technical advances in this field.
Collapse
Affiliation(s)
- Claire M Drysdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tina Nassehi
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jackson Gamer
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Morgan Yapundich
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
13
|
Li C, Goncalves KA, Raskó T, Pande A, Gil S, Liu Z, Izsvák Z, Papayannopoulou T, Davis JC, Kiem HP, Lieber A. Single-dose MGTA-145/plerixafor leads to efficient mobilization and in vivo transduction of HSCs with thalassemia correction in mice. Blood Adv 2021; 5:1239-1249. [PMID: 33646305 PMCID: PMC7948287 DOI: 10.1182/bloodadvances.2020003714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
We have developed an in vivo hemopoietic stem cell (HSC) gene therapy approach without the need for myelosuppressive conditioning and autologous HSC transplantation. It involves HSC mobilization and IV injection of a helper-dependent adenovirus HDAd5/35++ vector system. The current mobilization regimen consists of granulocyte colony-stimulating factor (G-CSF) injections over a 4-day period, followed by the administration of plerixafor/AMD3100. We tested a simpler, 2-hour, G-CSF-free mobilization regimen using truncated GRO-β (MGTA-145; a CXCR2 agonist) and plerixafor in the context of in vivo HSC transduction in mice. The MGTA-145+plerixafor combination resulted in robust mobilization of HSCs. Importantly, compared with G-CSF+plerixafor, MGTA-145+plerixafor led to significantly less leukocytosis and no elevation of serum interleukin-6 levels and was thus likely to be less toxic. With both mobilization regimens, after in vivo selection with O6-benzylguanine (O6BG)/BCNU, stable GFP marking was achieved in >90% of peripheral blood mononuclear cells. Genome-wide analysis showed random, multiclonal vector integration. In vivo HSC transduction after mobilization with MGTA-145+plerixafor in a mouse model for thalassemia resulted in >95% human γ-globin+ erythrocytes at a level of 36% of mouse β-globin. Phenotypic analyses showed a complete correction of thalassemia. The γ-globin marking percentage and level were maintained in secondary recipients, further demonstrating that MGTA145+plerixafor mobilizes long-term repopulating HSCs. Our study indicates that brief exposure to MGTA-145+plerixafor may be advantageous as a mobilization regimen for in vivo HSC gene therapy applications across diseases, including thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | | | - Tamás Raskó
- AG "Mobile DNA Lab," Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Amit Pande
- AG "Mobile DNA Lab," Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Zhinan Liu
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Zsuzsanna Izsvák
- AG "Mobile DNA Lab," Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, and
- Department of Pathology, University of Washington, Seattle, WA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
14
|
Li C, Georgakopoulou A, Mishra A, Gil S, Hawkins RD, Yannaki E, Lieber A. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice. Blood Adv 2021; 5:1122-1135. [PMID: 33620431 PMCID: PMC7903237 DOI: 10.1182/bloodadvances.2020003702] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Base editors are capable of installing precise genomic alterations without creating double-strand DNA breaks. In this study, we targeted critical motifs regulating γ-globin reactivation with base editors delivered via HDAd5/35++ vectors. Through optimized design, we successfully produced a panel of cytidine and adenine base editor (ABE) vectors targeting the erythroid BCL11A enhancer or recreating naturally occurring hereditary persistence of fetal hemoglobin (HPFH) mutations in the HBG1/2 promoter. All 5 tested vectors efficiently installed target base conversion and led to γ-globin reactivation in human erythroid progenitor cells. We observed ~23% γ-globin protein production over β-globin, when using an ABE vector (HDAd-ABE-sgHBG-2) specific to the -113A>G HPFH mutation. In a β-YAC mouse model, in vivo hematopoietic progenitor/stem cell (HSPC) transduction with HDAd-ABE-sgHBG-2 followed by in vivo selection resulted in >40% γ-globin+ erythrocytes in the peripheral blood. This result corresponded to 21% γ-globin production over human β-globin. The average -113A>G conversion in total bone marrow cells was 20%. No alterations in hematological parameters, erythropoiesis, and bone marrow cellular composition were observed after treatment. No detectable editing was found at top-scoring, off-target genomic sites. Bone marrow lineage-negative cells from primary mice were capable of reconstituting secondary transplant-recipient mice with stable γ-globin expression. Importantly, the advantage of base editing over CRISPR/Cas9 was reflected by the markedly lower rates of intergenic HBG1/2 deletion and the absence of detectable toxicity in human CD34+ cells. Our observations suggest that HDAd-vectorized base editors represent a promising strategy for precise in vivo genome engineering for the treatment of β-hemoglobinopathies.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Aphrodite Georgakopoulou
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece; and
| | - Arpit Mishra
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece; and
- Department of Pathology, University of Washington, Seattle, WA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Li C, Wang H, Georgakopoulou A, Gil S, Yannaki E, Lieber A. In Vivo HSC Gene Therapy Using a Bi-modular HDAd5/35++ Vector Cures Sickle Cell Disease in a Mouse Model. Mol Ther 2021; 29:822-837. [PMID: 32949495 PMCID: PMC7854285 DOI: 10.1016/j.ymthe.2020.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
We have recently reported that, after in vivo hematopoietic stem cell/progenitor (HSPC) transduction with HDAd5/35++ vectors, SB100x transposase-mediated γ-globin gene addition achieved 10%-15% γ-globin of adult mouse globin, resulting in significant but incomplete phenotypic correction in a thalassemia intermedia mouse model. Furthermore, genome editing of a γ-globin repressor binding site within the γ-globin promoter by CRISPR-Cas9 results in efficient reactivation of endogenous γ-globin. Here, we aimed to combine these two mechanisms to obtain curative levels of γ-globin after in vivo HSPC transduction. We generated a HDAd5/35++ adenovirus vector (HDAd-combo) containing both modules and tested it in vitro and after in vivo HSPC transduction in healthy CD46/β-YAC mice and in a sickle cell disease mouse model (CD46/Townes). Compared to HDAd vectors containing either the γ-globin addition or the CRISPR-Cas9 reactivation units alone, in vivo HSC transduction of CD46/Townes mice with the HDAd-combo resulted in significantly higher γ-globin in red blood cells, reaching 30% of that of adult human α and βS chains and a complete phenotypic correction of sickle cell disease.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Hongjie Wang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Aphrodite Georgakopoulou
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki 57010, Greece
| | - Sucheol Gil
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki 57010, Greece
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Cannon P, Asokan A, Czechowicz A, Hammond P, Kohn DB, Lieber A, Malik P, Marks P, Porteus M, Verhoeyen E, Weissman D, Weissman I, Kiem HP. Safe and Effective In Vivo Targeting and Gene Editing in Hematopoietic Stem Cells: Strategies for Accelerating Development. Hum Gene Ther 2021; 32:31-42. [PMID: 33427035 DOI: 10.1089/hum.2020.263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
On May 11, 2020, the National Institutes of Health (NIH) and the Bill & Melinda Gates Foundation (Gates Foundation) held an exploratory expert scientific roundtable to inform an NIH-Gates Foundation collaboration on the development of scalable, sustainable, and accessible HIV and sickle cell disease (SCD) therapies based on in vivo gene editing of hematopoietic stem cells (HSCs). A particular emphasis was on how such therapies could be developed for low-resource settings in sub-Saharan Africa. Paula Cannon, PhD, of the University of Southern California and Hans-Peter Kiem, MD, PhD, of the Fred Hutchinson Cancer Research Center served as roundtable cochairs. Welcoming remarks were provided by the leadership of NIH, NHLBI, and BMGF, who cited the importance of assessing the state of the science and charting a path toward finding safe, effective, and durable gene-based therapies for HIV and SCD. These remarks were followed by three sessions in which participants heard presentations on and discussed the therapeutic potential of modified HSCs, leveraging HSC biology and differentiation, and in vivo HSC targeting approaches. This roundtable serves as the beginning of an ongoing discussion among NIH, the Gates Foundation, research and patient communities, and the public at large. As this collaboration progresses, these communities will be engaged as we collectively navigate the complex scientific and ethical issues surrounding in vivo HSC targeting and editing. Summarized excerpts from each of the presentations are given hereunder, reflecting the individual views and perspectives of each presenter.
Collapse
Affiliation(s)
- Paula Cannon
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Paula Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Andre Lieber
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Peter Marks
- U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM, CNRS, ENS de Lyon, Lyon, France.,Université de Nice, Nice, France
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irving Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
17
|
Vats N, Sanal MG, Venugopal SK, Taneja P, Sarin SK. Cloning of human ABCB11 gene in E. coli required the removal of an intragenic Pribnow-Schaller Box before it's Insertion into genomic safe harbor AAVS1 site using CRISPR-Cas9. F1000Res 2020; 9:1498. [PMID: 33868646 PMCID: PMC8030117 DOI: 10.12688/f1000research.26659.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Genomic safe harbors are sites in the genome which are safe for gene insertion such that the inserted gene will function properly, and the disruption of the genomic location doesn't cause any foreseeable risk to the host. The AAVS1 site is the genetic location which is disrupted upon integration of adeno associated virus (AAV) and is considered a 'safe-harbor' in human genome because about one-third of humans are infected with AAV and so far there is no apodictic evidence that AAV is pathogenic or disruption of AAVS1 causes any disease in man. Therefore, we chose to target the AAVS1 site for the insertion of ABCB11, a bile acid transporter which is defective in progressive familial intra hepatic cholestasis type-2 (PFIC-2), a lethal disease of children where cytotoxic bile salts accumulate inside hepatocytes killing them and eventually the patient. Methods: We used the CRISPR Cas9 a genome editing system to insert the ABCB11 gene at AAVS1 site in human cell-lines. Results: We found that human ABCB11 sequence has a "Pribnow- Schaller Box" which allows its expression in bacteria and expression of ABCB11 protein which is toxic to E. coli; the removal of this was required for successful cloning. We inserted ABCB11 at AAVS1 site in HEK 293T using CRISPR-Cas9 tool. We also found that the ABCB11 protein has similarity with E. coli endotoxin (lipid A) transporter MsbA. Conclusions: We inserted ABCB11 at AAVS1 site using CRISPR-Cas9; however, the frequency of homologous recombination was very low for this approach to be successful in vivo.
Collapse
Affiliation(s)
- Nisha Vats
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, Delhi, 110070, India
| | - Madhusudana Girija Sanal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, Delhi, 110070, India
| | | | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Noida, Uttar Pradesh, 201310, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, 110070, India
| |
Collapse
|
18
|
High-level protein production in erythroid cells derived from in vivo transduced hematopoietic stem cells. Blood Adv 2020; 3:2883-2894. [PMID: 31585952 PMCID: PMC6784527 DOI: 10.1182/bloodadvances.2019000706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
We developed an in vivo hematopoietic stem cell (HSC) transduction approach that involves HSC mobilization from the bone marrow into the peripheral bloodstream and the IV injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. HDAd5/35++ vectors target human CD46, a receptor that is abundantly expressed on primitive HSCs. Transgene integration is achieved by a hyperactive Sleeping Beauty transposase (SB100x) and transgene marking in peripheral blood cells can be increased by in vivo selection. Here we directed transgene expression to HSC-derived erythroid cells using β-globin regulatory elements. We hypothesized that the abundance and systemic distribution of erythroid cells can be harnessed for high-level production of therapeutic proteins. We first demonstrated that our approach allowed for sustained, erythroid-lineage specific GFP expression and accumulation of GFP protein in erythrocytes. Furthermore, after in vivo HSC transduction/selection in hCD46-transgenic mice, we demonstrated stable supraphysiological plasma concentrations of a bioengineered human factor VIII, termed ET3. High-level ET3 production in erythroid cells did not affect erythropoiesis. A phenotypic correction of bleeding was observed after in vivo HSC transduction of hCD46+/+/F8-/- hemophilia A mice despite high plasma anti-ET3 antibody titers. This suggests that ET3 levels were high enough to provide sufficient noninhibited ET3 systemically and/or locally (in blood clots) to control bleeding. In addition to its relevance for hemophilia A gene therapy, our approach has implications for the therapy of other inherited or acquired diseases that require high levels of therapeutic proteins in the blood circulation.
Collapse
|
19
|
Wang H, Georgakopoulou A, Li C, Liu Z, Gil S, Bashyam A, Yannaki E, Anagnostopoulos A, Pande A, Izsvák Z, Papayannopoulou T, Lieber A. Curative in vivo hematopoietic stem cell gene therapy of murine thalassemia using large regulatory elements. JCI Insight 2020; 5:139538. [PMID: 32814708 PMCID: PMC7455141 DOI: 10.1172/jci.insight.139538] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/15/2020] [Indexed: 01/05/2023] Open
Abstract
Recently, we demonstrated that hematopoietic stem/progenitor cell (HSPC) mobilization followed by intravenous injection of integrating, helper-dependent adenovirus HDAd5/35++ vectors resulted in efficient transduction of long-term repopulating cells and disease amelioration in mouse models after in vivo selection of transduced HSPCs. Acute innate toxicity associated with HDAd5/35++ injection was controlled by appropriate prophylaxis, making this approach feasible for clinical translation. Our ultimate goal is to use this technically simple in vivo HSPC transduction approach for gene therapy of thalassemia major or sickle cell disease. A cure of these diseases requires high expression levels of the therapeutic protein (γ- or β-globin), which is difficult to achieve with lentivirus vectors because of their genome size limitation not allowing larger regulatory elements to be accommodated. Here, we capitalized on the 35 kb insert capacity of HDAd5/35++ vectors to demonstrate that transcriptional regulatory regions of the β-globin locus with a total length of 29 kb can efficiently be transferred into HSPCs. The in vivo HSPC transduction resulted in stable γ-globin levels in erythroid cells that conferred a complete cure of murine thalassemia intermedia. Notably, this was achieved with a minimal in vivo HSPC selection regimen. Employing large regulatory elements in the context of HDAd5/35++ vectors for in vivo transduction of HSPCs achieved gamma-globin levels in erythroid cells that cured murine thalassemia intermedia.
Collapse
Affiliation(s)
- Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Aphrodite Georgakopoulou
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA.,Hematology Department, Hematopoietic Stem Cell Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Zhinan Liu
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Evangelia Yannaki
- Hematology Department, Hematopoietic Stem Cell Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Achilles Anagnostopoulos
- Hematology Department, Hematopoietic Stem Cell Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Amit Pande
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Li C, Course MM, McNeish IA, Drescher CW, Valdmanis PN, Lieber A. Prophylactic In Vivo Hematopoietic Stem Cell Gene Therapy with an Immune Checkpoint Inhibitor Reverses Tumor Growth in Syngeneic Mouse Tumor Models. Cancer Res 2020; 80:549-560. [PMID: 31727629 PMCID: PMC7002220 DOI: 10.1158/0008-5472.can-19-1044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
Population-wide testing for cancer-associated mutations has established that more than one-fifth of ovarian and breast carcinomas are associated with inherited risk. Salpingo-oophorectomy and/or mastectomy are currently the only effective options offered to women with high-risk germline mutations. Our goal here is to develop a long-lasting approach that provides immunoprophylaxis for mutation carriers. Our approach leverages the fact that at early stages, tumors recruit hematopoietic stem/progenitor cells (HSPC) from the bone marrow and differentiate them into tumor-supporting cells. We developed a technically simple technology to genetically modify HSPCs in vivo. The technology involves HSPC mobilization and intravenous injection of an integrating HDAd5/35++ vector. In vivo HSPC transduction with a GFP-expressing vector and subsequent implantation of syngeneic tumor cells showed >80% GFP marking in tumor-infiltrating leukocytes. To control expression of transgenes, we developed a miRNA regulation system that is activated only when HSPCs are recruited to and differentiated by the tumor. We tested our approach using the immune checkpoint inhibitor anti-PD-L1-γ1 as an effector gene. In in vivo HSPC-transduced mice with implanted mouse mammary carcinoma (MMC) tumors, after initial tumor growth, tumors regressed and did not recur. Conventional treatment with an anti-PD-L1 mAb had no significant antitumor effect, indicating that early, self-activating expression of anti-PD-L1-γ1 can overcome the immunosuppressive environment in MMC tumors. The efficacy and safety of this approach was further validated in an ovarian cancer model with typical germline mutations (ID8 p53-/- brca2-/-), both in a prophylactic and therapeutic setting. This HSPC gene therapy approach has potential for clinical translation. SIGNIFICANCE: Considering the limited prophylactic options that are currently offered to women with high-risk germ-line mutations, the in vivo HSPC gene therapy approach is a promising strategy that addresses a major medical problem.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Meredith M Course
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | | | | | - Paul N Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington.
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Huang CW, Jiang H. [Research advances in transplantation for thalassemia major]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:77-81. [PMID: 31948529 PMCID: PMC7389706 DOI: 10.7499/j.issn.1008-8830.2020.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Thalassemia is an inherited blood disorder caused by disordered globin chain synthesis due to mutations in the regulatory genes for hemoglobin. At present, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is recognized as the only curative method for treatment. Through the revolution of pretransplantation regimens and selection of donor and source of stem cells, patients' survival has been greatly improved. This article reviews the development of transplantation for thalassemia and related research advances, in order to provide suitable treatment options for clinical application.
Collapse
Affiliation(s)
- Chu-Wen Huang
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China.
| | | |
Collapse
|
22
|
Li C, Lieber A. Adenovirus vectors in hematopoietic stem cell genome editing. FEBS Lett 2019; 593:3623-3648. [PMID: 31705806 PMCID: PMC10473235 DOI: 10.1002/1873-3468.13668] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022]
Abstract
Genome editing of hematopoietic stem cells (HSCs) represents a therapeutic option for a number of hematological genetic diseases, as HSCs have the potential for self-renewal and differentiation into all blood cell lineages. This review presents advances of genome editing in HSCs utilizing adenovirus vectors as delivery vehicles. We focus on capsid-modified, helper-dependent adenovirus vectors that are devoid of all viral genes and therefore exhibit an improved safety profile. We discuss HSC genome engineering for several inherited disorders and infectious diseases including hemoglobinopathies, Fanconi anemia, hemophilia, and HIV-1 infection by ex vivo and in vivo editing in transgenic mice, nonhuman primates, as well as in human CD34+ cells. Mechanisms of therapeutic gene transfer including episomal expression of designer nucleases and base editors, transposase-mediated random integration, and targeted homology-directed repair triggered integration into selected genomic safe harbor loci are also reviewed.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Rajawat YS, Humbert O, Kiem HP. In-Vivo Gene Therapy with Foamy Virus Vectors. Viruses 2019; 11:v11121091. [PMID: 31771194 PMCID: PMC6950547 DOI: 10.3390/v11121091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Foamy viruses (FVs) are nonpathogenic retroviruses that infect various animals including bovines, felines, nonhuman primates (NHPs), and can be transmitted to humans through zoonotic infection. Due to their non-pathogenic nature, broad tissue tropism and relatively safe integration profile, FVs have been engineered as novel vectors (foamy virus vector, FVV) for stable gene transfer into different cells and tissues. FVVs have emerged as an alternative platform to contemporary viral vectors (e.g., adeno associated and lentiviral vectors) for experimental and therapeutic gene therapy of a variety of monogenetic diseases. Some of the important features of FVVs include the ability to efficiently transduce hematopoietic stem and progenitor cells (HSPCs) from humans, NHPs, canines and rodents. We have successfully used FVV for proof of concept studies to demonstrate safety and efficacy following in-vivo delivery in large animal models. In this review, we will comprehensively discuss FVV based in-vivo gene therapy approaches established in the X-linked severe combined immunodeficiency (SCID-X1) canine model.
Collapse
Affiliation(s)
- Yogendra Singh Rajawat
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
- Departments of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Departments of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-667-4425
| |
Collapse
|
24
|
Abstract
Gene therapy for β-thalassemia and sickle-cell disease is based on transplantation of genetically corrected, autologous hematopoietic stem cells. Preclinical and clinical studies have shown the safety and efficacy of this therapeutic approach, currently based on lentiviral vectors to transfer a β-globin gene under the transcriptional control of regulatory elements of the β-globin locus. Nevertheless, a number of factors are still limiting its efficacy, such as limited stem-cell dose and quality, suboptimal gene transfer efficiency and gene expression levels, and toxicity of myeloablative regimens. In addition, the cost and complexity of the current vector and cell manufacturing clearly limits its application to patients living in less favored countries, where hemoglobinopathies may reach endemic proportions. Gene-editing technology may provide a therapeutic alternative overcoming some of these limitations, though proving its safety and efficacy will most likely require extensive clinical investigation.
Collapse
Affiliation(s)
- Marina Cavazzana
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
- Correspondence: Marina Cavazzana, Imagine Institute, 24 Boulevard de Montparnasse, 75015 Paris, France.
| | - Fulvio Mavilio
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Fulvio Mavilio, Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy.
| |
Collapse
|
25
|
Li C, Mishra AS, Gil S, Wang M, Georgakopoulou A, Papayannopoulou T, Hawkins RD, Lieber A. Targeted Integration and High-Level Transgene Expression in AAVS1 Transgenic Mice after In Vivo HSC Transduction with HDAd5/35++ Vectors. Mol Ther 2019; 27:2195-2212. [PMID: 31494053 DOI: 10.1016/j.ymthe.2019.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Our goal is the development of in vivo hematopoietic stem cell (HSC) transduction technology with targeted integration. To achieve this, we modified helper-dependent HDAd5/35++ vectors to express a CRISPR/Cas9 specific to the "safe harbor" adeno-associated virus integration site 1 (AAVS1) locus and to provide a donor template for targeted integration through homology-dependent repair. We tested the HDAd-CRISPR + HDAd-donor vector system in AAVS1 transgenic mice using a standard ex vivo HSC gene therapy approach as well as a new in vivo HSC transduction approach that involves HSC mobilization and intravenous HDAd5/35++ injections. In both settings, the majority of treated mice had transgenes (GFP or human γ-globin) integrated into the AAVS1 locus. On average, >60% of peripheral blood cells expressed the transgene after in vivo selection with low-dose O6BG/bis-chloroethylnitrosourea (BCNU). Ex vivo and in vivo HSC transduction and selection studies with HDAd-CRISPR + HDAd-globin-donor resulted in stable γ-globin expression at levels that were significantly higher (>20% γ-globin of adult mouse globin) than those achieved in previous studies with a SB100x-transposase-based HDAd5/35++ system that mediates random integration. The ability to achieve therapeutically relevant transgene expression levels after in vivo HSC transduction and selection and targeted integration make our HDAd5/35++-based vector system a new tool in HSC gene therapy.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Arpit Suresh Mishra
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Meng Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Aphrodite Georgakopoulou
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | | | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Box 357720, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Wang H, Georgakopoulou A, Psatha N, Li C, Capsali C, Samal HB, Anagnostopoulos A, Ehrhardt A, Izsvák Z, Papayannopoulou T, Yannaki E, Lieber A. In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia. J Clin Invest 2019; 129:598-615. [PMID: 30422819 PMCID: PMC6355219 DOI: 10.1172/jci122836] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
Current thalassemia gene therapy protocols require the collection of hematopoietic stem/progenitor cells (HSPCs), in vitro culture, lentivirus vector transduction, and retransplantation into myeloablated patients. Because of cost and technical complexity, it is unlikely that such protocols will be applicable in developing countries, where the greatest demand for a β-thalassemia therapy lies. We have developed a simple in vivo HSPC gene therapy approach that involves HSPC mobilization and an intravenous injection of integrating HDAd5/35++ vectors. Transduced HSPCs homed back to the bone marrow, where they persisted long-term. HDAd5/35++ vectors for in vivo gene therapy of thalassemia had a unique capsid that targeted primitive HSPCs through human CD46, a relatively safe SB100X transposase-based integration machinery, a micro-LCR-driven γ-globin gene, and an MGMT(P140K) system that allowed for increasing the therapeutic effect by short-term treatment with low-dose O6-benzylguanine plus bis-chloroethylnitrosourea. We showed in "healthy" human CD46-transgenic mice and in a mouse model of thalassemia intermedia that our in vivo approach resulted in stable γ-globin expression in the majority of circulating red blood cells. The high marking frequency was maintained in secondary recipients. In the thalassemia model, a near-complete phenotypic correction was achieved. The treatment was well tolerated. This cost-efficient and "portable" approach could permit a broader clinical application of thalassemia gene therapy.
Collapse
Affiliation(s)
- Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Aphrodite Georgakopoulou
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikoletta Psatha
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chrysi Capsali
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Achilles Anagnostopoulos
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | | | | | | | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Hudecek M, Ivics Z. Non-viral therapeutic cell engineering with the Sleeping Beauty transposon system. Curr Opin Genet Dev 2018; 52:100-108. [PMID: 29957586 DOI: 10.1016/j.gde.2018.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Widespread treatment of human diseases with gene therapies necessitates the development of gene transfer vectors that integrate genetic information effectively, safely and economically. Indeed, significant efforts have been devoted to engineer novel tools that (i) achieve high-level stable gene transfer at low toxicity to the host cell; (ii) induce low levels of genotoxicity and possess a `safe' integration profile with a high proportion of integrations into safe genomic locations; and (iii) are associated with acceptable cost per treatment, and scalable/exportable vector production to serve large numbers of patients. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. Here we review recent developments in vectorization of SB as a tool for gene therapy, and highlight clinical development of the SB system towards hematopoietic stem cell gene therapy and cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
28
|
Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood 2018; 131:2915-2928. [PMID: 29789357 DOI: 10.1182/blood-2018-03-838540] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Disorders involving β-globin gene mutations, primarily β-thalassemia and sickle cell disease, represent a major target for hematopoietic stem/progenitor cell (HSPC) gene therapy. This includes CRISPR/Cas9-mediated genome editing approaches in adult CD34+ cells aimed toward the reactivation of fetal γ-globin expression in red blood cells. Because models involving erythroid differentiation of CD34+ cells have limitations in assessing γ-globin reactivation, we focused on human β-globin locus-transgenic (β-YAC) mice. We used a helper-dependent human CD46-targeting adenovirus vector expressing CRISPR/Cas9 (HDAd-HBG-CRISPR) to disrupt a repressor binding region within the γ-globin promoter. We transduced HSPCs from β-YAC/human CD46-transgenic mice ex vivo and subsequently transplanted them into irradiated recipients. Furthermore, we used an in vivo HSPC transduction approach that involves HSPC mobilization and the intravenous injection of HDAd-HBG-CRISPR into β-YAC/CD46-transgenic mice. In both models, we demonstrated efficient target site disruption, resulting in a pronounced switch from human β- to γ-globin expression in red blood cells of adult mice that was maintained after secondary transplantation of HSPCs. In long-term follow-up studies, we did not detect hematological abnormalities, indicating that HBG promoter editing does not negatively affect hematopoiesis. This is the first study that shows successful in vivo HSPC genome editing by CRISPR/Cas9.
Collapse
|