1
|
Yoon JK, Schindler JW, Loperfido M, Baricordi C, DeAndrade MP, Jacobs ME, Treleaven C, Plasschaert RN, Yan A, Barese CN, Dogan Y, Chen VP, Fiorini C, Hull F, Barbarossa L, Unnisa Z, Ivanov D, Kutner RH, Guda S, Oborski C, Maiwald T, Michaud V, Rothe M, Schambach A, Pfeifer R, Mason C, Biasco L, van Til NP. Preclinical lentiviral hematopoietic stem cell gene therapy corrects Pompe disease-related muscle and neurological manifestations. Mol Ther 2024; 32:3847-3864. [PMID: 39295144 PMCID: PMC11573599 DOI: 10.1016/j.ymthe.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Pompe disease, a rare genetic neuromuscular disorder, is caused by a deficiency of acid alpha-glucosidase (GAA), leading to an accumulation of glycogen in lysosomes, and resulting in the progressive development of muscle weakness. The current standard treatment, enzyme replacement therapy (ERT), is not curative and has limitations such as poor penetration into skeletal muscle and both the central and peripheral nervous systems, a risk of immune responses against the recombinant enzyme, and the requirement for high doses and frequent infusions. To overcome these limitations, lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy has been proposed as a next-generation approach for treating Pompe disease. This study demonstrates the potential of lentiviral HSPC gene therapy to reverse the pathological effects of Pompe disease in a preclinical mouse model. It includes a comprehensive safety assessment via integration site analysis, along with single-cell RNA sequencing analysis of central nervous tissue samples to gain insights into the underlying mechanisms of phenotype correction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aimin Yan
- AVROBIO, Inc., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Véronique Michaud
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; Advanced Centre for Biochemical Engineering, University College London, London WC1E 6AE, UK
| | - Luca Biasco
- AVROBIO, Inc., Cambridge, MA 02139, USA; Zayed Centre for Research, University College London, London WC1N 1DZ, UK
| | - Niek P van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1081 HV, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Colella P. Advances in Pompe Disease Treatment: From Enzyme Replacement to Gene Therapy. Mol Diagn Ther 2024; 28:703-719. [PMID: 39134822 DOI: 10.1007/s40291-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 10/27/2024]
Abstract
Pompe disease is a neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), hydrolyzing glycogen to glucose. Pathological glycogen storage, the hallmark of the disease, disrupts the metabolism and function of various cell types, especially muscle cells, leading to cardiac, motor, and respiratory dysfunctions. The spectrum of Pompe disease manifestations spans two main forms: classical infantile-onset (IOPD) and late-onset (LOPD). IOPD, caused by almost complete GAA deficiency, presents at birth and leads to premature death by the age of 2 years without treatment. LOPD, less severe due to partial GAA activity, appears in childhood, adolescence, or adulthood with muscle weakness and respiratory problems. Since 2006, enzyme replacement therapy (ERT) has been approved for Pompe disease, offering clinical benefits but not a cure. However, advances in early diagnosis through newborn screening, recognizing disease manifestations, and developing improved treatments are set to enhance Pompe disease care. This article reviews recent progress in ERT and ongoing translational research, including the approval of second-generation ERTs, a clinical trial of in utero ERT, and preclinical development of gene and substrate reduction therapies. Notably, gene therapy using intravenous delivery of adeno-associated virus (AAV) vectors is in phase I/II clinical trials for both LOPD and IOPD. Promising data from LOPD trials indicate that most participants met the criteria to discontinue ERT several months after gene therapy. The advantages and challenges of this approach are discussed. Overall, significant progress is being made towards curative therapies for Pompe disease. While several challenges remain, emerging data are promising and suggest the potential for a once-in-a-lifetime treatment.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Jauze L, Vie M, Miagoux Q, Rossiaud L, Vidal P, Montalvo-Romeral V, Saliba H, Jarrige M, Polveche H, Nozi J, Le Brun PR, Bocchialini L, Francois A, Cosette J, Rouillon J, Collaud F, Bordier F, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele NF, Gross DA, Hoch L, Nissan X, Ronzitti G. Synergism of dual AAV gene therapy and rapamycin rescues GSDIII phenotype in muscle and liver. JCI Insight 2024; 9:e172614. [PMID: 38753465 PMCID: PMC11382881 DOI: 10.1172/jci.insight.172614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.
Collapse
Affiliation(s)
- Louisa Jauze
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Mallaury Vie
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Quentin Miagoux
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Lucille Rossiaud
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Patrice Vidal
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Valle Montalvo-Romeral
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Hanadi Saliba
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Margot Jarrige
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Helene Polveche
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Justine Nozi
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | - Luca Bocchialini
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Amandine Francois
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | - Jérémy Rouillon
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Fanny Collaud
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | | | | | | | | | | | - David-Alexandre Gross
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Lucile Hoch
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Xavier Nissan
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| |
Collapse
|
4
|
Muñoz S, Bertolin J, Jimenez V, Jaén ML, Garcia M, Pujol A, Vilà L, Sacristan V, Barbon E, Ronzitti G, El Andari J, Tulalamba W, Pham QH, Ruberte J, VandenDriessche T, Chuah MK, Grimm D, Mingozzi F, Bosch F. Treatment of infantile-onset Pompe disease in a rat model with muscle-directed AAV gene therapy. Mol Metab 2024; 81:101899. [PMID: 38346589 PMCID: PMC10877955 DOI: 10.1016/j.molmet.2024.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.
Collapse
Affiliation(s)
- Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Joan Bertolin
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Maria Luisa Jaén
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Elena Barbon
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Jihad El Andari
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Quang Hong Pham
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Jesus Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Federico Mingozzi
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
5
|
Gardin A, Rouillon J, Montalvo-Romeral V, Rossiaud L, Vidal P, Launay R, Vie M, Krimi Benchekroun Y, Cosette J, Bertin B, La Bella T, Dubreuil G, Nozi J, Jauze L, Fragnoud R, Daniele N, Van Wittenberghe L, Esque J, André I, Nissan X, Hoch L, Ronzitti G. A functional mini-GDE transgene corrects impairment in models of glycogen storage disease type III. J Clin Invest 2024; 134:e172018. [PMID: 38015640 PMCID: PMC10786702 DOI: 10.1172/jci172018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.
Collapse
Affiliation(s)
- Antoine Gardin
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Jérémy Rouillon
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Valle Montalvo-Romeral
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Lucille Rossiaud
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Patrice Vidal
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Romain Launay
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Mallaury Vie
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Youssef Krimi Benchekroun
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | - Bérangère Bertin
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Tiziana La Bella
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | - Justine Nozi
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Louisa Jauze
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | | | | | - Jérémy Esque
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Xavier Nissan
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Lucile Hoch
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| |
Collapse
|
6
|
Koeberl DD, Koch RL, Lim JA, Brooks ED, Arnson BD, Sun B, Kishnani PS. Gene therapy for glycogen storage diseases. J Inherit Metab Dis 2024; 47:93-118. [PMID: 37421310 PMCID: PMC10874648 DOI: 10.1002/jimd.12654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.
Collapse
Affiliation(s)
- Dwight D. Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Rebecca L. Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Elizabeth D. Brooks
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Benjamin D. Arnson
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
7
|
Sellier P, Vidal P, Bertin B, Gicquel E, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele N, Richard I, Gross DA, Mingozzi F, Collaud F, Ronzitti G. Muscle-specific, liver-detargeted adeno-associated virus gene therapy rescues Pompe phenotype in adult and neonate Gaa -/- mice. J Inherit Metab Dis 2024; 47:119-134. [PMID: 37204237 DOI: 10.1002/jimd.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response. Multiple clinical trials are ongoing in PD with adeno-associated virus (AAV) vectors based on liver- and muscle-targeting. Current gene therapy approaches are limited by liver proliferation, poor muscle targeting, and the potential immune response to the hGAA transgene. To generate a treatment tailored to infantile-onset PD, we took advantage of a novel AAV capsid able to increase skeletal muscle targeting compared to AAV9 while reducing liver overload. When combined with a liver-muscle tandem promoter (LiMP), and despite the extensive liver-detargeting, this vector had a limited immune response to the hGAA transgene. This combination of capsid and promoter with improved muscle expression and specificity allowed for glycogen clearance in cardiac and skeletal muscles of Gaa-/- adult mice. In neonate Gaa-/- , complete rescue of glycogen content and muscle strength was observed 6 months after AAV vector injection. Our work highlights the importance of residual liver expression to control the immune response toward a potentially immunogenic transgene expressed in muscle. In conclusion, the demonstration of the efficacy of a muscle-specific AAV capsid-promoter combination for the full rescue of PD manifestation in both neonate and adult Gaa-/- provides a potential therapeutic avenue for the infantile-onset form of this devastating disease.
Collapse
Affiliation(s)
- P Sellier
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - P Vidal
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - B Bertin
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - E Gicquel
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | | | | | | | | | | | - I Richard
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - D A Gross
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Mingozzi
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Collaud
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - G Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| |
Collapse
|
8
|
Pontoizeau C, Gaborit C, Tual N, Simon-Sola M, Rotaru I, Benoist M, Colella P, Lamazière A, Brassier A, Arnoux JB, Rötig A, Ottolenghi C, de Lonlay P, Mingozzi F, Cavazzana M, Schiff M. Successful treatment of severe MSUD in Bckdhb -/- mice with neonatal AAV gene therapy. J Inherit Metab Dis 2024; 47:41-49. [PMID: 36880392 DOI: 10.1002/jimd.12604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/11/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Maple syrup urine disease (MSUD) is rare autosomal recessive metabolic disorder caused by the dysfunction of the mitochondrial branched-chain 2-ketoacid dehydrogenase (BCKD) enzyme complex leading to massive accumulation of branched-chain amino acids and 2-keto acids. MSUD management, based on a life-long strict protein restriction with nontoxic amino acids oral supplementation represents an unmet need as it is associated with a poor quality of life, and does not fully protect from acute life-threatening decompensations or long-term neuropsychiatric complications. Orthotopic liver transplantation is a beneficial therapeutic option, which shows that restoration of only a fraction of whole-body BCKD enzyme activity is therapeutic. MSUD is thus an ideal target for gene therapy. We and others have tested AAV gene therapy in mice for two of the three genes involved in MSUD, BCKDHA and DBT. In this study, we developed a similar approach for the third MSUD gene, BCKDHB. We performed the first characterization of a Bckdhb-/- mouse model, which recapitulates the severe human phenotype of MSUD with early-neonatal symptoms leading to death during the first week of life with massive accumulation of MSUD biomarkers. Based on our previous experience in Bckdha-/- mice, we designed a transgene carrying the human BCKDHB gene under the control of a ubiquitous EF1α promoter, encapsidated in an AAV8 capsid. Injection in neonatal Bckdhb-/- mice at 1014 vg/kg achieved long-term rescue of the severe MSUD phenotype of Bckdhb-/- mice. These data further validate the efficacy of gene therapy for MSUD opening perspectives towards clinical translation.
Collapse
Affiliation(s)
- Clément Pontoizeau
- Necker Hospital, APHP, Biochemistry, Metabolomics Unit, University Paris Cité, Paris, France
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, University Paris Cité, Paris, France
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | | | - Nolan Tual
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | | | - Irina Rotaru
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | | | | | | | - Anaïs Brassier
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, University Paris Cité, Paris, France
| | - Jean-Baptiste Arnoux
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, University Paris Cité, Paris, France
| | - Agnès Rötig
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Chris Ottolenghi
- Necker Hospital, APHP, Biochemistry, Metabolomics Unit, University Paris Cité, Paris, France
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, University Paris Cité, Paris, France
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Pascale de Lonlay
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, University Paris Cité, Paris, France
- Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | | | - Marina Cavazzana
- Inserm UMR_S1163, Institut Imagine, Paris, France
- Necker Hospital, APHP, Biotherapies Department and Clinical Investigation Center, Inserm, University Paris Cité, Paris, France
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, University Paris Cité, Paris, France
- Inserm UMR_S1163, Institut Imagine, Paris, France
| |
Collapse
|
9
|
Leon-Astudillo C, Trivedi PD, Sun RC, Gentry MS, Fuller DD, Byrne BJ, Corti M. Current avenues of gene therapy in Pompe disease. Curr Opin Neurol 2023; 36:464-473. [PMID: 37639402 PMCID: PMC10911405 DOI: 10.1097/wco.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.
Collapse
Affiliation(s)
- Carmen Leon-Astudillo
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Prasad D Trivedi
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
10
|
Meena NK, Randazzo D, Raben N, Puertollano R. AAV-mediated delivery of secreted acid α-glucosidase with enhanced uptake corrects neuromuscular pathology in Pompe mice. JCI Insight 2023; 8:e170199. [PMID: 37463048 PMCID: PMC10543735 DOI: 10.1172/jci.insight.170199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Gene therapy is under advanced clinical development for several lysosomal storage disorders. Pompe disease, a debilitating neuromuscular illness affecting infants, children, and adults with different severity, is caused by a deficiency of lysosomal glycogen-degrading enzyme acid α-glucosidase (GAA). Here, we demonstrated that adeno-associated virus-mediated (AAV-mediated) systemic gene transfer reversed glycogen storage in all key therapeutic targets - skeletal and cardiac muscles, the diaphragm, and the central nervous system - in both young and severely affected old Gaa-knockout mice. Furthermore, the therapy reversed secondary cellular abnormalities in skeletal muscle, such as those in autophagy and mTORC1/AMPK signaling. We used an AAV9 vector encoding a chimeric human GAA protein with enhanced uptake and secretion to facilitate efficient spread of the expressed protein among multiple target tissues. These results lay the groundwork for a future clinical development strategy in Pompe disease.
Collapse
Affiliation(s)
- Naresh K. Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Dabiri H, Safarzadeh Kozani P, Habibi Anbouhi M, Mirzaee Godarzee M, Haddadi MH, Basiri M, Ziaei V, Sadeghizadeh M, Hajizadeh Saffar E. Site-specific transgene integration in chimeric antigen receptor (CAR) T cell therapies. Biomark Res 2023; 11:67. [PMID: 37403182 DOI: 10.1186/s40364-023-00509-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells and natural killer (NK) cells are genetically engineered immune cells that can detect target antigens on the surface of target cells and eliminate them following adoptive transfer. Recent progress in CAR-based therapies has led to outstanding clinical success in certain patients with leukemias and lymphomas and offered therapeutic benefits to those resistant to conventional therapies. The universal approach to stable CAR transgene delivery into the T/NK cells is the use of viral particles. Such approaches mediate semi-random transgene insertions spanning the entire genome with a high preference for integration into sites surrounding highly-expressed genes and active loci. Regardless of the variable CAR expression level based on the integration site of the CAR transgene, foreign integrated DNA fragments may affect the neighboring endogenous genes and chromatin structure and potentially change a transduced T/NK cell behavior and function or even favor cellular transformation. In contrast, site-specific integration of CAR constructs using recent genome-editing technologies could overcome the limitations and disadvantages of universal random gene integration. Herein, we explain random and site-specific integration of CAR transgenes in CAR-T/NK cell therapies. Also, we tend to summarize the methods for site-specific integration as well as the clinical outcomes of certain gene disruptions or enhancements due to CAR transgene integration. Also, the advantages and limitations of using site-specific integration methods are discussed in this review. Ultimately, we will introduce the genomic safe harbor (GSH) standards and suggest some appropriate safety prospects for CAR integration in CAR-T/NK cell therapies.
Collapse
Affiliation(s)
- Hamed Dabiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohadeseh Mirzaee Godarzee
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahab Ziaei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Hajizadeh Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
12
|
Dabiri H, Safarzadeh Kozani P, Habibi Anbouhi M, Mirzaee Godarzee M, Haddadi MH, Basiri M, Ziaei V, Sadeghizadeh M, Hajizadeh Saffar E. Site-specific transgene integration in chimeric antigen receptor (CAR) T cell therapies. Biomark Res 2023; 11:67. [DOI: https:/doi.org/10.1186/s40364-023-00509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/09/2023] [Indexed: 09/15/2023] Open
Abstract
AbstractChimeric antigen receptor (CAR) T cells and natural killer (NK) cells are genetically engineered immune cells that can detect target antigens on the surface of target cells and eliminate them following adoptive transfer. Recent progress in CAR-based therapies has led to outstanding clinical success in certain patients with leukemias and lymphomas and offered therapeutic benefits to those resistant to conventional therapies. The universal approach to stable CAR transgene delivery into the T/NK cells is the use of viral particles. Such approaches mediate semi-random transgene insertions spanning the entire genome with a high preference for integration into sites surrounding highly-expressed genes and active loci. Regardless of the variable CAR expression level based on the integration site of the CAR transgene, foreign integrated DNA fragments may affect the neighboring endogenous genes and chromatin structure and potentially change a transduced T/NK cell behavior and function or even favor cellular transformation. In contrast, site-specific integration of CAR constructs using recent genome-editing technologies could overcome the limitations and disadvantages of universal random gene integration. Herein, we explain random and site-specific integration of CAR transgenes in CAR-T/NK cell therapies. Also, we tend to summarize the methods for site-specific integration as well as the clinical outcomes of certain gene disruptions or enhancements due to CAR transgene integration. Also, the advantages and limitations of using site-specific integration methods are discussed in this review. Ultimately, we will introduce the genomic safe harbor (GSH) standards and suggest some appropriate safety prospects for CAR integration in CAR-T/NK cell therapies.
Collapse
|
13
|
Peres C, Sellitto C, Nardin C, Putti S, Orsini T, Di Pietro C, Marazziti D, Vitiello A, Calistri A, Rigamonti M, Scavizzi F, Raspa M, Zonta F, Yang G, White TW, Mammano F. Antibody gene transfer treatment drastically improves epidermal pathology in a keratitis ichthyosis deafness syndrome model using male mice. EBioMedicine 2023; 89:104453. [PMID: 36736132 PMCID: PMC9926223 DOI: 10.1016/j.ebiom.2023.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Keratitis ichthyosis deafness (KID) syndrome is a rare disorder caused by hemichannel (HC) activating gain-of-function mutations in the GJB2 gene encoding connexin (Cx) 26, for which there is no cure, or current treatments based upon the mechanism of disease causation. METHODS We applied Adeno Associated Virus (AAV) mediated mAb gene transfer (AAVmAb) to treat the epidermal features of KID syndrome with a well-characterized HC blocking antibody using male mice of a murine model that replicates the skin pathology of the human disease. FINDINGS We demonstrate that in vivo AAVmAb treatment significantly reduced the size and thickness of KID lesions, in addition to blocking activity of mutant HCs in the epidermis in vivo. We also show that AAVmAb treatment eliminated abnormal keratinocyte proliferation and enlarged cell size, decreased apoptosis, and restored the normal distribution of keratin expression. INTERPRETATION Our findings reinforce the critical role played by increased HC activity in the skin pathology associated with KID syndrome. They also underscore the clinical potential of anti-HC mAbs coupled with genetic based delivery systems for treating the underlying mechanistic basis of this disorder. Inhibition of HC activity is an ideal therapeutic target in KID syndrome, and the genetic delivery of mAbs targeted against mutant HCs could form the basis of new therapeutic interventions to treat this incurable disease. FUNDING Fondazione Telethon grant GGP19148 and University of Padova grant Prot. BIRD187130 to FM; Foundation for Ichthyosis and Related Skin Types (FIRST) and National Institutes of Health grant EY 026911 to TWW.
Collapse
Affiliation(s)
- Chiara Peres
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Caterina Sellitto
- Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower; Stony Brook, NY, 11794-8661, USA
| | - Chiara Nardin
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Sabrina Putti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | | | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower; Stony Brook, NY, 11794-8661, USA.
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131, Padova, Italy.
| |
Collapse
|
14
|
Lim JA, Kishnani PS, Sun B. Suppression of pullulanase-induced cytotoxic T cell response with a dual promoter in GSD IIIa mice. JCI Insight 2022; 7:152970. [PMID: 36264632 PMCID: PMC9746900 DOI: 10.1172/jci.insight.152970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/18/2022] [Indexed: 01/21/2023] Open
Abstract
Glycogen debranching enzyme deficiency in glycogen storage disease type III (GSD III) results in excessive glycogen accumulation in multiple tissues, primarily the liver, heart, and skeletal muscle. We recently reported that an adeno-associated virus vector expressing a bacterial debranching enzyme (pullulanase) driven by the ubiquitous CMV enhancer/chicken β-actin (CB) promoter cleared glycogen in major affected tissues of infant GSD IIIa mice. In this study, we developed a potentially novel dual promoter consisting of a liver-specific promoter (LSP) and the CB promoter for gene therapy in adult GSD IIIa mice. Ten-week treatment with an adeno-associated virus vector containing the LSP-CB dual promoter in adult GSD IIIa mice significantly increased pullulanase expression and reduced glycogen contents in the liver, heart, and skeletal muscle, accompanied by the reversal of liver fibrosis, improved muscle function, and a significant decrease in plasma biomarkers alanine aminotransferase, aspartate aminotransferase, and creatine kinase. Compared with the CB promoter, the dual promoter effectively decreased pullulanase-induced cytotoxic T lymphocyte responses and enabled persistent therapeutic gene expression in adult GSD IIIa mice. Future studies are needed to determine the long-term durability of dual promoter-mediated expression of pullulanase in adult GSD IIIa mice and in large animal models.
Collapse
|
15
|
Roger AL, Sethi R, Huston ML, Scarrow E, Bao-Dai J, Lai E, Biswas DD, Haddad LE, Strickland LM, Kishnani PS, ElMallah MK. What's new and what's next for gene therapy in Pompe disease? Expert Opin Biol Ther 2022; 22:1117-1135. [PMID: 35428407 PMCID: PMC10084869 DOI: 10.1080/14712598.2022.2067476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.
Collapse
Affiliation(s)
- Angela L. Roger
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ronit Sethi
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Meredith L. Huston
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Evelyn Scarrow
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Joy Bao-Dai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Elias Lai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Debolina D. Biswas
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Léa El Haddad
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Laura M. Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
16
|
Nicolas CT, VanLith CJ, Hickey RD, Du Z, Hillin LG, Guthman RM, Cao WJ, Haugo B, Lillegard A, Roy D, Bhagwate A, O'Brien D, Kocher JP, Kaiser RA, Russell SJ, Lillegard JB. In vivo lentiviral vector gene therapy to cure hereditary tyrosinemia type 1 and prevent development of precancerous and cancerous lesions. Nat Commun 2022; 13:5012. [PMID: 36008405 PMCID: PMC9411607 DOI: 10.1038/s41467-022-32576-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional therapy for hereditary tyrosinemia type-1 (HT1) with 2-(2-nitro-4-trifluoromethylbenzoyl)−1,3-cyclohexanedione (NTBC) delays and in some cases fails to prevent disease progression to liver fibrosis, liver failure, and activation of tumorigenic pathways. Here we demonstrate cure of HT1 by direct, in vivo administration of a therapeutic lentiviral vector targeting the expression of a human fumarylacetoacetate hydrolase (FAH) transgene in the porcine model of HT1. This therapy is well tolerated and provides stable long-term expression of FAH in pigs with HT1. Genomic integration displays a benign profile, with subsequent fibrosis and tumorigenicity gene expression patterns similar to wild-type animals as compared to NTBC-treated or diseased untreated animals. Indeed, the phenotypic and genomic data following in vivo lentiviral vector administration demonstrate comparative superiority over other therapies including ex vivo cell therapy and therefore support clinical application of this approach. Hereditary tyrosinemia type 1 (HT1) is an inborn error of metabolism caused by a deficiency in fumarylacetoacetate hydrolase (FAH). Here, the authors show in an animal model that HT1 can be treated via in vivo portal vein administration of a lentiviral vector carrying the human FAH transgene.
Collapse
Affiliation(s)
- Clara T Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lori G Hillin
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Rebekah M Guthman
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Medical College of Wisconsin, Wausau, WI, USA
| | - William J Cao
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Diya Roy
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Aditya Bhagwate
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Daniel O'Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Kocher
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Robert A Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | | | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN, USA. .,Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA. .,Pediatric Surgical Associates, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Pontoizeau C, Simon-Sola M, Gaborit C, Nguyen V, Rotaru I, Tual N, Colella P, Girard M, Biferi MG, Arnoux JB, Rötig A, Ottolenghi C, de Lonlay P, Mingozzi F, Cavazzana M, Schiff M. Neonatal gene therapy achieves sustained disease rescue of maple syrup urine disease in mice. Nat Commun 2022; 13:3278. [PMID: 35672312 PMCID: PMC9174284 DOI: 10.1038/s41467-022-30880-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Maple syrup urine disease (MSUD) is a rare recessively inherited metabolic disorder causing accumulation of branched chain amino acids leading to neonatal death, if untreated. Treatment for MSUD represents an unmet need because the current treatment with life-long low-protein diet is challenging to maintain, and despite treatment the risk of acute decompensations and neuropsychiatric symptoms remains. Here, based on significant liver contribution to the catabolism of the branched chain amino acid leucine, we develop a liver-directed adeno-associated virus (AAV8) gene therapy for MSUD. We establish and characterize the Bckdha (branched chain keto acid dehydrogenase a)−/− mouse that exhibits a lethal neonatal phenotype mimicking human MSUD. Animals were treated at P0 with intravenous human BCKDHA AAV8 vectors under the control of either a ubiquitous or a liver-specific promoter. BCKDHA gene transfer rescued the lethal phenotype. While the use of a ubiquitous promoter fully and sustainably rescued the disease (long-term survival, normal phenotype and correction of biochemical abnormalities), liver-specific expression of BCKDHA led to partial, though sustained rescue. Here we show efficacy of gene therapy for MSUD demonstrating its potential for clinical translation. Maple syrup urine disease (MSUD) is a rare inborn error of metabolism, which is currently treated with life-long low-protein diet that can be challenging to maintain. Here the authors develop an AAV8-directed gene therapy providing sustainable disease rescue in a mouse model of MSUD.
Collapse
Affiliation(s)
- Clément Pontoizeau
- Necker Hospital, APHP, Biochemistry, Metabolomics Unit, Paris Cité University, Paris, France. .,Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France. .,Inserm UMR_S1163, Institut Imagine, Paris, France.
| | | | | | | | - Irina Rotaru
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Nolan Tual
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | | | - Muriel Girard
- Necker Hospital, APHP, Pediatric Hepatology Unit, Pediatrics Department, Paris Cité University, Paris, France.,Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | - Maria-Grazia Biferi
- Sorbonne University, Inserm, Institute of Myology, Centre of Research in Myology, Paris, France
| | - Jean-Baptiste Arnoux
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France
| | - Agnès Rötig
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Chris Ottolenghi
- Necker Hospital, APHP, Biochemistry, Metabolomics Unit, Paris Cité University, Paris, France.,Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France.,Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Pascale de Lonlay
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France.,Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | | | - Marina Cavazzana
- Inserm UMR_S1163, Institut Imagine, Paris, France.,Necker Hospital, APHP, Biotherapies Department, Paris Cité University, Paris, France
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France. .,Inserm UMR_S1163, Institut Imagine, Paris, France.
| |
Collapse
|
18
|
Unnisa Z, Yoon JK, Schindler JW, Mason C, van Til NP. Gene Therapy Developments for Pompe Disease. Biomedicines 2022; 10:302. [PMID: 35203513 PMCID: PMC8869611 DOI: 10.3390/biomedicines10020302] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Pompe disease is an inherited neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The most severe form is infantile-onset Pompe disease, presenting shortly after birth with symptoms of cardiomyopathy, respiratory failure and skeletal muscle weakness. Late-onset Pompe disease is characterized by a slower disease progression, primarily affecting skeletal muscles. Despite recent advancements in enzyme replacement therapy management several limitations remain using this therapeutic approach, including risks of immunogenicity complications, inability to penetrate CNS tissue, and the need for life-long therapy. The next wave of promising single therapy interventions involves gene therapies, which are entering into a clinical translational stage. Both adeno-associated virus (AAV) vectors and lentiviral vector (LV)-mediated hematopoietic stem and progenitor (HSPC) gene therapy have the potential to provide effective therapy for this multisystemic disorder. Optimization of viral vector designs, providing tissue-specific expression and GAA protein modifications to enhance secretion and uptake has resulted in improved preclinical efficacy and safety data. In this review, we highlight gene therapy developments, in particular, AAV and LV HSPC-mediated gene therapy technologies, to potentially address all components of the neuromuscular associated Pompe disease pathology.
Collapse
Affiliation(s)
- Zeenath Unnisa
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | - John K. Yoon
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Advanced Centre for Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Niek P. van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Kofoed RH, Heinen S, Silburt J, Dubey S, Dibia CL, Maes M, Simpson EM, Hynynen K, Aubert I. Transgene distribution and immune response after ultrasound delivery of rAAV9 and PHP.B to the brain in a mouse model of amyloidosis. Mol Ther Methods Clin Dev 2021; 23:390-405. [PMID: 34761053 PMCID: PMC8560718 DOI: 10.1016/j.omtm.2021.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023]
Abstract
Efficient disease-modifying treatments for Alzheimer disease, the most common form of dementia, have yet to be established. Gene therapy has the potential to provide the long-term production of therapeutic in the brain following a single administration. However, the blood-brain barrier poses a challenge for gene delivery to the adult brain. We investigated the transduction efficiency and immunological response following non-invasive gene-delivery strategies to the brain of a mouse model of amyloidosis. Two emerging technologies enabling gene delivery across the blood-brain barrier were used to establish the minimal vector dosage required to reach the brain: (1) focused ultrasound combined with intravenous microbubbles, which increases the permeability of the blood-brain barrier at targeted sites and (2) the recombinant adeno-associated virus (rAAV)-based capsid named rAAV-PHP.B. We found that equal intravenous dosages of rAAV9 combined with focused ultrasound, or rAAV-PHP.B, were required for brain gene delivery. In contrast to rAAV9, focused ultrasound did not decrease the rAAV-PHP.B dosage required to transduce brain cells in a mouse model of amyloidosis. The non-invasive rAAV delivery to the brain using rAAV-PHP.B or rAAV9 with focused ultrasound triggered an immune reaction including major histocompatibility complex class II expression, complement system and microglial activation, and T cell infiltration.
Collapse
Affiliation(s)
- Rikke Hahn Kofoed
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stefan Heinen
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joseph Silburt
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sonam Dubey
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chinaza Lilian Dibia
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Miriam Maes
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children’s Hospital, Department of Medical Genetics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
20
|
Costa-Verdera H, Collaud F, Riling CR, Sellier P, Nordin JML, Preston GM, Cagin U, Fabregue J, Barral S, Moya-Nilges M, Krijnse-Locker J, van Wittenberghe L, Daniele N, Gjata B, Cosette J, Abad C, Simon-Sola M, Charles S, Li M, Crosariol M, Antrilli T, Quinn WJ, Gross DA, Boyer O, Anguela XM, Armour SM, Colella P, Ronzitti G, Mingozzi F. Hepatic expression of GAA results in enhanced enzyme bioavailability in mice and non-human primates. Nat Commun 2021; 12:6393. [PMID: 34737297 PMCID: PMC8568898 DOI: 10.1038/s41467-021-26744-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Pompe disease (PD) is a severe neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). PD is currently treated with enzyme replacement therapy (ERT) with intravenous infusions of recombinant human GAA (rhGAA). Although the introduction of ERT represents a breakthrough in the management of PD, the approach suffers from several shortcomings. Here, we developed a mouse model of PD to compare the efficacy of hepatic gene transfer with adeno-associated virus (AAV) vectors expressing secretable GAA with long-term ERT. Liver expression of GAA results in enhanced pharmacokinetics and uptake of the enzyme in peripheral tissues compared to ERT. Combination of gene transfer with pharmacological chaperones boosts GAA bioavailability, resulting in improved rescue of the PD phenotype. Scale-up of hepatic gene transfer to non-human primates also successfully results in enzyme secretion in blood and uptake in key target tissues, supporting the ongoing clinical translation of the approach.
Collapse
Affiliation(s)
- Helena Costa-Verdera
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France.,Sorbonne University Paris and INSERM U974, 75013, Paris, France
| | - Fanny Collaud
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | - Pauline Sellier
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | | | - Umut Cagin
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Julien Fabregue
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Simon Barral
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | | | | | | | | | | | | | - Catalina Abad
- Université de Rouen Normandie-IRIB, 76183, Rouen, France
| | - Marcelo Simon-Sola
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Severine Charles
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Mathew Li
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | | | - Tom Antrilli
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | | | - David A Gross
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Olivier Boyer
- Université de Rouen Normandie-IRIB, 76183, Rouen, France
| | | | | | - Pasqualina Colella
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Giuseppe Ronzitti
- Genethon, 91000, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France
| | - Federico Mingozzi
- Genethon, 91000, Evry, France. .,Université Paris-Saclay, Univ Evry, Inserm, Integrare research Unit UMR_S951, 91000, Evry, France. .,Sorbonne University Paris and INSERM U974, 75013, Paris, France. .,Spark Therapeutics, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Lim WF, Forouhan M, Roberts TC, Dabney J, Ellerington R, Speciale AA, Manzano R, Lieto M, Sangha G, Banerjee S, Conceição M, Cravo L, Biscans A, Roux L, Pourshafie N, Grunseich C, Duguez S, Khvorova A, Pennuto M, Cortes CJ, La Spada AR, Fischbeck KH, Wood MJA, Rinaldi C. Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype by modulating AR transcriptional activity. SCIENCE ADVANCES 2021; 7:7/34/eabi6896. [PMID: 34417184 PMCID: PMC8378820 DOI: 10.1126/sciadv.abi6896] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset neuromuscular condition caused by an abnormal polyglutamine (polyQ) tract expansion in androgen receptor (AR) protein. SBMA is a disease with high unmet clinical need. Recent studies have shown that mutant AR-altered transcriptional activity is key to disease pathogenesis. Restoring the transcriptional dysregulation without affecting other AR critical functions holds great promise for the treatment of SBMA and other AR-related conditions; however, how this targeted approach can be achieved and translated into a clinical application remains to be understood. Here, we characterized the role of AR isoform 2, a naturally occurring variant encoding a truncated AR lacking the polyQ-harboring domain, as a regulatory switch of AR genomic functions in androgen-responsive tissues. Delivery of this isoform using a recombinant adeno-associated virus vector type 9 resulted in amelioration of the disease phenotype in SBMA mice by restoring polyQ AR-dysregulated transcriptional activity.
Collapse
Affiliation(s)
- Wooi F Lim
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Mitra Forouhan
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Jesse Dabney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maria Lieto
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Gavinda Sangha
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Subhashis Banerjee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Lara Cravo
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Loïc Roux
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Naemeh Pourshafie
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Stephanie Duguez
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Constanza J Cortes
- Department of Neurology, Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry and the UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, Oxford, UK.
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Boateng-Antwi MKA, Lin Y, Ren S, Wang X, Pan D. New function of a well-known promoter: Enhancer activity of minimal CMV promoter enables efficient dual-cassette transgene expression. J Gene Med 2021; 23:e3380. [PMID: 34318559 DOI: 10.1002/jgm.3380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Co-expression of multiple genes in single vectors has achieved varying degrees of success by employing two promoters and/or application of viral 2A-peptide or the internal ribosome entry-site (IRES). However, promoter interference, potential functional-interruption of expressed-proteins by 2A-generated residual peptides or weaker translation of IRES-mediated downstream genes has curtailed their utilization. Thus, there is the need for single vectors that robustly express multiple proteins for enhanced gene therapy applications. METHODS We engineered lentiviral-vectors for dual-cassette expression of green fluorescent protein and mCherry in uni- or bidirectional architectures using the short-version (Es) of elongation factor 1α (EF) promoter and simian virus 40 promoter (Sv). The regulatory function of a core fragment (cC) from human cytomegalovirus promoter was investigated with cell-lineage specificity in NIH3T3 (fibroblast) and hematopoietic cell lines U937 (monocyte/macrophage), LCL (lymphoid), DAMI (megakaryocyte) and MEL (erythroid). RESULTS The cC element in reverse-orientation not only boosted upstream Es promoter to levels comparable to full-length EF in DAMI, U937 and 3T3 cells, but also blocked the suppression of downstream Sv promoter by Es in U937 and 3T3 cells with further improved Sv activity in DAMI cells. Such lineage-restricted up-regulation is likely attributed to two protein-binding domains of cC and diverse expression of related factors in different cell types for enhancer and terminator activities, but not spacing function. CONCLUSIONS Such a newly developed dual-cassette vector could be advantageous, particularly in hematopoietic cell-mediated gene/cancer therapy, by allowing for independent and robust co-expression of therapeutic gene(s) and/or a selectable gene or imaging marker in the same cells.
Collapse
Affiliation(s)
- Michael K A Boateng-Antwi
- Gene and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pathology, University of Cincinnati Graduate School, Cincinnati, OH, USA
| | - Yi Lin
- Gene and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sheng Ren
- Gene and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaohong Wang
- Gene and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dao Pan
- Gene and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pathology, University of Cincinnati Graduate School, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
23
|
Phenotypic implications of pathogenic variant types in Pompe disease. J Hum Genet 2021; 66:1089-1099. [PMID: 33972680 DOI: 10.1038/s10038-021-00935-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
Newborn screening and therapies for Pompe disease (glycogen storage disease type II, acid maltase deficiency) will continue to expand in the future. It is thus important to determine whether enzyme activity or type of pathogenic genetic variant in GAA can best predict phenotypic severity, particularly the presence of infantile-onset Pompe disease (IOPD) versus late-onset Pompe disease (LOPD). We performed a retrospective analysis of 23 participants with genetically-confirmed cases of Pompe disease. The following data were collected: clinical details including presence or absence of cardiomyopathy, enzyme activity levels, and features of GAA variants including exon versus intron location and splice site versus non-splice site. Several combinations of GAA variant types for individual participants had significant associations with disease subtype, cardiomyopathy, age at diagnosis, gross motor function scale (GMFS), and stability of body weight. The presence of at least one splice site variant (c.546 G > C/p.T182 = , c.1076-22 T > G, c.2646 + 2 T > A, and the classic c.-32-13T > G variant) was associated with LOPD, while the presence of non-splice site variants on both alleles was associated with IOPD. Enzyme activity levels in isolation were not sufficient to predict disease subtype or other major clinical features. To extend the findings of prior studies, we found that multiple types of splice site variants beyond the classic c.-32-13T > G variant are often associated with a milder phenotype. Enzyme activity levels continue to have utility for supporting the diagnosis when the genetic variants are ambiguous. It is important for newly diagnosed patients with Pompe disease to have complete genetic, cardiac, and neurological evaluations.
Collapse
|
24
|
Cappella M, Elouej S, Biferi MG. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Front Cell Dev Biol 2021; 9:662837. [PMID: 33937264 PMCID: PMC8080375 DOI: 10.3389/fcell.2021.662837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) represents a major advance for the development of human disease models. The emerging of this technique fostered the concept of "disease in a dish," which consists into the generation of patient-specific models in vitro. Currently, iPSCs are used to study pathological molecular mechanisms caused by genetic mutations and they are considered a reliable model for high-throughput drug screenings. Importantly, precision-medicine approaches to treat monogenic disorders exploit iPSCs potential for the selection and validation of lead candidates. For example, antisense oligonucleotides (ASOs) were tested with promising results in myoblasts or motor neurons differentiated from iPSCs of patients affected by either Duchenne muscular dystrophy or Amyotrophic lateral sclerosis. However, the use of iPSCs needs additional optimization to ensure translational success of the innovative strategies based on gene delivery through adeno associated viral vectors (AAV) for these diseases. Indeed, to establish an efficient transduction of iPSCs with AAV, several aspects should be optimized, including viral vector serotype, viral concentration and timing of transduction. This review will outline the use of iPSCs as a model for the development and testing of gene therapies for neuromuscular and motor neuron disorders. It will then discuss the advantages for the use of this versatile tool for gene therapy, along with the challenges associated with the viral vector transduction of iPSCs.
Collapse
Affiliation(s)
- Marisa Cappella
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Sahar Elouej
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Maria Grazia Biferi
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
25
|
Hunanyan AS, Kantor B, Puranam RS, Elliott C, McCall A, Dhindsa J, Pagadala P, Wallace K, Poe J, Gunduz T, Asokan A, Koeberl DD, ElMallah MK, Mikati MA. Adeno-Associated Virus-Mediated Gene Therapy in the Mashlool, Atp1a3Mashl/+, Mouse Model of Alternating Hemiplegia of Childhood. Hum Gene Ther 2021; 32:405-419. [PMID: 33577387 DOI: 10.1089/hum.2020.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alternating Hemiplegia of Childhood (AHC) is a devastating autosomal dominant disorder caused by ATP1A3 mutations, resulting in severe hemiplegia and dystonia spells, ataxia, debilitating disabilities, and premature death. Here, we determine the effects of delivering an extra copy of the normal gene in a mouse model carrying the most common mutation causing AHC in humans, the D801N mutation. We used an adeno-associated virus serotype 9 (AAV9) vector expressing the human ATP1A3 gene under the control of a human Synapsin promoter. We first demonstrated that intracerebroventricular (ICV) injection of this vector in wild-type mice on postnatal day 10 (P10) results in increases in ouabain-sensitive ATPase activity and in expression of reporter genes in targeted brain regions. We then tested this vector in mutant mice. Simultaneous intracisterna magna and bilateral ICV injections of this vector at P10 resulted, at P40, in reduction of inducible hemiplegia spells, improvement in balance beam test performance, and prolonged survival of treated mutant mice up to P70. Our study demonstrates, as a proof of concept, that gene therapy can induce favorable effects in a disease caused by a mutation of the gene of a protein that is, at the same time, an ATPase enzyme, a pump, and a signal transduction factor.
Collapse
Affiliation(s)
- Arsen S Hunanyan
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Boris Kantor
- Viral Vector Core, Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Ram S Puranam
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Courtney Elliott
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Angela McCall
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Justin Dhindsa
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Promila Pagadala
- Department of Clinical and Translational Science Institute, Duke University, Durham, North Carolina, USA
| | - Keri Wallace
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Jordan Poe
- Viral Vector Core, Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Talha Gunduz
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Aravind Asokan
- Department of Surgery, Duke University, Durham, North Carolina, USA.,Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Mai K ElMallah
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Department of Neurobiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
26
|
Bosch A, Estévez R. Megalencephalic Leukoencephalopathy: Insights Into Pathophysiology and Perspectives for Therapy. Front Cell Neurosci 2021; 14:627887. [PMID: 33551753 PMCID: PMC7862579 DOI: 10.3389/fncel.2020.627887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 01/13/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. It is mainly caused by recessive mutations in MLC1 and HEPACAM (also called GLIALCAM) genes. These disease variants are called MLC1 and MLC2A with both types of patients sharing the same clinical phenotype. Besides, dominant mutations in HEPACAM were also identified in a subtype of MLC patients (MLC2B) with a remitting phenotype. MLC1 and GlialCAM proteins form a complex mainly expressed in brain astrocytes at the gliovascular interface and in Bergmann glia at the cerebellum. Both proteins regulate several ion channels and transporters involved in the control of ion and water fluxes in glial cells, either directly influencing their location and function, or indirectly regulating associated signal transduction pathways. However, the MLC1/GLIALCAM complex function and the related pathological mechanisms leading to MLC are still unknown. It has been hypothesized that, in MLC, the role of glial cells in brain ion homeostasis is altered in both physiological and inflammatory conditions. There is no therapy for MLC patients, only supportive treatment. As MLC2B patients show an MLC reversible phenotype, we speculated that the phenotype of MLC1 and MLC2A patients could also be mitigated by the re-introduction of the correct gene even at later stages. To prove this hypothesis, we injected in the cerebellar subarachnoid space of Mlc1 knockout mice an adeno-associated virus (AAV) coding for human MLC1 under the control of the glial-fibrillary acidic protein promoter. MLC1 expression in the cerebellum extremely reduced myelin vacuolation at all ages in a dose-dependent manner. This study could be considered as the first preclinical approach for MLC. We also suggest other potential therapeutic strategies in this review.
Collapse
Affiliation(s)
- Assumpció Bosch
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Univ. Autònoma de Barcelona, Barcelona, Spain.,Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Estévez
- Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Skopenkova VV, Egorova TV, Bardina MV. Muscle-Specific Promoters for Gene Therapy. Acta Naturae 2021; 13:47-58. [PMID: 33959386 PMCID: PMC8084301 DOI: 10.32607/actanaturae.11063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Many genetic diseases that are responsible for muscular disorders have been described to date. Gene replacement therapy is a state-of-the-art strategy used to treat such diseases. In this approach, the functional copy of a gene is delivered to the affected tissues using viral vectors. There is an urgent need for the design of short, regulatory sequences that would drive a high and robust expression of a therapeutic transgene in skeletal muscles, the diaphragm, and the heart, while exhibiting limited activity in non-target tissues. This review focuses on the development and improvement of muscle-specific promoters based on skeletal muscle α-actin, muscle creatine kinase, and desmin genes, as well as other genes expressed in muscles. The current approaches used to engineer synthetic muscle-specific promoters are described. Other elements of the viral vectors that contribute to tissue-specific expression are also discussed. A special feature of this review is the presence of up-to-date information on the clinical and preclinical trials of gene therapy drug candidates that utilize muscle-specific promoters.
Collapse
Affiliation(s)
- V. V. Skopenkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - T. V. Egorova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
| | - M. V. Bardina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
28
|
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, Krag T, Pinós T. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int J Mol Sci 2020; 21:ijms21249621. [PMID: 33348688 PMCID: PMC7766110 DOI: 10.3390/ijms21249621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.
Collapse
Affiliation(s)
- Aitana Almodóvar-Payá
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Noemí de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands;
| | - Miguel Angel Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Joaquin Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University, 28670 Madrid, Spain;
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Correspondence: ; Tel.: +34-934894057
| |
Collapse
|
29
|
Buscara L, Gross DA, Daniele N. Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. J Pers Med 2020; 10:E258. [PMID: 33260623 PMCID: PMC7768510 DOI: 10.3390/jpm10040258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders are a large group of rare pathologies characterised by skeletal muscle atrophy and weakness, with the common involvement of respiratory and/or cardiac muscles. These diseases lead to life-long motor deficiencies and specific organ failures, and are, in their worst-case scenarios, life threatening. Amongst other causes, they can be genetically inherited through mutations in more than 500 different genes. In the last 20 years, specific pharmacological treatments have been approved for human usage. However, these "à-la-carte" therapies cover only a very small portion of the clinical needs and are often partially efficient in alleviating the symptoms of the disease, even less so in curing it. Recombinant adeno-associated virus vector-mediated gene transfer is a more general strategy that could be adapted for a large majority of these diseases and has proved very efficient in rescuing the symptoms in many neuropathological animal models. On this solid ground, several clinical trials are currently being conducted with the whole-body delivery of the therapeutic vectors. This review recapitulates the state-of-the-art tools for neuron and muscle-targeted gene therapy, and summarises the main findings of the spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD) and X-linked myotubular myopathy (XLMTM) trials. Despite promising efficacy results, serious adverse events of various severities were observed in these trials. Possible leads for second-generation products are also discussed.
Collapse
Affiliation(s)
| | - David-Alexandre Gross
- Genethon, 91000 Evry, France; (L.B.); (D.-A.G.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | |
Collapse
|
30
|
Salabarria SM, Nair J, Clement N, Smith BK, Raben N, Fuller DD, Byrne BJ, Corti M. Advancements in AAV-mediated Gene Therapy for Pompe Disease. J Neuromuscul Dis 2020; 7:15-31. [PMID: 31796685 PMCID: PMC7029369 DOI: 10.3233/jnd-190426] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pompe disease (glycogen storage disease type II) is caused by mutations in acid α-glucosidase (GAA) resulting in lysosomal pathology and impairment of the muscular and cardio-pulmonary systems. Enzyme replacement therapy (ERT), the only approved therapy for Pompe disease, improves muscle function by reducing glycogen accumulation but this approach entails several limitations including a short drug half-life and an antibody response that results in reduced efficacy. To address these limitations, new treatments such as gene therapy are under development to increase the intrinsic ability of the affected cells to produce GAA. Key components to gene therapy strategies include the choice of vector, promoter, and the route of administration. The efficacy of gene therapy depends on the ability of the vector to drive gene expression in the target tissue and also on the recipient's immune tolerance to the transgene protein. In this review, we discuss the preclinical and clinical studies that are paving the way for the development of a gene therapy strategy for patients with early and late onset Pompe disease as well as some of the challenges for advancing gene therapy.
Collapse
Affiliation(s)
- S M Salabarria
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - J Nair
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - N Clement
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - B K Smith
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - N Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - D D Fuller
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - B J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - M Corti
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| |
Collapse
|
31
|
Colella P, Sellier P, Gomez MJ, Biferi MG, Tanniou G, Guerchet N, Cohen-Tannoudji M, Moya-Nilges M, van Wittenberghe L, Daniele N, Gjata B, Krijnse-Locker J, Collaud F, Simon-Sola M, Charles S, Cagin U, Mingozzi F. Gene therapy with secreted acid alpha-glucosidase rescues Pompe disease in a novel mouse model with early-onset spinal cord and respiratory defects. EBioMedicine 2020; 61:103052. [PMID: 33039711 PMCID: PMC7553357 DOI: 10.1016/j.ebiom.2020.103052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Pompe disease (PD) is a neuromuscular disorder caused by deficiency of acidalpha-glucosidase (GAA), leading to motor and respiratory dysfunctions. Available Gaa knock-out (KO) mouse models do not accurately mimic PD, particularly its highly impaired respiratory phenotype. Methods Here we developed a new mouse model of PD crossing Gaa KOB6;129 with DBA2/J mice. We subsequently treated Gaa KODBA2/J mice with adeno-associated virus (AAV) vectors expressing a secretable form of GAA (secGAA). Findings Male Gaa KODBA2/J mice present most of the key features of the human disease, including early lethality, severe respiratory impairment, cardiac hypertrophy and muscle weakness. Transcriptome analyses of Gaa KODBA2/J, compared to the parental Gaa KOB6;129 mice, revealed a profoundly impaired gene signature in the spinal cord and a similarly deregulated gene expression in skeletal muscle. Muscle and spinal cord transcriptome changes, biochemical defects, respiratory and muscle function in the Gaa KODBA2/J model were significantly improved upon gene therapy with AAV vectors expressing secGAA. Interpretation These data show that the genetic background impacts on the severity of respiratory function and neuroglial spinal cord defects in the Gaa KO mouse model of PD. Our findings have implications for PD prognosis and treatment, show novel molecular pathophysiology mechanisms of the disease and provide a unique model to study PD respiratory defects, which majorly affect patients. Funding This work was supported by Genethon, the French Muscular Dystrophy Association (AFM), the European Commission (grant nos. 667751, 617432, and 797144), and Spark Therapeutics.
Collapse
Affiliation(s)
- Pasqualina Colella
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France.
| | - Pauline Sellier
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | - Maria G Biferi
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Guillaume Tanniou
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Nicolas Guerchet
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | | | | | - Natalie Daniele
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Bernard Gjata
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | - Fanny Collaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Marcelo Simon-Sola
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Severine Charles
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Umut Cagin
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Federico Mingozzi
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France; Spark Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Piras G, Montiel-Equihua C, Chan YKA, Wantuch S, Stuckey D, Burke D, Prunty H, Phadke R, Chambers D, Partida-Gaytan A, Leon-Rico D, Panchal N, Whitmore K, Calero M, Benedetti S, Santilli G, Thrasher AJ, Gaspar HB. Lentiviral Hematopoietic Stem Cell Gene Therapy Rescues Clinical Phenotypes in a Murine Model of Pompe Disease. Mol Ther Methods Clin Dev 2020; 18:558-570. [PMID: 32775491 PMCID: PMC7396971 DOI: 10.1016/j.omtm.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
Pompe disease is a lysosomal storage disorder caused by malfunctions of the acid alpha-glucosidase (GAA) enzyme with a consequent toxic accumulation of glycogen in cells. Muscle wasting and hypertrophic cardiomyopathy are the most common clinical signs that can lead to cardiac and respiratory failure within the first year of age in the more severe infantile forms. Currently available treatments have significant limitations and are not curative, highlighting a need for the development of alternative therapies. In this study, we investigated the use of a clinically relevant lentiviral vector to deliver systemically GAA through genetic modification of hematopoietic stem and progenitor cells (HSPCs). The overexpression of GAA in human HSPCs did not exert any toxic effect on this cell population, which conserved its stem cell capacity in xenograft experiments. In a murine model of Pompe disease treated at young age, we observed phenotypic correction of heart and muscle function with a significant reduction of glycogen accumulation in tissues after 6 months of treatment. These findings suggest that lentiviral-mediated HSPC gene therapy can be a safe alternative therapy for Pompe disease.
Collapse
Affiliation(s)
- Giuseppa Piras
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Claudia Montiel-Equihua
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Yee-Ka Agnes Chan
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Slawomir Wantuch
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Daniel Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Derek Burke
- Enzyme and Metabolic laboratory, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Helen Prunty
- Enzyme and Metabolic laboratory, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Darren Chambers
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Armando Partida-Gaytan
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Diego Leon-Rico
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Neelam Panchal
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kathryn Whitmore
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Miguel Calero
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Adrian J. Thrasher
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - H. Bobby Gaspar
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Orchard Therapeutics Ltd., London EC4N 6EU, UK
| |
Collapse
|
33
|
Taverna S, Cammarata G, Colomba P, Sciarrino S, Zizzo C, Francofonte D, Zora M, Scalia S, Brando C, Curto AL, Marsana EM, Olivieri R, Vitale S, Duro G. Pompe disease: pathogenesis, molecular genetics and diagnosis. Aging (Albany NY) 2020; 12:15856-15874. [PMID: 32745073 PMCID: PMC7467391 DOI: 10.18632/aging.103794] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Pompe disease (PD) is a rare autosomal recessive disorder caused by mutations in the GAA gene, localized on chromosome 17 and encoding for acid alpha-1,4-glucosidase (GAA). Currently, more than 560 mutations spread throughout GAA gene have been reported. GAA catalyzes the hydrolysis of α-1,4 and α-1,6-glucosidic bonds of glycogen and its deficiency leads to lysosomal storage of glycogen in several tissues, particularly in muscle. PD is a chronic and progressive pathology usually characterized by limb-girdle muscle weakness and respiratory failure. PD is classified as infantile and childhood/adult forms. PD patients exhibit a multisystemic manifestation that depends on age of onset. Early diagnosis is essential to prevent or reduce the irreversible organ damage associated with PD progression. Here, we make an overview of PD focusing on pathogenesis, clinical phenotypes, molecular genetics, diagnosis, therapies, autophagy and the role of miRNAs as potential biomarkers for PD.
Collapse
Affiliation(s)
- Simona Taverna
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Giuseppe Cammarata
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Serafina Sciarrino
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Daniele Francofonte
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Marco Zora
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Simone Scalia
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Chiara Brando
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Alessia Lo Curto
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Emanuela Maria Marsana
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Roberta Olivieri
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Silvia Vitale
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| |
Collapse
|
34
|
Han SO, Li S, McCall A, Arnson B, Everitt JI, Zhang H, Young SP, ElMallah MK, Koeberl DD. Comparisons of Infant and Adult Mice Reveal Age Effects for Liver Depot Gene Therapy in Pompe Disease. Mol Ther Methods Clin Dev 2020; 17:133-142. [PMID: 31909086 PMCID: PMC6938806 DOI: 10.1016/j.omtm.2019.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/26/2019] [Indexed: 01/20/2023]
Abstract
Pompe disease is caused by the deficiency of lysosomal acid α-glucosidase (GAA). It is expected that gene therapy to replace GAA with adeno-associated virus (AAV) vectors will be less effective early in life because of the rapid loss of vector genomes. AAV2/8-LSPhGAA (3 × 1010 vector genomes [vg]/mouse) was administered to infant (2-week-old) or adult (2-month-old) GAA knockout mice. AAV vector transduction in adult mice significantly corrected GAA deficiency in the heart (p < 0.0001), diaphragm (p < 0.01), and quadriceps (p < 0.001) for >50 weeks. However, in infant mice, the same treatment only partially corrected GAA deficiency in the heart (p < 0.05), diaphragm (p < 0.05), and quadriceps (p < 0.05). The clearance of glycogen was much more efficient in adult mice compared with infant mice. Improved wire hang test latency was observed for treated adults (p < 0.05), but not for infant mice. Abnormal ventilation was corrected in both infant and adult mice. Vector-treated female mice demonstrated functional improvement, despite a lower degree of biochemical correction compared with male mice. The relative vector dose for infants was approximately 3-fold higher than adults, when normalized to body weight at the time of vector administration. Given these data, the dose requirement to achieve similar efficacy will be higher for the treatment of young patients.
Collapse
Affiliation(s)
- Sang-oh Han
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Songtao Li
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Angela McCall
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Benjamin Arnson
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey I. Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Haoyue Zhang
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah P. Young
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Mai K. ElMallah
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dwight D. Koeberl
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Metabolism, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
35
|
Maturana CJ, Verpeut JL, Pisano TJ, Dhanerawala ZM, Esteves A, Enquist LW, Engel EA. Small Alphaherpesvirus Latency-Associated Promoters Drive Efficient and Long-Term Transgene Expression in the CNS. Mol Ther Methods Clin Dev 2020; 17:843-857. [PMID: 32368565 PMCID: PMC7191541 DOI: 10.1016/j.omtm.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) are used as gene therapy vectors to treat central nervous system (CNS) diseases. Despite their safety and broad tropism, important issues need to be corrected such as the limited payload capacity and the lack of small gene promoters providing long-term, pan-neuronal transgene expression in the CNS. Commonly used gene promoters are relatively large and can be repressed a few months after CNS transduction, risking the long-term performance of single-dose gene therapy applications. We used a whole-CNS screening approach based on systemic delivery of AAV-PHP.eB, iDisco+ tissue-clearing and light-sheet microscopy to identify three small latency-associated promoters (LAPs) from the herpesvirus pseudorabies virus (PRV). These promoters are LAP1 (404 bp), LAP2 (498 bp), and LAP1_2 (880 bp). They drive chronic transcription of the virus-encoded latency-associated transcript (LAT) during productive and latent phases of PRV infection. We observed stable, pan-neuronal transgene transcription and translation from AAV-LAPs in the CNS for 6 months post AAV transduction. In several CNS areas, the number of cells expressing the transgene was higher for LAP2 than the large conventional EF1α promoter (1,264 bp). Our data suggest that the LAPs are suitable candidates for viral vector-based CNS gene therapies requiring chronic transgene expression after one-time viral-vector administration.
Collapse
Affiliation(s)
- Carola J. Maturana
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jessica L. Verpeut
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Thomas J. Pisano
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Zahra M. Dhanerawala
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Andrew Esteves
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
36
|
Cagin U, Puzzo F, Gomez MJ, Moya-Nilges M, Sellier P, Abad C, Van Wittenberghe L, Daniele N, Guerchet N, Gjata B, Collaud F, Charles S, Sola MS, Boyer O, Krijnse-Locker J, Ronzitti G, Colella P, Mingozzi F. Rescue of Advanced Pompe Disease in Mice with Hepatic Expression of Secretable Acid α-Glucosidase. Mol Ther 2020; 28:2056-2072. [PMID: 32526204 PMCID: PMC7474269 DOI: 10.1016/j.ymthe.2020.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/15/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Pompe disease is a neuromuscular disorder caused by disease-associated variants in the gene encoding for the lysosomal enzyme acid α-glucosidase (GAA), which converts lysosomal glycogen to glucose. We previously reported full rescue of Pompe disease in symptomatic 4-month-old Gaa knockout (Gaa−/−) mice by adeno-associated virus (AAV) vector-mediated liver gene transfer of an engineered secretable form of GAA (secGAA). Here, we showed that hepatic expression of secGAA rescues the phenotype of 4-month-old Gaa−/− mice at vector doses at which the native form of GAA has little to no therapeutic effect. Based on these results, we then treated severely affected 9-month-old Gaa−/− mice with an AAV vector expressing secGAA and followed the animals for 9 months thereafter. AAV-treated Gaa−/− mice showed complete reversal of the Pompe phenotype, with rescue of glycogen accumulation in most tissues, including the central nervous system, and normalization of muscle strength. Transcriptomic profiling of skeletal muscle showed rescue of most altered pathways, including those involved in mitochondrial defects, a finding supported by structural and biochemical analyses, which also showed restoration of lysosomal function. Together, these results provide insight into the reversibility of advanced Pompe disease in the Gaa−/− mouse model via liver gene transfer of secGAA.
Collapse
Affiliation(s)
- Umut Cagin
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Francesco Puzzo
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France; Sorbonne Université, Paris, France
| | - Manuel Jose Gomez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | | | - Pauline Sellier
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Catalina Abad
- Université de Rouen Normandie-IRIB, 76183 Rouen, France
| | | | - Nathalie Daniele
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Nicolas Guerchet
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Bernard Gjata
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Fanny Collaud
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Severine Charles
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Marcelo Simon Sola
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Olivier Boyer
- Université de Rouen Normandie-IRIB, 76183 Rouen, France
| | | | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Pasqualina Colella
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Federico Mingozzi
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France; Sorbonne Université, Paris, France; Spark Therapeutics, Philadelphia, PA 19103, USA.
| |
Collapse
|
37
|
Piechnik M, Sawamoto K, Ohnishi H, Kawamoto N, Ago Y, Tomatsu S. Evading the AAV Immune Response in Mucopolysaccharidoses. Int J Mol Sci 2020; 21:E3433. [PMID: 32414007 PMCID: PMC7279460 DOI: 10.3390/ijms21103433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
The humoral immune response elicited by adeno-associated virus (AAV)-mediated gene therapy for the treatment of mucopolysaccharidoses (MPS) poses a significant challenge to achieving therapeutic levels of transgene expression. Antibodies targeting the AAV capsid as well as the transgene product diminish the production of glycosaminoglycan (GAG)-degrading enzymes essential for the treatment of MPS. Patients who have antibodies against AAV capsid increase in number with age, serotype, and racial background and are excluded from the clinical trials at present. In addition, patients who have undergone AAV gene therapy are often excluded from the additional AAV gene therapy with the same serotype, since their acquired immune response (antibody) against AAV will limit further efficacy of treatment. Several methods are being developed to overcome this immune response, such as novel serotype design, antibody reduction by plasmapheresis and immunosuppression, and antibody evasion using empty capsids and enveloped AAV vectors. In this review, we examine the mechanisms of the anti-AAV humoral immune response and evaluate the strengths and weaknesses of current evasion strategies in order to provide an evidence-based recommendation on evading the immune response for future AAV-mediated gene therapies for MPS.
Collapse
Affiliation(s)
- Matthew Piechnik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (M.P.); (K.S.)
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (M.P.); (K.S.)
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
| | - Norio Kawamoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
| | - Yasuhiko Ago
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (M.P.); (K.S.)
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (H.O.); (N.K.); (Y.A.)
- Department of Pediatrics, Shimane University, Shimane 690-8504, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
38
|
Barbon E, Ayme G, Mohamadi A, Ottavi J, Kawecki C, Casari C, Verhenne S, Marmier S, van Wittenberghe L, Charles S, Collaud F, Denis CV, Christophe OD, Mingozzi F, Lenting PJ. Single-domain antibodies targeting antithrombin reduce bleeding in hemophilic mice with or without inhibitors. EMBO Mol Med 2020; 12:e11298. [PMID: 32159286 PMCID: PMC7136963 DOI: 10.15252/emmm.201911298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023] Open
Abstract
Novel therapies for hemophilia, including non-factor replacement and in vivo gene therapy, are showing promising results in the clinic, including for patients having a history of inhibitor development. Here, we propose a novel therapeutic approach for hemophilia based on llama-derived single-domain antibody fragments (sdAbs) able to restore hemostasis by inhibiting the antithrombin (AT) anticoagulant pathway. We demonstrated that sdAbs engineered in multivalent conformations were able to block efficiently AT activity in vitro, restoring the thrombin generation potential in FVIII-deficient plasma. When delivered as a protein to hemophilia A mice, a selected bi-paratopic sdAb significantly reduced the blood loss in a model of acute bleeding injury. We then packaged this sdAb in a hepatotropic AAV8 vector and tested its safety and efficacy profile in hemophilic mouse models. We show that the long-term expression of the bi-paratopic sdAb in the liver is safe and poorly immunogenic, and results in sustained correction of the bleeding phenotype in hemophilia A and B mice, even in the presence of inhibitory antibodies to the therapeutic clotting factor.
Collapse
Affiliation(s)
- Elena Barbon
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Gabriel Ayme
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Amel Mohamadi
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | | - Charlotte Kawecki
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Caterina Casari
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Sebastien Verhenne
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Solenne Marmier
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Laetitia van Wittenberghe
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Severine Charles
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Fanny Collaud
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Cecile V Denis
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Olivier D Christophe
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Federico Mingozzi
- Genethon, Institut National de la Santé et de la Recherche Médicale U951 IntegrareUniversité Paris‐SaclayUniversity of EvryEvryFrance
| | - Peter J Lenting
- HITh, UMR_S1176Institut National de la Santé et de la Recherche MédicaleUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| |
Collapse
|
39
|
Marcó S, Haurigot V, Bosch F. In Vivo Gene Therapy for Mucopolysaccharidosis Type III (Sanfilippo Syndrome): A New Treatment Horizon. Hum Gene Ther 2020; 30:1211-1221. [PMID: 31482754 DOI: 10.1089/hum.2019.217] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For most lysosomal storage diseases (LSDs), there is no cure. Gene therapy is an attractive tool for treatment of LSDs caused by deficiencies in secretable lysosomal enzymes, in which neither full restoration of normal enzymatic activity nor transduction of all cells of the affected organ is necessary. However, some LSDs, such as mucopolysaccharidosis type III (MPSIII) diseases or Sanfilippo syndrome, represent a difficult challenge because patients suffer severe neurodegeneration with mild somatic alterations. The disease's main target is the central nervous system (CNS) and enzymes do not efficiently cross the blood-brain barrier (BBB) even if present at very high concentration in circulation. No specific treatment has been approved for MPSIII. In this study, we discuss the adeno-associated virus (AAV) vector-mediated gene transfer strategies currently being developed for MPSIII disease. These strategies rely on local delivery of AAV vectors to the CNS either through direct intraparenchymal injection at several sites or through delivery to the cerebrospinal fluid (CSF), which bathes the whole CNS, or exploit the properties of certain AAV serotypes capable of crossing the BBB upon systemic administration. Although studies in small and large animal models of MPSIII diseases have provided evidence supporting the efficacy and safety of all these strategies, there are considerable differences between the different routes of administration in terms of procedure-associated risks, vector dose requirements, sensitivity to the effect of circulating neutralizing antibodies that block AAV transduction, and potential toxicity. Ongoing clinical studies should shed light on which gene transfer strategy leads to highest clinical benefits while minimizing risks. The development of all these strategies opens a new horizon for treatment of not only MPSIII and other LSDs but also of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Sara Marcó
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
40
|
Ahmed SS, Rubin H, Wang M, Faulkner D, Sengooba A, Dollive SN, Avila N, Ellsworth JL, Lamppu D, Lobikin M, Lotterhand J, Adamson-Small L, Wright T, Seymour A, Francone OL. Sustained Correction of a Murine Model of Phenylketonuria following a Single Intravenous Administration of AAVHSC15-PAH. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:568-580. [PMID: 32258219 PMCID: PMC7118282 DOI: 10.1016/j.omtm.2020.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
Phenylketonuria is an inborn error of metabolism caused by loss of function of the liver-expressed enzyme phenylalanine hydroxylase and is characterized by elevated systemic phenylalanine levels that are neurotoxic. Current therapies do not address the underlying genetic disease or restore the natural metabolic pathway resulting in the conversion of phenylalanine to tyrosine. A family of hepatotropic clade F adeno-associated viruses (AAVs) was isolated from human CD34+ hematopoietic stem cells (HSCs) and one (AAVHSC15) was utilized to deliver a vector to correct the phenylketonuria phenotype in Pahenu2 mice. The AAVHSC15 vector containing a codon-optimized form of the human phenylalanine hydroxylase cDNA was administered as a single intravenous dose to Pahenu2 mice maintained on a phenylalanine-containing normal chow diet. Optimization of the transgene resulted in a vector that produced a sustained reduction in serum phenylalanine and normalized tyrosine levels for the lifespan of Pahenu2 mice. Brain levels of phenylalanine and the downstream serotonin metabolite 5-hydroxyindoleacetic acid were restored. In addition, the coat color of treated mice darkened following treatment, indicating restoration of the phenylalanine metabolic pathway. Taken together, these data support the potential of an AAVHSC15-based gene therapy as an investigational therapeutic for phenylketonuria patients.
Collapse
Affiliation(s)
- Seemin S Ahmed
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Hillard Rubin
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Minglun Wang
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Deiby Faulkner
- In Vivo Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Arnold Sengooba
- In Vivo Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Serena N Dollive
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Nancy Avila
- In Vivo Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Jeff L Ellsworth
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Diana Lamppu
- Program Management Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Maria Lobikin
- Process Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Jason Lotterhand
- In Vivo Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Laura Adamson-Small
- Process Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Teresa Wright
- Toxicology Group, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Albert Seymour
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| | - Omar L Francone
- Research and Development, Homology Medicines, 1 Patriots Park, Bedford, MA 01730, USA
| |
Collapse
|
41
|
Costa Verdera H, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther 2020; 28:723-746. [PMID: 31972133 PMCID: PMC7054726 DOI: 10.1016/j.ymthe.2019.12.010] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors has demonstrated safety and long-term efficacy in a number of trials across target organs, including eye, liver, skeletal muscle, and the central nervous system. Since the initial evidence that AAV vectors can elicit capsid T cell responses in humans, which can affect the duration of transgene expression, much progress has been made in understanding and modulating AAV vector immunogenicity. It is now well established that exposure to wild-type AAV results in priming of the immune system against the virus, with development of both humoral and T cell immunity. Aside from the neutralizing effect of antibodies, the impact of pre-existing immunity to AAV on gene transfer is still poorly understood. Herein, we review data emerging from clinical trials across a broad range of gene therapy applications. Common features of immune responses to AAV can be found, suggesting, for example, that vector immunogenicity is dose-dependent, and that innate immunity plays an important role in the outcome of gene transfer. A range of host-specific factors are also likely to be important, and a comprehensive understanding of the mechanisms driving AAV vector immunogenicity in humans will be key to unlocking the full potential of in vivo gene therapy.
Collapse
Affiliation(s)
- Helena Costa Verdera
- Genethon and INSERM U951, 91000 Evry, France; Sorbonne Université and INSERM U974, 75013 Paris, France
| | | | - Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; Spark Therapeutics, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Sawamoto K, Álvarez González JV, Piechnik M, Otero FJ, Couce ML, Suzuki Y, Tomatsu S. Mucopolysaccharidosis IVA: Diagnosis, Treatment, and Management. Int J Mol Sci 2020; 21:E1517. [PMID: 32102177 PMCID: PMC7073202 DOI: 10.3390/ijms21041517] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA, or Morquio syndrome type A) is an inherited metabolic lysosomal disease caused by the deficiency of the N-acetylglucosamine-6-sulfate sulfatase enzyme. The deficiency of this enzyme accumulates the specific glycosaminoglycans (GAG), keratan sulfate, and chondroitin-6-sulfate mainly in bone, cartilage, and its extracellular matrix. GAG accumulation in these lesions leads to unique skeletal dysplasia in MPS IVA patients. Clinical, radiographic, and biochemical tests are needed to complete the diagnosis of MPS IVA since some clinical characteristics in MPS IVA are overlapped with other disorders. Early and accurate diagnosis is vital to optimizing patient management, which provides a better quality of life and prolonged life-time in MPS IVA patients. Currently, enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available for patients with MPS IVA. However, ERT and HSCT do not have enough impact on bone and cartilage lesions in patients with MPS IVA. Penetrating the deficient enzyme into an avascular lesion remains an unmet challenge, and several innovative therapies are under development in a preclinical study. In this review article, we comprehensively describe the current diagnosis, treatment, and management for MPS IVA. We also illustrate developing future therapies focused on the improvement of skeletal dysplasia in MPS IVA.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
| | | | - Matthew Piechnik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
- University of Delaware, Newark, DE 19716, USA
| | - Francisco J. Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Maria L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics and Pediatrics Neonatology Service, Metabolic Unit, IDIS, CIBERER, MetabERN, University Clinic Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Yasuyuki Suzuki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan;
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
- University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan;
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
43
|
Immune Response Mechanisms against AAV Vectors in Animal Models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:198-208. [PMID: 31970198 PMCID: PMC6965504 DOI: 10.1016/j.omtm.2019.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early preclinical studies in rodents and other species did not reveal that vector or transgene immunity would present a significant hurdle for sustained gene expression. While there was early evidence of mild immune responses to adeno-associated virus (AAV) in preclinical studies, it was generally believed that these responses were too weak and transient to negatively impact sustained transduction. However, translation of the cumulative success in treating hemophilia B in rodents and dogs with an AAV2-F9 vector to human studies was not as successful. Despite significant progress in recent clinical trials for hemophilia, new immunotoxicities to AAV and transgene are emerging in humans that require better animal models to assess and overcome these responses. The animal models designed to address these immune complications have provided critical information to assess how vector dose, vector capsid processing, vector genome, difference in serotypes, and variations in vector delivery route can impact immunity and to develop approaches for overcoming pre-existing immunity. Additionally, a comprehensive dissection of innate, adaptive, and regulatory responses to AAV vectors in preclinical studies has provided a framework that can be utilized for development of immunomodulatory therapies to overcome or bypass immune responses and for developing strategic approaches toward engineering stealth AAV vectors that can circumvent immunity.
Collapse
|
44
|
Abstract
Pompe disease (PD) is caused by the deficiency of the lysosomal enzyme acid α-glucosidase (GAA), resulting in systemic pathological glycogen accumulation. PD can present with cardiac, skeletal muscle, and central nervous system manifestations, as a continuum of phenotypes among two main forms: classical infantile-onset PD (IOPD) and late-onset PD (LOPD). IOPD is caused by severe GAA deficiency and presents at birth with cardiac hypertrophy, muscle hypotonia, and severe respiratory impairment, leading to premature death, if not treated. LOPD is characterized by levels of residual GAA activity up to ∼20% of normal and presents both in children and adults with a varied severity of muscle weakness and motor and respiratory deficit. Enzyme replacement therapy (ERT), based on repeated intravenous (i.v.) infusions of recombinant human GAA (rhGAA), represents the only available treatment for PD. Upon more than 10 years from its launch, it is becoming evident that ERT can extend the life span of IOPD and stabilize disease progression in LOPD; however, it does not represent a cure for PD. The limited uptake of the enzyme in key affected tissues and the high immunogenicity of rhGAA are some of the hurdles that limit ERT efficacy. GAA gene transfer with adeno-associated virus (AAV) vectors has been shown to reduce glycogen storage and improve the PD phenotype in preclinical studies following different approaches. Here, we present an overview of the different gene therapy approaches for PD, focusing on in vivo gene transfer with AAV vectors and discussing the potential opportunities and challenges in developing safe and effective gene therapies for the disease. Based on emerging safety and efficacy data from clinical trials for other protein deficiencies, in vivo gene therapy with AAV vectors appears to have the potential to provide a therapeutically relevant, stable source of GAA enzyme, which could be highly beneficial in PD.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, Evry, France.,Department of Pediatrics, Stanford University, Stanford, California
| | - Federico Mingozzi
- Genethon, Evry, France.,Spark Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Poupiot J, Costa Verdera H, Hardet R, Colella P, Collaud F, Bartolo L, Davoust J, Sanatine P, Mingozzi F, Richard I, Ronzitti G. Role of Regulatory T Cell and Effector T Cell Exhaustion in Liver-Mediated Transgene Tolerance in Muscle. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:83-100. [PMID: 31649958 PMCID: PMC6804827 DOI: 10.1016/j.omtm.2019.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
The pro-tolerogenic environment of the liver makes this tissue an ideal target for gene replacement strategies. In other peripheral tissues such as the skeletal muscle, anti-transgene immune response can result in partial or complete clearance of the transduced fibers. Here, we characterized liver-induced transgene tolerance after simultaneous transduction of liver and muscle. A clinically relevant transgene, α-sarcoglycan, mutated in limb-girdle muscular dystrophy type 2D, was fused with the SIINFEKL epitope (hSGCA-SIIN) and expressed with adeno-associated virus vectors (AAV-hSGCA-SIIN). Intramuscular delivery of AAV-hSGCA-SIIN resulted in a strong inflammatory response, which could be prevented and reversed by concomitant liver expression of the same antigen. Regulatory T cells and upregulation of checkpoint inhibitor receptors were required to establish and maintain liver-mediated peripheral tolerance. This study identifies the fundamental role of the synergy between Tregs and upregulation of checkpoint inhibitor receptors in the liver-mediated control of anti-transgene immunity triggered by muscle-directed gene transfer.
Collapse
Affiliation(s)
- Jérôme Poupiot
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | | | | | - Pasqualina Colella
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Fanny Collaud
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Laurent Bartolo
- UMR 1151, Necker-Institut Enfants Malades-Molecular Medicine Center, Paris, France
| | - Jean Davoust
- UMR 1151, Necker-Institut Enfants Malades-Molecular Medicine Center, Paris, France
| | | | | | - Isabelle Richard
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| |
Collapse
|
46
|
Jauze L, Monteillet L, Mithieux G, Rajas F, Ronzitti G. Challenges of Gene Therapy for the Treatment of Glycogen Storage Diseases Type I and Type III. Hum Gene Ther 2019; 30:1263-1273. [PMID: 31319709 DOI: 10.1089/hum.2019.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycogen storage diseases (GSDs) type I (GSDI) and type III (GSDIII), the most frequent hepatic GSDs, are due to defects in glycogen metabolism, mainly in the liver. In addition to hypoglycemia and liver pathology, renal, myeloid, or muscle complications affect GSDI and GSDIII patients. Currently, patient management is based on dietary treatment preventing severe hypoglycemia and increasing the lifespan of patients. However, most of the patients develop long-term pathologies. In the past years, gene therapy for GSDI has generated proof of concept for hepatic GSDs. This resulted in a recent clinical trial of adeno-associated virus (AAV)-based gene replacement for GSDIa. However, the current limitations of AAV-mediated gene transfer still represent a challenge for successful gene therapy in GSDI and GSDIII. Indeed, transgene loss over time was observed in GSDI liver, possibly due to the degeneration of hepatocytes underlying the physiopathology of both GSDI and GSDIII and leading to hepatic tumor development. Moreover, multitissue targeting requires high vector doses to target nonpermissive tissues such as muscle and kidney. Interestingly, recent pharmacological interventions or dietary regimen aiming at the amelioration of the hepatocyte abnormalities before the administration of gene therapy demonstrated improved efficacy in GSDs. In this review, we describe the advances in gene therapy and the limitations to be overcome to achieve efficient and safe gene transfer in GSDs.
Collapse
Affiliation(s)
- Louisa Jauze
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France.,Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Laure Monteillet
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
47
|
Domenger C, Grimm D. Next-generation AAV vectors—do not judge a virus (only) by its cover. Hum Mol Genet 2019; 28:R3-R14. [DOI: 10.1093/hmg/ddz148] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractRecombinant adeno-associated viruses (AAV) are under intensive investigation in numerous clinical trials after they have emerged as a highly promising vector for human gene therapy. Best exemplifying their power and potential is the authorization of three gene therapy products based on wild-type AAV serotypes, comprising Glybera (AAV1), Luxturna (AAV2) and, most recently, Zolgensma (AAV9). Nonetheless, it has also become evident that the current AAV vector generation will require improvements in transduction potency, antibody evasion and cell/tissue specificity to allow the use of lower and safer vector doses. To this end, others and we devoted substantial previous research to the implementation and application of key technologies for engineering of next-generation viral capsids in a high-throughput ‘top-down’ or (semi-)rational ‘bottom-up’ approach. Here, we describe a set of recent complementary strategies to enhance features of AAV vectors that act on the level of the recombinant cargo. As examples that illustrate the innovative and synergistic concepts that have been reported lately, we highlight (i) novel synthetic enhancers/promoters that provide an unprecedented degree of AAV tissue specificity, (ii) pioneering genetic circuit designs that harness biological (microRNAs) or physical (light) triggers as regulators of AAV gene expression and (iii) new insights into the role of AAV DNA structures on vector genome stability, integrity and functionality. Combined with ongoing capsid engineering and selection efforts, these and other state-of-the-art innovations and investigations promise to accelerate the arrival of the next generation of AAV vectors and to solidify the unique role of this exciting virus in human gene therapy.
Collapse
Affiliation(s)
- Claire Domenger
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| |
Collapse
|
48
|
Korlimarla A, Lim JA, Kishnani PS, Sun B. An emerging phenotype of central nervous system involvement in Pompe disease: from bench to bedside and beyond. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:289. [PMID: 31392201 DOI: 10.21037/atm.2019.04.49] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pompe disease (PD) is a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acid-alpha glucosidase (GAA). Pathogenic variants in the GAA gene lead to excessive accumulation of lysosomal glycogen primarily in the cardiac, skeletal, and smooth muscles. There is growing evidence of central nervous system (CNS) involvement in PD. Current research is focused on determining the true extent of CNS involvement, its effects on behavior and cognition, and effective therapies that would correct the disease in both muscle and the CNS. This review article summarizes the CNS findings in patients, highlights the importance of research on animal models, explores the probable success of gene therapy in reversing CNS pathologies as reported by some breakthrough preclinical studies, and emphasizes the need to follow patients and monitor for CNS involvement over time. Lessons learned from animal models (bench) and from the literature available to date on patients will guide future clinical trials in patients (bedside) with PD. Our preliminary studies in infantile PD show that some patients are susceptible to early and extensive CNS pathologies, as assessed by neuroimaging and developmental assessments. This article highlights the importance of neuroimaging which could serve as useful tools to diagnose and monitor certain CNS pathologies such as white matter hyperintense foci (WMF) in the brain. Longitudinal studies with large sample sizes are warranted at this time to better understand the emergence, progression and consequences of CNS involvement in patients with PD.
Collapse
Affiliation(s)
- Aditi Korlimarla
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Jeong-A Lim
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
49
|
Byrne BJ, Fuller DD, Smith BK, Clement N, Coleman K, Cleaver B, Vaught L, Falk DJ, McCall A, Corti M. Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:290. [PMID: 31392202 DOI: 10.21037/atm.2019.05.56] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pompe disease is a neuromuscular disease caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase leading to lysosomal and cytoplasmic glycogen accumulation in neurons and striated muscle. In the decade since availability of first-generation enzyme replacement therapy (ERT) a better understanding of the clinical spectrum of disease has emerged. The most severe form of early onset disease is typically identified with symptoms in the first year of life, known as infantile-onset Pompe disease (IOPD). Infants are described at floppy babies with cardiac hypertrophy in the first few months of life. A milder form with late onset (LOPD) of symptoms is mostly free of cardiac involvement with slower rate of progression. Glycogen accumulation in the CNS and skeletal muscle is observed in both IOPD and LOPD. In both circumstances, multi-system disease (principally motoneuron and myopathy) leads to progressive weakness with associated respiratory and feeding difficulty. In IOPD the untreated natural history leads to cardiorespiratory failure and death in the first year of life. In the current era of ERT clinical outcomes are improved, yet, many patients have an incomplete response and a substantial unmet need remains. Since the neurological manifestations of the disease are not amenable to peripheral enzyme replacement, we set out to better understand the pathophysiology and potential for treatment of disease manifestations using adeno-associated virus (AAV)-mediated gene transfer, with the first clinical gene therapy studies initiated by our group in 2006. This review focuses on the preclinical studies and clinical study findings which are pertinent to the development of a comprehensive gene therapy strategy for both IOPD and LOPD. Given the advent of newborn screening, a significant focus of our recent work has been to establish the basis for repeat administration of AAV vectors to enhance neuromuscular therapeutic efficacy over the life span.
Collapse
Affiliation(s)
- Barry J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Nathalie Clement
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Kirsten Coleman
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Brian Cleaver
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Lauren Vaught
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | | | - Angela McCall
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Manuela Corti
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Ronzitti G, Collaud F, Laforet P, Mingozzi F. Progress and challenges of gene therapy for Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:287. [PMID: 31392199 DOI: 10.21037/atm.2019.04.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pompe disease (PD) is a monogenic disorder caused by mutations in the acid alpha-glucosidase gene (Gaa). GAA is a lysosomal enzyme essential for the degradation of glycogen. Deficiency of GAA results in a severe, systemic disorder that, in its most severe form, can be fatal. About a decade ago, the prognosis of PD has changed dramatically with the marketing authorization of an enzyme replacement therapy (ERT) based on recombinant GAA. Despite the breakthrough nature of ERT, long-term follow-up of both infantile and late-onset Pompe disease patients (IOPD and LOPD, respectively), revealed several limitations of the approach. In recent years several investigational therapies for PD have entered preclinical and clinical development, with a few next generation ERTs entering late-stage clinical development. Gene therapy holds the potential to change dramatically the way we treat PD, based on the ability to express the Gaa gene long-term, ideally driving enhanced therapeutic efficacy compared to ERT. Several gene therapy approaches to PD have been tested in preclinical animal models, with a handful of early phase clinical trials started or about to start. The complexity of PD and of the endpoints used to measure efficacy of investigational treatments remains a challenge, however the hope is for a future with more therapeutic options for both IOPD and LOPD patients.
Collapse
Affiliation(s)
| | | | - Pascal Laforet
- Raymond Poincaré Teaching Hospital, APHP, Garches, France.,Nord/Est/Ile de France Neuromuscular Center, France
| | | |
Collapse
|