1
|
Babaei S, Fadaee M, Abbasi-Kenarsari H, Shanehbandi D, Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun Signal 2024; 22:527. [PMID: 39482766 PMCID: PMC11526674 DOI: 10.1186/s12964-024-01906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
The malignant form of melanoma is one of the deadliest human cancers that accounts for almost all of the skin tumor-related fatalities in its later stages. Achieving an exhaustive understanding of reliable cancer-specific markers and molecular pathways can provide numerous practical techniques and direct the way toward the development of rational curative medicines to increase the lifespan of patients. Immunotherapy has significantly enhanced the treatment of metastatic and late-stage melanoma, resulting in an incredible increase in positive responses to therapy. Despite the increasing occurrence of melanoma, the median survival rate for patients with advanced, inoperable terminal disease has increased from around six months to almost six years. The current knowledge of the tumor microenvironment (TME) and its interaction with the immune system has resulted in the swift growth of innovative immunotherapy treatments. Exosomes are small extracellular vesicles (EVs), ranging from 30 to 150 nm in size, that the majority of cells released them. Exosomes possess natural advantages such as high compatibility with living organisms and low potential for causing immune reactions, making them practical for delivering therapeutic agents like chemotherapy drugs, nucleic acids, and proteins. This review highlights recent advancements in using exosomes as an approach to providing medications for the treatment of melanoma.
Collapse
Affiliation(s)
- Shabnam Babaei
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dariush Shanehbandi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146.
| |
Collapse
|
2
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
3
|
Wu M, Holgado L, Harrower RM, Brown AC. Evaluation of the efficiency of various methods to load fluoroquinolones into Escherichia coli outer membrane vesicles as a novel antibiotic delivery platform. Biochem Eng J 2024; 210:109418. [PMID: 39092080 PMCID: PMC11290469 DOI: 10.1016/j.bej.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The development of novel antibacterial agents that are effective against Gram-negative bacteria is limited primarily by transport issues. This class of bacteria maintains a complex cell envelope consisting of two membrane bilayers, preventing the passage of most antibiotics. These drugs must therefore pass through protein channels called porins; however, many antibiotics are too large to pass through porins, and a common mechanism of acquired resistance is down-regulation of porins. To overcome this transport limitation, we have proposed the use of outer membrane vesicles (OMVs), released by Gram-negative bacteria, which deliver cargo to other bacterial cells in a porin-independent manner. In this work, we systematically studied the ability to load fluoroquinolones into purified Escherichia coli OMVs using in vivo and in vitro passive loading methods, and active loading methods such as electroporation and sonication. We observed limited loading of all of the antibiotics using passive loading techniques; sonication and electroporation significantly increased the loading, with electroporation at low voltages (200 and 400V) resulting in the greatest encapsulation efficiencies. We also demonstrated that imipenem, a carbapenem antibiotic, can be readily loaded into OMVs, and its administration via OMVs increases the effectiveness of the drug against E. coli. Our results demonstrate that small molecule antibiotics can be readily incorporated into OMVs to create novel delivery vehicles to improve antibiotic activity.
Collapse
Affiliation(s)
- Meishan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton St., Bethlehem, PA, 18015, USA
| | - Lauryn Holgado
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton St., Bethlehem, PA, 18015, USA
| | - Rachael M. Harrower
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, PA, 18015, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton St., Bethlehem, PA, 18015, USA
| |
Collapse
|
4
|
Ren L, Zhang D, Pang L, Liu S. Extracellular vesicles for cancer therapy: potential, progress, and clinical challenges. Front Bioeng Biotechnol 2024; 12:1476737. [PMID: 39398642 PMCID: PMC11466826 DOI: 10.3389/fbioe.2024.1476737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Extracellular vesicles (EVs) play an important role in normal life activities and disease treatment. In recent years, there have been abundant relevant studies focusing on EVs for cancer therapy and showing good performance on tumor inhibition. To enhance the effectiveness of EVs, EV analogs have been developed. This review summarizes the classification, origin, production, purification, modification, drug loading and cancer treatment applications of EVs and their analogs. Also, the characteristics of technologies involved are analyzed, which provides the basis for the development and application of biogenic vesicle-based drug delivery platform for cancer therapy. Meanwhile, challenges in translating these vesicles into clinic, such as limited sources, lack of production standards, and insufficient targeting and effectiveness are discussed. With ongoing exploration and clinical studies, EV-based drugs will make great contributions to cancer therapy.
Collapse
Affiliation(s)
- Lili Ren
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Dingmei Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Long Pang
- College of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
| | - Shiyu Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology and Clinic of Oral Rare Diseases and Genetic Disease, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Koyama S, Weber EL, Heinbockel T. Possible Combinatorial Utilization of Phytochemicals and Extracellular Vesicles for Wound Healing and Regeneration. Int J Mol Sci 2024; 25:10353. [PMID: 39408681 PMCID: PMC11476926 DOI: 10.3390/ijms251910353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Organ and tissue damage can result from injury and disease. How to facilitate regeneration from damage has been a topic for centuries, and still, we are trying to find agents to use for treatments. Two groups of biological substances are known to facilitate wound healing. Phytochemicals with bioactive properties form one group. Many phytochemicals have anti-inflammatory effects and enhance wound healing. Recent studies have described their effects at the gene and protein expression levels, highlighting the receptors and signaling pathways involved. The extremely large number of phytochemicals and the multiple types of receptors they activate suggest a broad range of applicability for their clinical use. The hydrophobic nature of many phytochemicals and the difficulty with chemical stabilization have been a problem. Recent developments in biotechnology and nanotechnology methods are enabling researchers to overcome these problems. The other group of biological substances is extracellular vesicles (EVs), which are now known to have important biological functions, including the improvement of wound healing. The proteins and nanoparticles contained in mammalian EVs as well as the specificity of the targets of microRNAs included in the EVs are becoming clear. Plant-derived EVs have been found to contain phytochemicals. The overlap in the wound-healing capabilities of both phytochemicals and EVs and the differences in their nature suggest the possibility of a combinatorial use of the two groups, which may enhance their effects.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erin L. Weber
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
6
|
Araujo-Abad S, Berna JM, Lloret-Lopez E, López-Cortés A, Saceda M, de Juan Romero C. Exosomes: from basic research to clinical diagnostic and therapeutic applications in cancer. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00990-2. [PMID: 39298081 DOI: 10.1007/s13402-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer continues to pose a global threat despite potent anticancer drugs, often accompanied by undesired side effects. To enhance patient outcomes, sophisticated multifunctional approaches are imperative. Small extracellular vesicles (EVs), a diverse family of naturally occurring vesicles derived from cells, offer advantages over synthetic carriers. Among the EVs, the exosomes are facilitating intercellular communication with minimal toxicity, high biocompatibility, and low immunogenicity. Their tissue-specific targeting ability, mediated by surface molecules, enables precise transport of biomolecules to cancer cells. Here, we explore the potential of exosomes as innovative therapeutic agents, including cancer vaccines, and their clinical relevance as biomarkers for clinical diagnosis. We highlight the cargo possibilities, including nucleic acids and drugs, which make them a good delivery system for targeted cancer treatment and contrast agents for disease monitoring. Other general aspects, sources, and the methodology associated with therapeutic cancer applications are also reviewed. Additionally, the challenges associated with translating exosome-based therapies into clinical practice are discussed, together with the future prospects for this innovative approach.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito, 170124, Ecuador
| | - José Marcos Berna
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Elena Lloret-Lopez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, 170124, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain.
| |
Collapse
|
7
|
Balboni A, Ailuno G, Baldassari S, Drava G, Petretto A, Grinovero N, Cavalleri O, Angeli E, Lagomarsino A, Canepa P, Corsaro A, Tremonti B, Barbieri F, Thellung S, Contini P, Cortese K, Florio T, Caviglioli G. Human glioblastoma-derived cell membrane nanovesicles: a novel, cell-specific strategy for boron neutron capture therapy of brain tumors. Sci Rep 2024; 14:19225. [PMID: 39160236 PMCID: PMC11333626 DOI: 10.1038/s41598-024-69696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Glioblastoma (GBM), one of the deadliest brain tumors, accounts for approximately 50% of all primary malignant CNS tumors, therefore novel, highly effective remedies are urgently needed. Boron neutron capture therapy, which has recently repositioned as a promising strategy to treat high-grade gliomas, requires a conspicuous accumulation of boron atoms in the cancer cells. With the aim of selectively deliver sodium borocaptate (BSH, a 12 B atoms-including molecule already employed in the clinics) to GBM cells, we developed novel cell membrane-derived vesicles (CMVs), overcoming the limits of natural extracellular vesicles as drug carriers, while maintaining their inherent homing abilities that make them preferable to fully synthetic nanocarriers. Purified cell membrane fragments, isolated from patient-derived GBM stem-like cell cultures, were used to prepare nanosized CMVs, which retained some membrane proteins specific of the GBM parent cells and were devoid of potentially detrimental genetic material. In vitro tests evidenced the targeting ability of this novel nanosystem and ruled out any cytotoxicity. The CMVs were successfully loaded with BSH, by following two different procedures, i.e. sonication and electroporation, demonstrating their potential applicability in GBM therapy.
Collapse
Affiliation(s)
- Alice Balboni
- Department of Pharmacy, University of Genoa, 16148, Genoa, Italy
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genoa, 16148, Genoa, Italy.
| | - Sara Baldassari
- Department of Pharmacy, University of Genoa, 16148, Genoa, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genoa, 16148, Genoa, Italy
| | | | | | | | - Elena Angeli
- Department of Physics, University of Genoa, 16146, Genoa, Italy
| | | | - Paolo Canepa
- Department of Physics, University of Genoa, 16146, Genoa, Italy
| | - Alessandro Corsaro
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Beatrice Tremonti
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Federica Barbieri
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Stefano Thellung
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Paola Contini
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Tullio Florio
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genoa, 16148, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| |
Collapse
|
8
|
Balcorta HV, Contreras Guerrero VG, Bisht D, Poon W. Nucleic Acid Delivery Nanotechnologies for In Vivo Cell Programming. ACS APPLIED BIO MATERIALS 2024; 7:5020-5036. [PMID: 38288693 DOI: 10.1021/acsabm.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In medicine, it is desirable for clinicians to be able to restore function and imbue novel function into selected cells for therapy and disease prevention. Cells damaged by disease, injury, or aging could be programmed to restore normal or lost functions, such as retinal cells in inherited blindness and neuronal cells in Alzheimer's disease. Cells could also be genetically programmed with novel functions such as immune cells expressing synthetic chimeric antigen receptors for immunotherapy. Furthermore, knockdown or modification of risk factor proteins can mitigate disease development. Currently, nucleic acids are emerging as a versatile and potent therapeutic modality for achieving this cellular programming. In this review, we highlight the latest developments in nanobiomaterials-based nucleic acid therapeutics for cellular programming from a biomaterial design and delivery perspective and how to overcome barriers to their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Hannia V Balcorta
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Veronica G Contreras Guerrero
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Deepali Bisht
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Wilson Poon
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| |
Collapse
|
9
|
Lowe NM, Mizenko RR, Nguyen BB, Chiu KL, Arun V, Panitch A, Carney RP. Orthogonal analysis reveals inconsistencies in cargo loading of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70003. [PMID: 39185333 PMCID: PMC11342351 DOI: 10.1002/jex2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Since extracellular vesicles (EVs) have emerged as a promising drug delivery system, diverse methods have been used to load them with active pharmaceutical ingredients (API) in preclinical and clinical studies. However, there is yet to be an engineered EV formulation approved for human use, a barrier driven in part by the intrinsic heterogeneity of EVs. API loading is rarely assessed in the context of single vesicle measurements of physicochemical properties but is likely administered in a heterogeneous fashion to the detriment of a consistent product. Here, we applied a suite of single-particle resolution methods to determine the loading of rhodamine 6G (R6G) surrogate cargo mimicking hydrophilic small molecule drugs across four common API loading methods: sonication, electroporation, freeze-thaw cycling and passive incubation. Loading efficiencies and alterations in the physical properties of EVs were assessed, as well as co-localization with common EV-associated tetraspanins (i.e., CD63, CD81 and CD9) for insight into EV subpopulations. Sonication had the highest loading efficiency, yet significantly decreased particle yield, while electroporation led to the greatest number of loaded API particles, albeit at a lower efficiency. Moreover, results were often inconsistent between repeated runs within a given method, demonstrating the difficulty in developing a rigorous loading method that consistently loaded EVs across their heterogeneous subpopulations. This work highlights the significance of how chosen quantification metrics can impact apparent conclusions and the importance of single-particle characterization of EV loading.
Collapse
Affiliation(s)
- Neona M. Lowe
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Bryan B. Nguyen
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Kwan Lun Chiu
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Vishalakshi Arun
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Alyssa Panitch
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
10
|
Durmaz E, Dribika L, Kutnyanszky M, Mead B. Utilizing extracellular vesicles as a drug delivery system in glaucoma and RGC degeneration. J Control Release 2024; 372:209-220. [PMID: 38880332 DOI: 10.1016/j.jconrel.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Retinal diseases are the leading cause of blindness, resulting in irreversible degeneration and death of retinal neurons. One such cell type, the retinal ganglion cell (RGC), is responsible for connecting the retina to the rest of the brain through its axons that make up the optic nerve and is the primary cell lost in glaucoma and traumatic optic neuropathy. To date, different therapeutic strategies have been investigated to protect RGCs from death and preserve vision, yet currently available strategies are restricted to treating neuron loss by reducing intraocular pressure. A major barrier identified by these studies is drug delivery to RGCs, which is in large part due to drug stability, short duration time at target, low delivery efficiency, and undesired off-target effects. Therefore, a delivery system to deal with these problems is needed to ensure maximum benefit from the candidate therapeutic material. Extracellular vesicles (EV), nanocarriers released by all cells, are lipid membranes encapsulating RNAs, proteins, and lipids. As they naturally shuttle these encapsulated compounds between cells for communicative purposes, they may be exploitable and offer opportunities to overcome hurdles in retinal drug delivery, including drug stability, drug molecular weight, barriers in the retina, and drug adverse effects. Here, we summarize the potential of an EV drug delivery system, discussing their superiorities and potential application to target RGCs.
Collapse
Affiliation(s)
- Esmahan Durmaz
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| | | | | | - Ben Mead
- Cardiff University, School of Optometry & Vision Sciences, Cardiff, UK.
| |
Collapse
|
11
|
Guo L, Xiao D, Xing H, Yang G, Yang X. Engineered exosomes as a prospective therapy for diabetic foot ulcers. BURNS & TRAUMA 2024; 12:tkae023. [PMID: 39026930 PMCID: PMC11255484 DOI: 10.1093/burnst/tkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Indexed: 07/20/2024]
Abstract
Diabetic foot ulcer (DFU), characterized by high recurrence rate, amputations and mortality, poses a significant challenge in diabetes management. The complex pathology involves dysregulated glucose homeostasis leading to systemic and local microenvironmental complications, including peripheral neuropathy, micro- and macro-angiopathy, recurrent infection, persistent inflammation and dysregulated re-epithelialization. Novel approaches to accelerate DFU healing are actively pursued, with a focus on utilizing exosomes. Exosomes are natural nanovesicles mediating cellular communication and containing diverse functional molecular cargos, including DNA, mRNA, microRNA (miRNA), lncRNA, proteins, lipids and metabolites. While some exosomes show promise in modulating cellular function and promoting ulcer healing, their efficacy is limited by low yield, impurities, low loading content and inadequate targeting. Engineering exosomes to enhance their curative activity represents a potentially more efficient approach for DFUs. This could facilitate focused repair and regeneration of nerves, blood vessels and soft tissue after ulcer development. This review provides an overview of DFU pathogenesis, strategies for exosome engineering and the targeted therapeutic application of engineered exosomes in addressing critical pathological changes associated with DFUs.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Tiantanxili Street #4, Dongcheng District, Beijing 100050, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| |
Collapse
|
12
|
Iqbal Z, Rehman K, Mahmood A, Shabbir M, Liang Y, Duan L, Zeng H. Exosome for mRNA delivery: strategies and therapeutic applications. J Nanobiotechnology 2024; 22:395. [PMID: 38965553 PMCID: PMC11225225 DOI: 10.1186/s12951-024-02634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
Messenger RNA (mRNA) has emerged as a promising therapeutic molecule with numerous clinical applications in treating central nervous system disorders, tumors, COVID-19, and other diseases. mRNA therapies must be encapsulated into safe, stable, and effective delivery vehicles to preserve the cargo from degradation and prevent immunogenicity. Exosomes have gained growing attention in mRNA delivery because of their good biocompatibility, low immunogenicity, small size, unique capacity to traverse physiological barriers, and cell-specific tropism. Moreover, these exosomes can be engineered to utilize the natural carriers to target specific cells or tissues. This targeted approach will enhance the efficacy and reduce the side effects of mRNAs. However, difficulties such as a lack of consistent and reliable methods for exosome purification and the efficient encapsulation of large mRNAs into exosomes must be addressed. This article outlines current breakthroughs in cell-derived vesicle-mediated mRNA delivery and its biomedical applications.
Collapse
Affiliation(s)
- Zoya Iqbal
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Khurrum Rehman
- Department of Allied Health Sciences, The University of Agriculture, D.I.Khan, Pakistan
| | - Ayesha Mahmood
- Department of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
| | - Maryam Shabbir
- Department of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Hui Zeng
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
13
|
Zuppone S, Zarovni N, Noguchi K, Loria F, Morasso C, Lõhmus A, Nakase I, Vago R. Novel loading protocol combines highly efficient encapsulation of exogenous therapeutic toxin with preservation of extracellular vesicles properties, uptake and cargo activity. DISCOVER NANO 2024; 19:76. [PMID: 38691254 PMCID: PMC11063024 DOI: 10.1186/s11671-024-04022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Extracellular vesicles (EVs) have mostly been investigated as carriers of biological therapeutics such as proteins and RNA. Nevertheless, small-molecule drugs of natural or synthetic origin have also been loaded into EVs, resulting in an improvement of their therapeutic properties. A few methods have been employed for EV cargo loading, but poor yield and drastic modifications of vesicles remain unsolved challenges. We tested a different strategy based on temporary pH alteration through incubation of EVs with alkaline sodium carbonate, which resulted in conspicuous exogenous molecule incorporation. In-depth characterization showed that vesicle size, morphology, composition, and uptake were not affected. Our method was more efficient than gold-standard electroporation, particularly for a potential therapeutic toxin: the plant Ribosome Inactivating Protein saporin. The encapsulated saporin resulted protected from degradation, and was efficiently conveyed to receiving cancer cells and triggered cell death. EV-delivered saporin was more cytotoxic compared to the free toxin. This approach allows both the structural preservation of vesicle properties and the transfer of protected cargo in the context of drug delivery.
Collapse
Affiliation(s)
- Stefania Zuppone
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Kosuke Noguchi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Francesca Loria
- HansaBiomed Life Sciences, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | | | - Ikuhiko Nakase
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, 20132, Milan, Italy.
| |
Collapse
|
14
|
Hsia T, Chen Y. RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. Eur J Pharm Biopharm 2024; 197:114234. [PMID: 38401743 DOI: 10.1016/j.ejpb.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems such as RNA-encapsulating lipid nanoparticles (RNA LNPs) have dramatically advanced in function and capacity over the last few decades. RNA LNPs boast of a diverse array of external and core configurations that enhance targeted delivery and prolong circulatory retention, advancing therapeutic outcomes. Particularly within the realm of cancer immunotherapies, RNA LNPs are increasingly gaining prominence. Pre-clinical in vitro and in vivo studies have laid a robust foundation for new and ongoing clinical trials that are actively enrolling patients for RNA LNP cancer immunotherapy. This review explores RNA LNPs, starting from their core composition to their external membrane formulation, set against a backdrop of recent clinical breakthroughs. We further elucidate the LNP delivery avenues, broach the prevailing challenges, and contemplate the future perspectives of RNA LNP-mediated immunotherapy.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
15
|
Lee C, Kumar S, Park J, Choi Y, Clarissa EM, Cho YK. Tonicity-induced cargo loading into extracellular vesicles. LAB ON A CHIP 2024; 24:2069-2079. [PMID: 38436394 DOI: 10.1039/d3lc00830d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The current challenge in using extracellular vesicles (EVs) as drug delivery vehicles is to precisely control their membrane permeability, specifically in the ability to switch between permeable and impermeable states without compromising their integrity and functionality. Here, we introduce a rapid, efficient, and gentle loading method for EVs based on tonicity control (TC) using a lab-on-a-disc platform. In this technique, a hypotonic solution was used for temporarily permeabilizing a membrane ("on" state), allowing the influx of molecules into EVs. The subsequent isotonic washing led to an impermeable membrane ("off" state). This loading cycle enables the loading of different cargos into EVs, such as doxorubicin hydrochloride (Dox), ssDNA, and miRNA. The TC approach was shown to be more effective than traditional methods such as sonication or extrusion, with loading yields that were 4.3-fold and 7.2-fold greater, respectively. Finally, the intracellular assessments of miRNA-497-loaded EVs and doxorubicin-loaded EVs confirmed the superior performance of TC-prepared formulations and demonstrated the impact of encapsulation heterogeneity on the therapeutic outcome, signifying potential opportunities for developing novel exosome-based therapeutic systems for clinical applications.
Collapse
Affiliation(s)
- Chaeeun Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Sumit Kumar
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Juhee Park
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Yongjun Choi
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Elizabeth Maria Clarissa
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea
| |
Collapse
|
16
|
Chia SPS, Pang JKS, Soh BS. Current RNA strategies in treating cardiovascular diseases. Mol Ther 2024; 32:580-608. [PMID: 38291757 PMCID: PMC10928165 DOI: 10.1016/j.ymthe.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
17
|
Yang S, Zheng B, Raza F, Zhang S, Yuan WE, Su J, Qiu M. Tumor-derived microvesicles for cancer therapy. Biomater Sci 2024; 12:1131-1150. [PMID: 38284828 DOI: 10.1039/d3bm01980b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Shulei Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Wei-En Yuan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
- Engineering Research Center of Cell & Therapeuti c Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| |
Collapse
|
18
|
Gai C, Pomatto MAC, Deregibus MC, Dieci M, Piga A, Camussi G. Edible Plant-Derived Extracellular Vesicles for Oral mRNA Vaccine Delivery. Vaccines (Basel) 2024; 12:200. [PMID: 38400183 PMCID: PMC10893065 DOI: 10.3390/vaccines12020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Nucleic acid delivery through extracellular vesicles (EVs) is a well-preserved evolutionary mechanism in all life kingdoms including eukaryotes, prokaryotes, and plants. EVs naturally allow horizontal transfer of native as well as exogenous functional mRNAs, which once incorporated in EVs are protected from enzymatic degradation. This observation has prompted researchers to investigate whether EVs from different sources, including plants, could be used for vaccine delivery. Several studies using human or bacterial EVs expressing mRNA or recombinant SARS-CoV-2 proteins showed induction of a humoral and cell mediated immune response. Moreover, EV-based vaccines presenting the natural configuration of viral antigens have demonstrated advantages in conferring long-lasting immunization and lower toxicity than synthetic nanoparticles. Edible plant-derived EVs were shown to be an alternative to human EVs for vaccine delivery, especially via oral administration. EVs obtained from orange juice (oEVs) loaded with SARS-CoV-2 mRNAs protected their cargo from enzymatic degradation, were stable at room temperature for one year, and were able to trigger a SARS-CoV-2 immune response in mice. Lyophilized oEVs containing the S1 mRNA administered to rats via gavage induced a specific humoral immune response with generation of blocking antibodies, including IgA and Th1 lymphocyte activation. In conclusion, mRNA-containing oEVs could be used for developing new oral vaccines due to optimal mucosal absorption, resistance to stress conditions, and ability to stimulate a humoral and cellular immune response.
Collapse
Affiliation(s)
- Chiara Gai
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| | - Margherita Alba Carlotta Pomatto
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| | | | - Marco Dieci
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
| | - Alessandro Piga
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| |
Collapse
|
19
|
Liu X, Cao Y, Wang S, Liu J, Hao H. Extracellular vesicles: powerful candidates in nano-drug delivery systems. Drug Deliv Transl Res 2024; 14:295-311. [PMID: 37581742 DOI: 10.1007/s13346-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Extracellular vesicles (EVs), which are nanoparticles that are actively released by cells, contain a variety of biologically active substances, serve as significant mediators of intercellular communication, and participate in many processes, in health and pathologically. Compared with traditional nanodrug delivery systems (NDDSs), EVs have unique advantages due to their natural physiological properties, such as their biocompatibility, stability, ability to cross barriers, and inherent homing properties. A growing number of studies have reported that EVs deliver therapeutic proteins, small-molecule drugs, siRNAs, miRNAs, therapeutic proteins, and nanomaterials for targeted therapy in various diseases. However, due to the lack of standardized techniques for isolating, quantifying, and characterizing EVs; lower-than-anticipated drug loading efficiency; insufficient clinical production; and potential safety concerns, the practical application of EVs still faces many challenges. Here, we systematically review the current commonly used methods for isolating EVs, summarize the types and methods of loading therapeutic drugs into EVs, and discuss the latest progress in applying EVs as NDDs. Finally, we present the challenges that hinder the clinical application of EVs.
Collapse
Affiliation(s)
- Xiaofei Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Yinfang Cao
- Department of Laboratory Medicine, Inner Mongolia People's Hospital, No. 17 Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia, People's Republic of China
| | - Shuming Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jiahui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
- Department of Chemistry and Chemical Engineering, Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
20
|
Wang X, Gong W, Li R, Li L, Wang J. Preparation of genetically or chemically engineered exosomes and their therapeutic effects in bone regeneration and anti-inflammation. Front Bioeng Biotechnol 2024; 12:1329388. [PMID: 38314353 PMCID: PMC10834677 DOI: 10.3389/fbioe.2024.1329388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
The treatment of bone or cartilage damage and inflammation-related diseases has been a long-standing research hotspot. Traditional treatments such as surgery and cell therapy have only displayed limited efficacy because they can't avoid potential deterioration and ensure cell activity. Recently, exosomes have become a favorable tool for various tissue reconstruction due to their abundant content of proteins, lipids, DNA, RNA and other substances, which can promote bone regeneration through osteogenesis, angiogenesis and inflammation modulation. Besides, exosomes are also promising delivery systems because of stability in the bloodstream, immune stealth capacity, intrinsic cell-targeting property and outstanding intracellular communication. Despite having great potential in therapeutic delivery, exosomes still show some limitations in clinical studies, such as inefficient targeting ability, low yield and unsatisfactory therapeutic effects. In order to overcome the shortcomings, increasing studies have prepared genetically or chemically engineered exosomes to improve their properties. This review focuses on different methods of preparing genetically or chemically engineered exosomes and the therapeutic effects of engineering exosomes in bone regeneration and anti-inflammation, thereby providing some references for future applications of engineering exosomes.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Weitao Gong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Rongrong Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lin Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
- Clinical Research Center for Oral Diseases, Lanzhou, China
| |
Collapse
|
21
|
Guo ZY, Tang Y, Cheng YC. Exosomes as Targeted Delivery Drug System: Advances in Exosome Loading, Surface Functionalization and Potential for Clinical Application. Curr Drug Deliv 2024; 21:473-487. [PMID: 35702803 DOI: 10.2174/1567201819666220613150814] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Exosomes are subtypes of vesicles secreted by almost all cells and can play an important role in intercellular communication. They contain various proteins, lipids, nucleic acids and other natural substances from their metrocytes. Exosomes are expected to be a new generation of drug delivery systems due to their low immunogenicity, high potential to transfer bioactive substances and biocompatibility. However, exosomes themselves are not highly targeted, it is necessary to develop new surface modification techniques and targeted drug delivery strategies, which are the focus of drug delivery research. In this review, we introduced the biogenesis of exosomes and their role in intercellular communication. We listed various advanced exosome drug-loading techniques. Emphatically, we summarized different exosome surface modification techniques and targeted drug delivery strategies. In addition, we discussed the application of exosomes in vaccines and briefly introduced milk exosomes. Finally, we clarified the clinical application prospects and shortcomings of exosomes.
Collapse
Affiliation(s)
- Zun Y Guo
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| | - Yi C Cheng
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| |
Collapse
|
22
|
Rabienezhad Ganji N, Urzì O, Tinnirello V, Costanzo E, Polito G, Palumbo Piccionello A, Manno M, Raccosta S, Gallo A, Lo Pinto M, Calligaris M, Scilabra SD, Di Bella MA, Conigliaro A, Fontana S, Raimondo S, Alessandro R. Proof-of-Concept Study on the Use of Tangerine-Derived Nanovesicles as siRNA Delivery Vehicles toward Colorectal Cancer Cell Line SW480. Int J Mol Sci 2023; 25:546. [PMID: 38203716 PMCID: PMC10779162 DOI: 10.3390/ijms25010546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
In the last years, the field of nanomedicine and drug delivery has grown exponentially, providing new platforms to carry therapeutic agents into the target sites. Extracellular vesicles (EVs) are ready-to-use, biocompatible, and non-toxic nanoparticles that are revolutionizing the field of drug delivery. EVs are involved in cell-cell communication and mediate many physiological and pathological processes by transferring their bioactive cargo to target cells. Recently, nanovesicles from plants (PDNVs) are raising the interest of the scientific community due to their high yield and biocompatibility. This study aims to evaluate whether PDNVs may be used as drug delivery systems. We isolated and characterized nanovesicles from tangerine juice (TNVs) that were comparable to mammalian EVs in size and morphology. TNVs carry the traditional EV marker HSP70 and, as demonstrated by metabolomic analysis, contain flavonoids, organic acids, and limonoids. TNVs were loaded with DDHD1-siRNA through electroporation, obtaining a loading efficiency of 13%. We found that the DDHD1-siRNA complex TNVs were able to deliver DDHD1-siRNA to human colorectal cancer cells, inhibiting the target expression by about 60%. This study represents a proof of concept for the use of PDNVs as vehicles of RNA interference (RNAi) toward mammalian cells.
Collapse
Affiliation(s)
- Nima Rabienezhad Ganji
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Ornella Urzì
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Vincenza Tinnirello
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Elisa Costanzo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Giulia Polito
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90128 Palermo, Italy; (G.P.); (A.P.P.)
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90128 Palermo, Italy; (G.P.); (A.P.P.)
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (M.M.); (S.R.)
| | - Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (M.M.); (S.R.)
| | - Alessia Gallo
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Margot Lo Pinto
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS-ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy (M.C.)
| | - Matteo Calligaris
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS-ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy (M.C.)
| | - Simone Dario Scilabra
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS-ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy (M.C.)
| | - Maria Antonietta Di Bella
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Alice Conigliaro
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Simona Fontana
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Stefania Raimondo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| | - Riccardo Alessandro
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90133 Palermo, Italy; (N.R.G.); (O.U.); (V.T.); (E.C.); (M.A.D.B.); (A.C.); (S.F.); (R.A.)
| |
Collapse
|
23
|
Yu X, Dong M, Wang L, Yang Q, Wang L, Han W, Dong J, Liu T, Kong Y, Niu W. Nanotherapy for bone repair: milk-derived small extracellular vesicles delivery of icariin. Drug Deliv 2023; 30:2169414. [PMID: 36714914 PMCID: PMC9888478 DOI: 10.1080/10717544.2023.2169414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Icariin (ICA) played an important role in the treatment of inflammatory bone defects. However, pharmacokinetic studies have shown that its poor bioavailability limited its application. In this context, we isolated bovine milk-derived sEV and prepared sEV-ICA to improve the osteogenic effect of ICA. In this study, we successfully constructed sEV-ICA. sEV-ICA was found to have significantly higher osteogenic efficiency than ICA in cell culture and cranial bone defect models. Mechanistically, bioinformatics analysis predicted that signal transducers and activators of transcription 5 (STAT5a) may bind to the GJA1 promoter, while luciferase activity assays and chromatin immunoprecipitation (ChIP) experiments confirmed that STAT5a directly binded to the GJA1 promoter to promote osteogenesis. We proved that compared with ICA, sEV-ICA showed a better effect of promoting bone repair in vivo and in vitro. In addition, sEV-ICA could promote osteogenesis by promoting the combination of STAT5a and GJA1 promoter. In summary, as a complex drug delivery system, sEV-ICA constituted a rapid and effective method for the treatment of bone defects and could improve the osteogenic activity of ICA.
Collapse
Affiliation(s)
- Xinxin Yu
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Lina Wang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Qian Yang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Long Wang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Wenqing Han
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Juhong Dong
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Tingjiao Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China,Tingjiao Liu Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai200003, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai200003, China
| | - Ying Kong
- Department Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China,Ying Kong Department Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian116044, Liaoning, China;
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China,CONTACT Weidong Niu School of Stomatology, Dalian Medical University, Dalian116044, Liaoning, China;
| |
Collapse
|
24
|
Zhao Y, Tan H, Zhang J, Pan B, Wang N, Chen T, Shi Y, Wang Z. Plant-Derived Vesicles: A New Era for Anti-Cancer Drug Delivery and Cancer Treatment. Int J Nanomedicine 2023; 18:6847-6868. [PMID: 38026523 PMCID: PMC10664809 DOI: 10.2147/ijn.s432279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Lipid-structured vesicles have been applied for drug delivery system for over 50 years. Based on their origin, lipid-structured vesicles are divided into two main categories, namely synthetic lipid vesicles (SLNVEs) and vesicles of mammalian origin (MDVEs). Although SLNVEs can stably transport anti-cancer drugs, their biocompatibility is poor and degradation of exogenous substances is a potential risk. Unlike SLNVEs, MDVEs have excellent biocompatibility but are limited by a lack of stability and a risk of contamination by dangerous pathogens from donor cells. Since the first discovery of plant-derived vesicles (PDVEs) in carrot cell supernatants in 1967, emerging evidence has shown that PDVEs integrate the advantages of both SLNVEs and MDVEs. Notably, 55 years of dedicated research has indicated that PDVEs are an ideal candidate vesicle for drug preparation, transport, and disease treatment. The current review systematically focuses on the role of PDVEs in cancer therapy and in particular compares the properties of PDVEs with those of conventional lipid vesicles, summarizes the preparation methods and quality control of PDVEs, and discusses the application of PDVEs in delivering anti-cancer drugs and their underlying molecular mechanisms for cancer therapy. Finally, the challenges and future perspectives of PDVEs for the development of novel therapeutic strategies against cancer are discussed.
Collapse
Affiliation(s)
- Yuying Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hanxu Tan
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yafei Shi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
25
|
Yang B, Lin Y, Huang Y, Zhu N, Shen YQ. Extracellular vesicles modulate key signalling pathways in refractory wound healing. BURNS & TRAUMA 2023; 11:tkad039. [PMID: 38026441 PMCID: PMC10654481 DOI: 10.1093/burnst/tkad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023]
Abstract
Chronic wounds are wounds that cannot heal properly due to various factors, such as underlying diseases, infection or reinjury, and improper healing of skin wounds and ulcers can cause a serious economic burden. Numerous studies have shown that extracellular vesicles (EVs) derived from stem/progenitor cells promote wound healing, reduce scar formation and have significant advantages over traditional treatment methods. EVs are membranous particles that carry various bioactive molecules from their cellular origins, such as cytokines, nucleic acids, enzymes, lipids and proteins. EVs can mediate cell-to-cell communication and modulate various physiological processes, such as cell differentiation, angiogenesis, immune response and tissue remodelling. In this review, we summarize the recent advances in EV-based wound healing, focusing on the signalling pathways that are regulated by EVs and their cargos. We discuss how EVs derived from different types of stem/progenitor cells can promote wound healing and reduce scar formation by modulating the Wnt/β-catenin, phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, vascular endothelial growth factor, transforming growth factor β and JAK-STAT pathways. Moreover, we also highlight the challenges and opportunities for engineering or modifying EVs to enhance their efficacy and specificity for wound healing.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Nanxi Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| |
Collapse
|
26
|
Di Y, Wang W, Wang Y, Wang J. Recent engineering advances of EVs for compounds, nucleic acids, and TCM delivery. Eur J Pharm Sci 2023; 190:106584. [PMID: 37717667 DOI: 10.1016/j.ejps.2023.106584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer nano-vesicles that were originally identified to deliver signals for intercellular communications. Based on the dynamic contents including proteins, nucleic acids and metabolites, EVs have been developed into diagnostic and therapeutic fields including cardiovascular diseases, neurological disorders and infectious diseases. A growing number of investigations revealed that EVs are also powerful carriers of loaded compounds and nucleic acids as enhanced treatments. Herein, we summarized the recent engineering advances related to three major issues when applying EVs in drug delivery systems: EVs isolation, drug loading strategies and targeting delivery approaches. Moreover, current applications of traditional Chinese medicine (TCM), in composition or compound form, are searched and listed as unique combinations with EVs. Further, we discuss emerging challenges and consider future directions of drug-loading EVs in therapeutic opportunities. This review discusses pros and cons of collecting, drug loading and delivery strategies of EVs as delivery systems, and highlights the promising combination with traditional Chinese medicine to help us advance its clinical application.
Collapse
Affiliation(s)
- Yunfeng Di
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China
| | - Yong Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China.
| | - Jingyu Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
27
|
Hu J, Liu Y, Du Y, Peng X, Liu Z. Cellular organelles as drug carriers for disease treatment. J Control Release 2023; 363:114-135. [PMID: 37742846 DOI: 10.1016/j.jconrel.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Organelles not only constitute the basic structure of the cell but also are important in maintaining the normal physiological activities of the cell. With the development of biomimetic nanoscience, researchers have developed technologies to use organelles as drug carriers for disease treatment. Compared with traditional drug carriers, organelle drug carriers have the advantages of good biocompatibility, high drug loading efficiency, and modifiability, and the surface biomarkers of organelles can also participate in intracellular signal transduction to enhance intracellular and intercellular communication, and assist in enhancing the therapeutic effect of drugs. Among different types of organelles, extracellular vesicles, lipid droplets, lysosomes, and mitochondria have been used as drug carriers. This review briefly reviews the biogenesis, isolation methods, and drug-loading methods of four types of organelles, and systematically summarizes the research progress in using organelles as drug-delivery systems for disease treatment. Finally, the challenges faced by organelle-based drug delivery systems are discussed. Although the organelle-based drug delivery systems still face challenges before they can achieve clinical translation, they offer a new direction and vision for the development of next-generation drug carriers.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
28
|
Ferreira D, Santos-Pereira C, Costa M, Afonso J, Yang S, Hensel J, McAndrews KM, Longatto-Filho A, Fernandes R, Melo JB, Baltazar F, Moreira JN, Kalluri R, Rodrigues LR. Exosomes modified with anti-MEK1 siRNA lead to an effective silencing of triple negative breast cancer cells. BIOMATERIALS ADVANCES 2023; 154:213643. [PMID: 37778291 DOI: 10.1016/j.bioadv.2023.213643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Triple negative breast cancer (TNBC) is a highly heterogenous disease not sensitive to endocrine or HER2 therapy and standardized treatment regimens are still missing. Therefore, development of novel TNBC treatment approaches is of utmost relevance. Herein, the potential of MAPK/ERK downregulation by RNAi-based therapeutics in a panel of mesenchymal stem-like TNBC cell lines was uncovered. Our data revealed that suppression of one of the central nodes of this signaling pathway, MEK1, affects proliferation, migration, and invasion of TNBC cells, that may be explained by the reversion of the epithelial-mesenchymal transition phenotype, which is facilitated by the MMP-2/MMP-9 downregulation. Moreover, an exosome-based system was successfully generated for the siRNA loading (iExoMEK1). Our data suggested absence of modification of the physical properties and general integrity of the iExoMEK1 comparatively to the unmodified counterparts. Such exosome-mediated downregulation of MEK1 led to a tumor regression accompanied by a decrease of angiogenesis using the chick chorioallantoic-membrane model. Our results highlight the potential of the targeting of MAPK/ERK cascade as a promising therapeutic approach against TNBC.
Collapse
Affiliation(s)
- Débora Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Cátia Santos-Pereira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sujuan Yang
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Janine Hensel
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Laboratory of Medical Investigation (LIM 14), Faculty of Medicine, São Paulo State University, S. Paulo, Brazil
| | - Rui Fernandes
- HEMS-Histology and Electron Microscopy Service, IBMC/I3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João N Moreira
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA; School of Bioengineering, Rice University, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS-Associate Laboratory, 4710-057 Braga, Portugal.
| |
Collapse
|
29
|
Mohammadzade H, Hashemi-Moghaddam H, Beikzadeh L, Ahmadieh-Yazdi A, Madanchi H, Fallah P. Molecular imprinting of miR-559 on a peptide-immobilized poly L-DOPA/silica core-shell and in vitro investigating its effects on HER2-positive breast cancer cells. Drug Deliv Transl Res 2023; 13:2487-2502. [PMID: 36988874 DOI: 10.1007/s13346-023-01330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
In a significant percentage of breast cancers, increased expression of the HER2 receptor is seen and is associated with the spread and worsening of the disease. This research aims to investigate the effect of miR-559 (which targets HER2 mRNA) on SKBR3 breast cancer cells and the possibility of their effective delivery with polymeric nanoparticles and tumor-targeting peptides. L-DOPA monomers were polymerized on the surface of silica nanoparticles in the presence of miR-559 (as a molecular template for molecular imprinting) then an anti-HER2 peptide coupled to the surface of these polymeric nanocomposites (miR-NC-NL2), and the effects of this construct against a HER2-positive breast cancer cells (SKBR3 cells) investigated in vitro conditions. The results showed that miR-NC-NL2 is selective for HER2-positive cells and delivers the miR-559 to them in a targeted manner. miR-NC-NL2 decreased the proliferation of SKBR3 cells and reduced the expression and production of HER2 protein in these cells. Effective and targeted delivery of miR-559 to HER2-positive cancer cells by the miR-NC-NL2 promises the therapeutic potential of this nascent structure based on its inhibitory effect on cancer growth and progression. Of course, animal experiments require a better understanding of this structure's anti-tumor effects.
Collapse
Affiliation(s)
- Hadi Mohammadzade
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Leila Beikzadeh
- Department of Medical Laboratory Sciences, Faculty of Para-Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | | | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Drug Design and Bioinformatics Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Parviz Fallah
- Department of Medical Laboratory Sciences, Faculty of Para-Medicine, Alborz University of Medical Sciences, Alborz, Iran.
- Checkup clinical and specialty laboratory, Alborz, Iran.
| |
Collapse
|
30
|
Danilushkina AA, Emene CC, Barlev NA, Gomzikova MO. Strategies for Engineering of Extracellular Vesicles. Int J Mol Sci 2023; 24:13247. [PMID: 37686050 PMCID: PMC10488046 DOI: 10.3390/ijms241713247] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by cells into the extracellular space. EVs mediate cell-to-cell communication through local and systemic transportation of biomolecules such as DNA, RNA, transcription factors, cytokines, chemokines, enzymes, lipids, and organelles within the human body. EVs gained a particular interest from cancer biology scientists because of their role in the modulation of the tumor microenvironment through delivering bioactive molecules. In this respect, EVs represent an attractive therapeutic target and a means for drug delivery. The advantages of EVs include their biocompatibility, small size, and low immunogenicity. However, there are several limitations that restrict the widespread use of EVs in therapy, namely, their low specificity and payload capacity. Thus, in order to enhance the therapeutic efficacy and delivery specificity, the surface and composition of extracellular vesicles should be modified accordingly. In this review, we describe various approaches to engineering EVs, and further discuss their advantages and disadvantages to promote the application of EVs in clinical practice.
Collapse
Affiliation(s)
- Anna A. Danilushkina
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Charles C. Emene
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Nicolai A. Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana 001000, Kazakhstan
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
31
|
Luarte A, Nardocci G, Chakraborty A, Batiz LF, Pino-Lagos K, Wyneken Ú. Astrocyte-derived extracellular vesicles in stress-associated mood disorders. Does the immune system get astrocytic? Pharmacol Res 2023; 194:106833. [PMID: 37348692 DOI: 10.1016/j.phrs.2023.106833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Life stressors can wreak havoc on our health, contributing to mood disorders like major depressive disorder (MDD), a widespread and debilitating condition. Unfortunately, current treatments and diagnostic strategies fall short of addressing these disorders, highlighting the need for new approaches. In this regard, the relationship between MDD, brain inflammation (neuroinflammation), and systemic inflammation in the body may offer novel insights. Recent research has uncovered the crucial role of astrocytes in coordinating the inflammatory response through the release of extracellular vesicles (ADEVs) during different neuroinflammatory conditions. While the contribution of ADEVs to stress and MDD remains largely unexplored, their potential to modulate immune cells and contribute to MDD pathogenesis is significant. In this article, we delve into the immunomodulatory role of ADEVs, their potential impact on peripheral immune cells, and how their microRNA (miRNA) landscape may hold the key to controlling immune cell activity. Together, these mechanisms may constitute an opportunity to develop novel therapeutic pharmacological approaches to tackle mood disorders.
Collapse
Affiliation(s)
- Alejandro Luarte
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile.
| | - Gino Nardocci
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile
| | - Ankush Chakraborty
- Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Luis Federico Batiz
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile
| | - Karina Pino-Lagos
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Immunology, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Úrsula Wyneken
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile.
| |
Collapse
|
32
|
Guo Y, Wu H, Xiong J, Gou S, Cui J, Peng T. miR-222-3p-containing macrophage-derived extracellular vesicles confer gemcitabine resistance via TSC1-mediated mTOR/AKT/PI3K pathway in pancreatic cancer. Cell Biol Toxicol 2023; 39:1203-1214. [PMID: 35974258 DOI: 10.1007/s10565-022-09736-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/20/2022] [Indexed: 01/23/2023]
Abstract
Gemcitabine resistance limits the efficacy of chemotherapy and maintains a challenge for treatment outcomes. Therefore, we aimed to clarify the downstream mechanisms underlying the role of miR-222-3p delivered by M2 macrophage-derived extracellular vesicles (M2 MDEs) in the chemoresistance of pancreatic cancer (PCa). We separated the mouse macrophages and polarized them to M2 phenotypes, from which the EVs were derived. miR-222-3p was highly expressed in M2 MDEs. M2 MDEs were internalized by PCa cells. miR-222-3p overexpressing M2 MDEs were treated with gemcitabine and co-cultured with PCa cells for in vitro experiments. Co-culture with M2 MDEs enriched with miR-222-3p suppressed the sensitivity to gemcitabine, accompanied by diminished apoptosis and promoted proliferation. Furthermore, the M2 MDEs and PCa cells were injected to mice with gemcitabine exposure for in vivo substantiation. The delivery of miR-222-3p inhibitor by M2 MDEs suppressed tumor growth and elevated sensitivity of cancer cells to gemcitabine. Moreover, miR-222-3p was indicated to target and suppress TSC1 expression, while miR-222-3p activated the PI3K/AKT/mTOR pathway. Together, miR-222-3p-containing M2 MDEs enhance chemoresistance in PCa through TSC1 inhibition and activation of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jiongxin Xiong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Shanmiao Gou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jing Cui
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
33
|
Koh HB, Kim HJ, Kang SW, Yoo TH. Exosome-Based Drug Delivery: Translation from Bench to Clinic. Pharmaceutics 2023; 15:2042. [PMID: 37631256 PMCID: PMC10459753 DOI: 10.3390/pharmaceutics15082042] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Exosome-based drug delivery is emerging as a promising field with the potential to revolutionize therapeutic interventions. Exosomes, which are small extracellular vesicles released by various cell types, have attracted significant attention due to their unique properties and natural ability to transport bioactive molecules. These nano-sized vesicles, ranging in size from 30 to 150 nm, can effectively transport a variety of cargoes, including proteins, nucleic acids, and lipids. Compared to traditional drug delivery systems, exosomes exhibit unique biocompatibility, low immunogenicity, and reduced toxicity. In addition, exosomes can be designed and tailored to improve targeting efficiency, cargo loading capacity, and stability, paving the way for personalized medicine and precision therapy. However, despite the promising potential of exosome-based drug delivery, its clinical application remains challenging due to limitations in exosome isolation and purification, low loading efficiency of therapeutic cargoes, insufficient targeted delivery, and rapid elimination in circulation. This comprehensive review focuses on the transition of exosome-based drug delivery from the bench to clinic, highlighting key aspects, such as exosome structure and biogenesis, cargo loading methods, surface engineering techniques, and clinical applications. It also discusses challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Hee Byung Koh
- Division of Nephrology, Department of Internal Medicine, International Saint Mary’s Hospital, College of Medicine, Catholic Kwandong University, Seo-gu, Incheon 22711, Republic of Korea;
| | - Hyo Jeong Kim
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, College of Medicine, Yonsei University, Gangnam-gu, Seoul 06273, Republic of Korea;
| | - Shin-Wook Kang
- Department of Internal Medicine, Institute of Kidney Disease Research, College of Medicine, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Institute of Kidney Disease Research, College of Medicine, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
34
|
Agborbesong E, Bissler J, Li X. Liquid Biopsy at the Frontier of Kidney Diseases: Application of Exosomes in Diagnostics and Therapeutics. Genes (Basel) 2023; 14:1367. [PMID: 37510273 PMCID: PMC10379367 DOI: 10.3390/genes14071367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In the era of precision medicine, liquid biopsy techniques, especially the use of urine analysis, represent a paradigm shift in the identification of biomarkers, with considerable implications for clinical practice in the field of nephrology. In kidney diseases, the use of this non-invasive tool to identify specific and sensitive biomarkers other than plasma creatinine and the glomerular filtration rate is becoming crucial for the diagnosis and assessment of a patient's condition. In recent years, studies have drawn attention to the importance of exosomes for diagnostic and therapeutic purposes in kidney diseases. Exosomes are nano-sized extracellular vesicles with a lipid bilayer structure, composed of a variety of biologically active substances. In the context of kidney diseases, studies have demonstrated that exosomes are valuable carriers of information and are delivery vectors, rendering them appealing candidates as biomarkers and drug delivery vehicles with beneficial therapeutic outcomes for kidney diseases. This review summarizes the applications of exosomes in kidney diseases, emphasizing the current biomarkers of renal diseases identified from urinary exosomes and the therapeutic applications of exosomes with reference to drug delivery and immunomodulation. Finally, we discuss the challenges encountered when using exosomes for therapeutic purposes and how these may affect its clinical applications.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Oh S, Lee CM, Kwon SH. Extracellular Vesicle MicroRNA in the Kidney. Compr Physiol 2023; 13:4833-4850. [PMID: 37358511 PMCID: PMC11514415 DOI: 10.1002/cphy.c220023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Most cells in our body release membrane-bound, nano-sized particles into the extracellular milieu through cellular metabolic processes. Various types of macromolecules, reflecting the physiological and pathological status of the producing cells, are packaged into such so-called extracellular vesicles (EVs), which can travel over a distance to target cells, thereby transmitting donor cell information. The short, noncoding ribonucleic acid (RNA) called microRNA (miRNA) takes a crucial part in EV-resident macromolecules. Notably, EVs transferring miRNAs can induce alterations in the gene expression profiles of the recipient cells, through genetically instructed, base-pairing interaction between the miRNAs and their target cell messenger RNAs (mRNAs), resulting in either nucleolytic decay or translational halt of the engaged mRNAs. As in other body fluids, EVs released in urine, termed urinary EVs (uEVs), carry specific sets of miRNA molecules, which indicate either normal or diseased states of the kidney, the principal source of uEVs. Studies have therefore been directed to elucidate the contents and biological roles of miRNAs in uEVs and moreover to utilize the gene regulatory properties of miRNA cargos in ameliorating kidney diseases through their delivery via engineered EVs. We here review the fundamental principles of the biology of EVs and miRNA as well as our current understanding of the biological roles and applications of EV-loaded miRNAs in the kidney. We further discuss the limitations of contemporary research approaches, suggesting future directions to overcome the difficulties to advance both the basic biological understanding of miRNAs in EVs and their clinical applications in treating kidney diseases. © 2023 American Physiological Society. Compr Physiol 13:4833-4850, 2023.
Collapse
Affiliation(s)
- Sekyung Oh
- Department of Medical Science, Catholic Kwandong University College of Medicine, Incheon 22711, South Korea
| | - Chang Min Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A
| |
Collapse
|
36
|
Niknam B, Baghaei K, Mahmoud Hashemi S, Hatami B, Reza Zali M, Amani D. Human Wharton's jelly mesenchymal stem cells derived-exosomes enriched by miR-124 promote an anti-fibrotic response in an experimental model of liver fibrosis. Int Immunopharmacol 2023; 119:110294. [PMID: 37167639 DOI: 10.1016/j.intimp.2023.110294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Liver fibrosis is a significant challenge to global health that results in organ failure through inflammation and the release of fibrotic biomarkers. Due to the lack of effective treatments for liver fibrosis, anti-fibrotic and anti-inflammatory therapies are being developed. Since there has been an association between aberrant expression of miR-124 and liver disease progression, we investigated whether delivery of miR-124 through human Wharton's jelly mesenchymal stem cells derived-exosomes (hWJMSC-Exo) can improve liver fibrosis. METHODS We established a 6-week carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis, then we administered hWJMSC-Exo and miR-124-3p-enriched exosomes (ExomiR-124) for three weeks. The extent of fibrosis and inflammation was assessed by histology, biochemistry, Real-time PCR, immunohistochemistry, and Enzyme-linked immunoassays (ELISA). The inflammatory status of the spleen was also investigated using flow cytometry. RESULTS Based on the gene and protein expression measurement of IL-6, IL-17, TGF-β, STAT3, α-SMA, and COL1, In vivo administration of Exo and ExomiR-124 effectively reduce collagen accumulation and inhibition of inflammation. Regarding histopathology findings, the therapeutic effect of ExomiR-124 against liver fibrosis was significantly greater than hWJMSC-Exo. In addition, we found that Exo and ExomiR-124 was capable of phenotype switching of splenic monocytes from inflammatory Ly6Chi to restorative Ly6Clo. CONCLUSIONS MSC-derived exosomes demonstrated anti-inflammatory effect via different aspects. Aside from the therapeutic approach, enrichment of exosomes as a nanocarrier by miR-124 revealed the down-regulation of STAT3, which plays a crucial role in liver fibrosis. The anti-inflammatory and anti-fibrotic properties of ExomiR-124 could be a promising option in liver fibrosis combination therapies.
Collapse
Affiliation(s)
- Bahare Niknam
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Santos NL, Bustos SO, Reis PP, Chammas R, Andrade LNS. Extracellular Vesicle-Packaged miR-195-5p Sensitizes Melanoma to Targeted Therapy with Kinase Inhibitors. Cells 2023; 12:cells12091317. [PMID: 37174717 PMCID: PMC10177607 DOI: 10.3390/cells12091317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Management of advanced melanoma remains challenging, with most BRAF (B-Raf proto-oncogene, serine/threonine kinase)-mutated metastatic patients relapsing within a few months upon MAPK inhibitors treatment. Modulation of tumor-derived extracellular vesicle (EVs) cargo with enrichment of antitumoral molecules is a promising strategy to impair tumor progression and increase treatment response. Herein, we report that restored expression of miR-195-5p, down-regulated in melanoma favoring drug resistance, increases the release of EVs enriched in the tumor suppressor miRNAs, miR-195-5p, miR-152-3p, and miR-202-3p. Incorporating these EVs by bystander tumor cells resulted in decreased proliferation and viability, accompanied by a reduction in CCND1 and YAP1 mRNA levels. Upon treatment with MAPK inhibitors, miR-195 EVs significantly decreased BCL2-L1 protein levels and increased cell death ratio and treatment efficacy. Additionally, EVs exogenously loaded with miR-195-5p by electroporation reduced tumor volume in vivo and impaired engraftment and growth of xenografts implanted with melanoma cells exposed to MAPK inhibitors. Our study shows that miR-195-5p antitumoral activity can be spread to bystander cells through EVs, improving melanoma response to targeted therapy and revealing a promising EV-based strategy to increase clinical response in patients harboring BRAF mutations.
Collapse
Affiliation(s)
- Nathalia L Santos
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Silvina O Bustos
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Patricia P Reis
- Department of Surgery and Orthopedics and Experimental Research Unity (UNIPEX), Faculdade de Medicina, Universidade Estadual Paulista (UNESP), Botucatu 18618-687, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Luciana N S Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
38
|
Zhang Y, Kim G, Zhu Y, Wang C, Zhu R, Lu X, Chang HC, Wang Y. Chiral Graphene Quantum Dots Enhanced Drug Loading into Small Extracellular Vesicles. ACS NANO 2023. [PMID: 37127891 DOI: 10.1021/acsnano.3c00305] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As nanoscale extracellular vesicles secreted by cells, small extracellular vesicles (sEVs) have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with sEV-based drug delivery systems, there are still challenges to drug loading into sEVs, which hinder the clinical applications of sEVs. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) sEV-loading platform, based on chirality matching with the sEV lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for doxorubicin and siRNA, which is significantly higher than other reported sEV loading techniques.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yini Zhu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ceming Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Runyao Zhu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
39
|
Oshchepkova A, Zenkova M, Vlassov V. Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges. Int J Mol Sci 2023; 24:ijms24087287. [PMID: 37108446 PMCID: PMC10139028 DOI: 10.3390/ijms24087287] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
40
|
Kalluri R, McAndrews KM. The role of extracellular vesicles in cancer. Cell 2023; 186:1610-1626. [PMID: 37059067 PMCID: PMC10484374 DOI: 10.1016/j.cell.2023.03.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
Intercellular communication is a key feature of cancer progression and metastasis. Extracellular vesicles (EVs) are generated by all cells, including cancer cells, and recent studies have identified EVs as key mediators of cell-cell communication via packaging and transfer of bioactive constituents to impact the biology and function of cancer cells and cells of the tumor microenvironment. Here, we review recent advances in understanding the functional contribution of EVs to cancer progression and metastasis, as cancer biomarkers, and the development of cancer therapeutics.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
41
|
Kang M, Hisey C, Tsai B, Nursalim Y, Blenkiron C, Chamley LW. Placental Extracellular Vesicles Can Be Loaded with Plasmid DNA. Mol Pharm 2023; 20:1898-1913. [PMID: 36919912 PMCID: PMC11407900 DOI: 10.1021/acs.molpharmaceut.2c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Recently, extracellular vesicles (EVs) have garnered considerable interest as potential vehicles for drug delivery, including gene therapy. Although EVs from diverse sources have been investigated, current techniques used in the field for EV generation limit large-scale EV production. The placenta is essentially a tissue transplant and has unique properties that allow it to avoid the maternal immune system making it likely that placental EVs will not generate inflammatory responses and will avoid clearance by the immune system. We propose that placental EVs produced from explant cultures are an efficient method to produce considerable quantities of EVs that would be safe to administer, and we hypothesize that placental EVs can be loaded with large exogenous plasmids. To this end, we trialed three strategies to load plasmid DNA into placental EVs, including loading via electroporation of placental tissue prior to EV isolation and loading directly into placental EVs via electroporation or direct incubation of the EVs in plasmid solution. We report that the placenta releases vast quantities of EVs compared to placental cells in monolayer cultures. We show successful loading of plasmid DNA into both large- and small-EVs following both exogenous loading strategies with more plasmid encapsulated in large-EVs. Importantly, direct incubation did not alter EV size nor quantity. Further, we showed that the loading efficiency into EVs was dependent on the exogenous plasmid DNA dose and the DNA size. These results provide realistic estimates of plasmid loading capacity into placental EVs using current technologies and showcase the potential of placental EVs as DNA delivery vehicles.
Collapse
Affiliation(s)
- Matthew Kang
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, 1023 New Zealand
| | - Colin Hisey
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, 1023 New Zealand
- Department of biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210 United States
| | - Bridget Tsai
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, 1023 New Zealand
| | - Yohanes Nursalim
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, 1023 New Zealand
| | - Cherie Blenkiron
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, 1023 New Zealand
- Auckland Cancer Society Research Center (ACSRC), University of Auckland, Auckland, 1023 New Zealand
- Molecular Medicine and Pathology, University of Auckland, Auckland, 1023 New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, 1023 New Zealand
| |
Collapse
|
42
|
Abbas MA, Al-Saigh NN, Saqallah FG. Regulation of adipogenesis by exosomal milk miRNA. Rev Endocr Metab Disord 2023; 24:297-316. [PMID: 36692804 DOI: 10.1007/s11154-023-09788-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Milk is a rich source of miRNA packaged in exosomes. Evidence for the systemic uptake and tissue distribution of milk exosomes was reported in newborn and adult humans and animals. Breastfeeding in infants was associated with a reduced risk of obesity. Numerous adipogenesis-related miRNAs have been detected in human milk exosomes. It has been demonstrated that ingested exosomal milk miRNAs may alter gene expression in offspring to regulate their metabolism and growth. In humans, consumption of other species' milk, such as cows and goats, is continued through adulthood. Since miRNAs are conserved, the concern of cross-species transfer of adipogenic miRNA has been raised in recent years, and the increase in obesity worldwide was attributed partially to dairy milk consumption by humans. However, evidence is still weak. Research emphasizes the need for an adequate number of exosomal milk's miRNAs to reach the target cell for biological action to be achieved. It was reported that obese women's milk had less miRNA-148a and miRNA-30b, which may affect the fat acquisition of their babies. Some exosomal milk miRNAs, such as miRNA-29, miRNA-148, miRNA-30b and miRNA-125b, may have epigenetic effects on milk recipients. Moreover, the ability of milk exosomes to cross the gastrointestinal barrier makes them a promising oral drug delivery tool. Yet, exosomes may also be tagged with specific ligands which target certain tissues. Thus, milk exosomes can be engineered and loaded with certain miRNAs responsible for adipocyte differentiation, conversion, or browning. Modifications in the miRNA cargo of exosomes can benefit human health and be an alternative to traditional drugs.
Collapse
Affiliation(s)
- Manal A Abbas
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan.
- Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan.
| | - Noor Nadhim Al-Saigh
- Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Siences, Amman, 11104, Jordan
| | - Fadi G Saqallah
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
43
|
Puthukodan S, Hofmann M, Mairhofer M, Janout H, Schurr J, Hauser F, Naderer C, Preiner J, Winkler S, Sivun D, Jacak J. Purification Analysis, Intracellular Tracking, and Colocalization of Extracellular Vesicles Using Atomic Force and 3D Single-Molecule Localization Microscopy. Anal Chem 2023; 95:6061-6070. [PMID: 37002540 PMCID: PMC10100414 DOI: 10.1021/acs.analchem.3c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Extracellular vesicles (EVs) play a key role in cell-cell communication and thus have great potential to be utilized as therapeutic agents and diagnostic tools. In this study, we implemented single-molecule microscopy techniques as a toolbox for a comprehensive characterization as well as measurement of the cellular uptake of HEK293T cell-derived EVs (eGFP-labeled) in HeLa cells. A combination of fluorescence and atomic force microscopy revealed a fraction of 68% fluorescently labeled EVs with an average size of ∼45 nm. Two-color single-molecule fluorescence microscopy analysis elucidated the 3D dynamics of EVs entering HeLa cells. 3D colocalization analysis of two-color direct stochastic optical reconstruction microscopy (dSTORM) images revealed that 25% of EVs that experienced uptake colocalized with transferrin, which has been linked to early recycling of endosomes and clathrin-mediated endocytosis. The localization analysis was combined with stepwise photobleaching, providing a comparison of protein aggregation outside and inside the cells.
Collapse
Affiliation(s)
| | - Martina Hofmann
- University of Applied Sciences Upper Austria, Linz 4020, Austria
| | - Mario Mairhofer
- University of Applied Sciences Upper Austria, Linz 4020, Austria
| | - Hannah Janout
- University of Applied Sciences Upper Austria, Hagenberg 4232, Austria
- Department of Computer Science, Johannes Kepler University, Linz 4040, Austria
| | - Jonas Schurr
- University of Applied Sciences Upper Austria, Hagenberg 4232, Austria
- Department of Computer Science, Johannes Kepler University, Linz 4040, Austria
| | - Fabian Hauser
- University of Applied Sciences Upper Austria, Linz 4020, Austria
| | | | - Johannes Preiner
- University of Applied Sciences Upper Austria, Linz 4020, Austria
| | - Stephan Winkler
- University of Applied Sciences Upper Austria, Hagenberg 4232, Austria
- Department of Computer Science, Johannes Kepler University, Linz 4040, Austria
| | - Dmitry Sivun
- University of Applied Sciences Upper Austria, Linz 4020, Austria
| | - Jaroslaw Jacak
- University of Applied Sciences Upper Austria, Linz 4020, Austria
- AUVA Research Center, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna 1200, Austria
| |
Collapse
|
44
|
Enhancing electroporation-induced liposomal drug release in suspension and solid phases. Int J Pharm 2023; 635:122744. [PMID: 36804522 DOI: 10.1016/j.ijpharm.2023.122744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
When exposed to an external electric field, lipid bilayer membranes are subject to increased permeability through the generation of pores. Combining this phenomenon, known as electroporation, with liposomal drug delivery offers the added benefit of on-demand release of the liposomal cargo. In previous studies, the maximum percent drug release when exposing liposomes to a pulsed electric field has not surpassed 30%, indicating most of the drug is still retained in the liposomes. Here we showed that by modulating the fluidity of the liposome membrane through appropriate selection of the primary lipid, as well as the addition of other fluidity modulating components such as cholesterol and biotinylated lipid, the electroporation-induced percent release could be increased to over 50%. In addition to improved induced release from liposomes in suspension, biomaterial scaffold-bound liposomes were developed. Electroporation-induced protein release from this solid phase was verified after performing further optimization of the liposome formulation to achieve increased stability at physiological temperatures. Collectively, this work advances the ability to achieve efficient electroporation-induced liposomal drug delivery, which has the potential to be used in concert with other clinical applications of electroporation, such as gene electrotransfer and irreversible electroporation (IRE), in order to synergistically increase treatment efficacy.
Collapse
|
45
|
Aytar Çelik P, Erdogan-Gover K, Barut D, Enuh BM, Amasya G, Sengel-Türk CT, Derkus B, Çabuk A. Bacterial Membrane Vesicles as Smart Drug Delivery and Carrier Systems: A New Nanosystems Tool for Current Anticancer and Antimicrobial Therapy. Pharmaceutics 2023; 15:pharmaceutics15041052. [PMID: 37111538 PMCID: PMC10142793 DOI: 10.3390/pharmaceutics15041052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial membrane vesicles (BMVs) are known to be critical communication tools in several pathophysiological processes between bacteria and host cells. Given this situation, BMVs for transporting and delivering exogenous therapeutic cargoes have been inspiring as promising platforms for developing smart drug delivery systems (SDDSs). In the first section of this review paper, starting with an introduction to pharmaceutical technology and nanotechnology, we delve into the design and classification of SDDSs. We discuss the characteristics of BMVs including their size, shape, charge, effective production and purification techniques, and the different methods used for cargo loading and drug encapsulation. We also shed light on the drug release mechanism, the design of BMVs as smart carriers, and recent remarkable findings on the potential of BMVs for anticancer and antimicrobial therapy. Furthermore, this review covers the safety of BMVs and the challenges that need to be overcome for clinical use. Finally, we discuss the recent advancements and prospects for BMVs as SDDSs and highlight their potential in revolutionizing the fields of nanomedicine and drug delivery. In conclusion, this review paper aims to provide a comprehensive overview of the state-of-the-art field of BMVs as SDDSs, encompassing their design, composition, fabrication, purification, and characterization, as well as the various strategies used for targeted delivery. Considering this information, the aim of this review is to provide researchers in the field with a comprehensive understanding of the current state of BMVs as SDDSs, enabling them to identify critical gaps and formulate new hypotheses to accelerate the progress of the field.
Collapse
Affiliation(s)
- Pınar Aytar Çelik
- Environmental Protection and Control Program, Eskisehir Osmangazi University, Eskisehir 26110, Turkey
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Kubra Erdogan-Gover
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Blaise Manga Enuh
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Gülin Amasya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Ceyda Tuba Sengel-Türk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Burak Derkus
- Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Ahmet Çabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| |
Collapse
|
46
|
Heinrich E, Hartwig O, Walt C, Kardani A, Koch M, Jahromi LP, Hoppstädter J, Kiemer AK, Loretz B, Lehr CM, Fuhrmann G. Cell-Derived Vesicles for Antibiotic Delivery-Understanding the Challenges of a Biogenic Carrier System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207479. [PMID: 36938700 DOI: 10.1002/smll.202207479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs' technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro-in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B-lymphoid cells with low immunogenicity and from non-pathogenic myxobacteria SBSr073 are introduced here. A large-scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three-dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics.
Collapse
Affiliation(s)
- Eilien Heinrich
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Olga Hartwig
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Christine Walt
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Arefeh Kardani
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Leila Pourtalebi Jahromi
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058, Erlangen, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
47
|
Pomatto MAC, Gai C, Negro F, Massari L, Deregibus MC, Grange C, De Rosa FG, Camussi G. Plant-Derived Extracellular Vesicles as a Delivery Platform for RNA-Based Vaccine: Feasibility Study of an Oral and Intranasal SARS-CoV-2 Vaccine. Pharmaceutics 2023; 15:pharmaceutics15030974. [PMID: 36986835 PMCID: PMC10058531 DOI: 10.3390/pharmaceutics15030974] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Plant-derived extracellular vesicles (EVs) may represent a platform for the delivery of RNA-based vaccines, exploiting their natural membrane envelope to protect and deliver nucleic acids. Here, EVs extracted from orange (Citrus sinensis) juice (oEVs) were investigated as carriers for oral and intranasal SARS-CoV-2 mRNA vaccine. oEVs were efficiently loaded with different mRNA molecules (coding N, subunit 1 and full S proteins) and the mRNA was protected from degrading stress (including RNase and simulated gastric fluid), delivered to target cells and translated into protein. APC cells stimulated with oEVs loaded with mRNAs induced T lymphocyte activation in vitro. The immunization of mice with oEVs loaded with S1 mRNA via different routes of administration including intramuscular, oral and intranasal stimulated a humoral immune response with production of specific IgM and IgG blocking antibodies and a T cell immune response, as suggested by IFN-γ production by spleen lymphocytes stimulated with S peptide. Oral and intranasal administration also triggered the production of specific IgA, the mucosal barrier in the adaptive immune response. In conclusion, plant-derived EVs represent a useful platform for mRNA-based vaccines administered not only parentally but also orally and intranasally.
Collapse
Affiliation(s)
- Margherita A. C. Pomatto
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Correspondence: (M.A.C.P.); (G.C.)
| | - Chiara Gai
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | | | | | - Maria Chiara Deregibus
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Grange
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Giovanni Camussi
- EvoBiotech s.r.l., 10122 Turin, Italy
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Correspondence: (M.A.C.P.); (G.C.)
| |
Collapse
|
48
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Extracellular Vesicles as Therapeutic Resources in the Clinical Environment. Int J Mol Sci 2023; 24:2344. [PMID: 36768664 PMCID: PMC9917082 DOI: 10.3390/ijms24032344] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
The native role of extracellular vesicles (EVs) in mediating the transfer of biomolecules between cells has raised the possibility to use them as therapeutic vehicles. The development of therapies based on EVs is now expanding rapidly; here we will describe the current knowledge on different key points regarding the use of EVs in a clinical setting. These points are related to cell sources of EVs, isolation, storage, and delivery methods, as well as modifications to the releasing cells for improved production of EVs. Finally, we will depict the application of EVs therapies in clinical trials, considering the impact of the COVID-19 pandemic on the development of these therapies, pointing out that although it is a promising therapy for human diseases, we are still in the initial phase of its application to patients.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
49
|
Zhang Y, Zhu Y, Kim G, Wang C, Zhu R, Lu X, Chang HC, Wang Y. Chiral Graphene Quantum Dots Enhanced Drug Loading into Exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.523510. [PMID: 36711460 PMCID: PMC9882333 DOI: 10.1101/2023.01.20.523510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As nanoscale extracellular vesicles secreted by cells, exosomes have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with exosome-based drug delivery systems, there are still challenges to drug loading into exosome, which hinder the clinical applications of exosomes. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) exosome-loading platform, based on chirality matching with the exosome lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for Doxorubicin and siRNA, which is significantly higher than other reported exosome loading techniques.
Collapse
|
50
|
Liu D, Li X, Zeng B, Zhao Q, Chen H, Zhang Y, Chen Y, Wang J, Xing HR. Exosomal microRNA-4535 of Melanoma Stem Cells Promotes Metastasis by Inhibiting Autophagy Pathway. Stem Cell Rev Rep 2023; 19:155-169. [PMID: 35296991 DOI: 10.1007/s12015-022-10358-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 01/29/2023]
Abstract
High mortality rate and poor survival in melanoma are associated with efficient metastatic colonization. The underlying mechanisms remain elusive. Elucidating the role of exosomes in mediating the interactions between cancer cells and the metastatic microenvironment has been focused on cancer cell derived exosomes in modulating the functions of stromal cells. Whether cancer stem cells (CSCs) can modify the metastatic properties of non-CSC cells, and whether exosomal crosstalk plays a role have not been demonstrated prior to this report. In this study, a paired M14 melanoma derivative cell line, i.e., melanoma parental cell (MPC) and its CSC derivative cell line melanoma stem cell (MSC) were employed. We demonstrated that exosomal crosstalk betwen MSCs and non-CSC MPCs is a new mechanism that underlies melanoma metastasis. Low metastatic melanoma cells (MPCs) can acquire the "metastatic power" from highly metastatic melanoma CSCs (MSCs). We illustrated an uncharacterized microRNA, miR-4535 in mediating such exosomal crosstalk. MSCs deliver its exosomal miR-4535 to the targeted MPCs. Upon entering MPCs, miR-4535 augments metastatic colonization of MPCs by inactivating the autophagy pathway.
Collapse
Affiliation(s)
- Doudou Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoshuang Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Qiting Zhao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuhan Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuting Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - H Rosie Xing
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|