1
|
Warthen JL, Lueckheide MJ. Peptides as Targeting Agents and Therapeutics: A Brief Overview. Biomacromolecules 2024. [PMID: 39445576 DOI: 10.1021/acs.biomac.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The controllability and specificity of peptides make them ideal for targeting therapeutic delivery systems and as therapeutic agents that interfere with the essential functions of pathogens and tumors. Peptides can also mimic natural protein structures or parts thereof, agonize receptors, and be conjugated to other molecules that will self-assemble. In this short Review, we discuss research from the last ten years into peptide use in three arenas: the treatment of cancer, the treatment of pathogens, and the targeting of specific organs and organelles. These studies demonstrate the successful application of targeting and therapeutic peptides in vitro and in vivo and show the promising range of applications peptides can have going forward.
Collapse
Affiliation(s)
- Jalissa L Warthen
- Adelphi University, 1 South Avenue, Garden City, New York 11530, United States
| | | |
Collapse
|
2
|
Andres-Martin F, James C, Catalfamo M. IL-27 expression regulation and its effects on adaptive immunity against viruses. Front Immunol 2024; 15:1395921. [PMID: 38966644 PMCID: PMC11222398 DOI: 10.3389/fimmu.2024.1395921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
IL-27, a member of the IL-6/IL-12 cytokine superfamily, is primarily secreted by antigen presenting cells, specifically by dendric cells, macrophages and B cells. IL-27 has antiviral activities and modulates both innate and adaptive immune responses against viruses. The role of IL-27 in the setting of viral infections is not well defined and both pro-inflammatory and anti-inflammatory functions have been described. Here, we discuss the latest advancements in the role of IL-27 in several viral infection models of human disease. We highlight important aspects of IL-27 expression regulation, the critical cell sources at different stages of the infection and their impact in cell mediated immunity. Lastly, we discuss the need to better define the antiviral and modulatory (pro-inflammatory vs anti-inflammatory) properties of IL-27 in the context of human chronic viral infections.
Collapse
Affiliation(s)
| | | | - Marta Catalfamo
- Department of Microbiology Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
3
|
McIntosh BJ, Hartmann GG, Yamada‐Hunter SA, Liu P, Williams CF, Sage J, Cochran JR. An engineered interleukin-11 decoy cytokine inhibits receptor signaling and proliferation in lung adenocarcinoma. Bioeng Transl Med 2023; 8:e10573. [PMID: 38023717 PMCID: PMC10658506 DOI: 10.1002/btm2.10573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 12/01/2023] Open
Abstract
The cytokine interleukin (IL)-11 has been shown to play a role in promoting fibrosis and cancer, including lung adenocarcinoma, garnering interest as an attractive target for therapeutic intervention. We used combinatorial methods to engineer an IL-11 variant that binds with higher affinity to the IL-11 receptor and stimulates enhanced receptor-mediated cell signaling. Introduction of two additional point mutations ablates IL-11 ligand/receptor association with the gp130 coreceptor signaling complex, resulting in a high-affinity receptor antagonist. Unlike wild-type IL-11, this engineered variant potently blocks IL-11-mediated cell signaling and slows tumor growth in a mouse model of lung cancer. Our approach highlights a strategy where native ligands can be engineered and exploited to create potent receptor antagonists.
Collapse
Affiliation(s)
| | | | - Sean A. Yamada‐Hunter
- Center for Cancer Cell Therapy, Stanford Cancer InstituteStanford University School of MedicineStanfordCaliforniaUSA
| | - Phillip Liu
- Biophysics ProgramStanford UniversityStanfordCaliforniaUSA
| | | | - Julien Sage
- Department of PediatricsStanford UniversityStanfordCaliforniaUSA
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
- Stanford Cancer InstituteStanford UniversityStanfordCaliforniaUSA
| | - Jennifer R. Cochran
- Cancer Biology ProgramStanford UniversityStanfordCaliforniaUSA
- Stanford Cancer InstituteStanford UniversityStanfordCaliforniaUSA
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
4
|
Kumar S, Mulia GE, Figueiredo ML. Cabozantinib and IL-27 combinatorial therapy for bone-metastatic prostate cancer. Front Mol Biosci 2023; 10:1259336. [PMID: 37842640 PMCID: PMC10568464 DOI: 10.3389/fmolb.2023.1259336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Prostate cancer is the second leading cause of cancer-related death among American men. Prostate tumor cells exhibit significant tropism for the bone and once metastasis occurs, survival rates fall significantly. Current treatment options are not curative and focus on symptom management. Immunotherapies are rapidly emerging as a possible therapeutic option for a variety of cancers including prostate cancer, however, variable patient response remains a concern. Chemotherapies, like cabozantinib, can have immune-priming effects which sensitize tumors to immunotherapies. Additionally, lower doses of chemotherapy can be used in this context which can reduce patient side effects. We hypothesized that a combination of chemotherapy (cabozantinib) and immunotherapy [Interleukin-27 (IL-27)] could be used to treat bone-metastatic prostate cancer and exert pro-osteogenic effects. IL-27 is a multi-functional cytokine, which promotes immune cell recruitment to tumors, while also promoting bone repair. Methods: To test this hypothesis, in vivo experiments were performed where syngeneic C57BL/6J mice were implanted intratibially with TRAMP-C2ras-Luc cells that are able to form tumors in bone. Immunotherapy was administered in the form of intramuscular gene therapy, delivering plasmid DNA encoding a reporter gene (Lucia), and/or a therapeutic gene (IL-27). Sonoporation was used to aid gene delivery. Following immunotherapy, the animals received either cabozantinib or a vehicle control by oral gavage. Bioluminescence imaging was used to monitor tumor size over time. Results: Combinatorial therapy inhibited tumor growth and improved survival. Further, RNA sequencing was used to investigate the mechanisms involved. Microcomputed tomography and differentiation assays indicated that the combination therapy improved bone quality by enhancing osteoblast differentiation and inhibiting osteoclast differentiation. Discussion: Our conclusion is that a chemo-immunotherapy approach such as the one examined in this work has potential to emerge as a novel therapeutic strategy for treating bone-metastatic prostate cancer. This approach will enable a significant reduction in chemotherapy-associated toxicity, enhance sensitivity to immunotherapy, and improve bone quality.
Collapse
Affiliation(s)
| | | | - Marxa L. Figueiredo
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Navarro-Becerra JA, Borden MA. Targeted Microbubbles for Drug, Gene, and Cell Delivery in Therapy and Immunotherapy. Pharmaceutics 2023; 15:1625. [PMID: 37376072 DOI: 10.3390/pharmaceutics15061625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Microbubbles are 1-10 μm diameter gas-filled acoustically-active particles, typically stabilized by a phospholipid monolayer shell. Microbubbles can be engineered through bioconjugation of a ligand, drug and/or cell. Since their inception a few decades ago, several targeted microbubble (tMB) formulations have been developed as ultrasound imaging probes and ultrasound-responsive carriers to promote the local delivery and uptake of a wide variety of drugs, genes, and cells in different therapeutic applications. The aim of this review is to summarize the state-of-the-art of current tMB formulations and their ultrasound-targeted delivery applications. We provide an overview of different carriers used to increase drug loading capacity and different targeting strategies that can be used to enhance local delivery, potentiate therapeutic efficacy, and minimize side effects. Additionally, future directions are proposed to improve the tMB performance in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
| | - Mark A Borden
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
7
|
Azimifar MA, Hashemi M, Babaei N, Salmasi Z, Doosti A. Interleukin gene delivery for cancer gene therapy: In vitro and in vivo studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:128-136. [PMID: 36742134 PMCID: PMC9869882 DOI: 10.22038/ijbms.2022.66890.14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Cytokine-mediated cancer therapy has the potential to enhance immunotherapeutic approaches and cancer elimination plans through the endowing of the immune system by providing improved anticancer immunity. Despite the encouraging pioneer studies on interleukins (ILs), the influence of ILs-originated therapeutics is still restricted by a class of potent immunoregulatory cytokines, systemic dose-limiting toxicities, ILs pleiotropy, and administration issues. During previous years, the area of transferring genes encoding immunostimulatory ILs was fundamentally widened to overcome these challenges and expedite ILs-based tumor regression. Numerous viral and non-viral delivery systems are currently available to act as crucial elements of the gene therapy toolbox. Moreover, cell-based cancer therapies are recruiting MSCs in the role of versatile gene delivery platforms to design one of the promising therapeutic approaches. These formulated gene carrier systems can provide possible alternatives to diminish dose-limiting adverse effects, promote administration, and enhance the therapeutic activity of ILs-derived treatment modalities in cancer treatment. This review provides a discussion on the advances of ILs gene delivery systems while focusing on the developing platforms in preclinical cancer immunogene therapy studies.
Collapse
Affiliation(s)
- Mohammad Amin Azimifar
- Department of Cell Molecular Biology, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Babaei
- Department of Cell Molecular Biology, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
8
|
Enhancing Prednisone-Based Arthritis Therapy with Targeted IL-27 Gene Delivery. Bioengineering (Basel) 2022; 9:bioengineering9060248. [PMID: 35735491 PMCID: PMC9220267 DOI: 10.3390/bioengineering9060248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease which is characterized primarily by synovial hyperplasia and accumulation of several types of immune infiltrates that promote progressive destruction of the articular structure. Glucocorticoids are often prescribed to treat RA because of their strong anti-inflammatory and immunosuppressive effects. However, their application must be limited to the short-term due to a risk of adverse events. In the present study, we examined the potential combination of low-dose prednisone with gene delivery of an agent of promising and complementary effectiveness in RA, interleukin (IL)-27. IL-27 has been shown to have anti-inflammatory potential, while also acting as an effective bone-normalization agent in prior reports. The present report examined a version of IL-27 targeted at the C-terminus with a short ‘peptide L’ (pepL, LSLITRL) that binds the interleukin 6 receptor α (IL-6Rα) upregulated during inflammation. By focusing on this targeted form, IL-27pepL or 27pL, we examined whether the anti-inflammatory potential of prednisone (at a relatively low dose and short duration) could be further enhanced in the presence of 27pL as a therapy adjuvant. Our results indicate that 27pL represents a novel tool for use as an adjuvant with current therapeutics, such as prednisone, against inflammatory conditions.
Collapse
|
9
|
Salameh JW, Kumar S, Rivera-Cruz CM, Figueiredo ML. A Second-Generation Nanoluc-IL27 Fusion Cytokine for Targeted-Gene-Therapy Applications. Bioengineering (Basel) 2022; 9:bioengineering9020077. [PMID: 35200430 PMCID: PMC8868604 DOI: 10.3390/bioengineering9020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/05/2023] Open
Abstract
An emerging approach in treating skeletal malignancies utilizes osteoimmunology to investigate new multifunctional immune-stimulatory agents that can simultaneously combat tumor growth and promote bone repair. We have hypothesized that cytokine Interleukin-27 (IL-27) is an excellent candidate biologic to help rebalance the prostate tumor cells and bone cell environment. In this work, we examined the proof of principle for a short, secreted luciferase (Nanoluc or Nluc) fusion with IL-27 to produce a novel cytokine-based biologic (Nluc-27), whereby we examined its efficacy in vitro in reducing prostate tumor growth and rebalancing bone cell proliferation and differentiation. This work demonstrates the targeting and anti-tumor efficacy of the Nluc-27 fusion cytokine in cancer and bone cell models. The fusion cytokine is detectable in conditioned media, and bioactive in different cell systems. This novel Nluc-27 cytokine will allow flexible incorporation of other targeting domains and may serve as flexible tool to augment IL-27′s bioactivity and reengineer its efficacy against prostate tumor or bone cells, and may prove applicable to several other cell types for targeted gene therapy applications.
Collapse
Affiliation(s)
- Janelle Wesleyn Salameh
- The Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (J.W.S.); (S.K.); (C.M.R.-C.)
- The Interdisciplinary Biomedical Sciences Program—The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Shreya Kumar
- The Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (J.W.S.); (S.K.); (C.M.R.-C.)
| | - Cosette Marie Rivera-Cruz
- The Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (J.W.S.); (S.K.); (C.M.R.-C.)
| | - Marxa Leao Figueiredo
- The Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (J.W.S.); (S.K.); (C.M.R.-C.)
- The Interdisciplinary Biomedical Sciences Program—The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-5790
| |
Collapse
|
10
|
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021; 21:481-499. [PMID: 34083781 PMCID: PMC8173513 DOI: 10.1038/s41568-021-00363-z] [Citation(s) in RCA: 353] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Interleukins and associated cytokines serve as the means of communication for innate and adaptive immune cells as well as non-immune cells and tissues. Thus, interleukins have a critical role in cancer development, progression and control. Interleukins can nurture an environment enabling and favouring cancer growth while simultaneously being essential for a productive tumour-directed immune response. These properties of interleukins can be exploited to improve immunotherapies to promote effectiveness as well as to limit side effects. This Review aims to unravel some of these complex interactions.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Janina Dörr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany.
- German Center for Translational Cancer Research (DKTK), Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
11
|
Figueiredo ML, Letteri R, Chan-Seng D, Kumar S, Rivera-Cruz CM, Emrick TS. Reengineering Tumor Microenvironment with Sequential Interleukin Delivery. Bioengineering (Basel) 2021; 8:bioengineering8070090. [PMID: 34209203 PMCID: PMC8301035 DOI: 10.3390/bioengineering8070090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Some cytokines can reengineer anti-tumor immunity to modify the tumor micro-environment. Interleukin-27 (IL-27) can partially reduce tumor growth in several animal models, including prostate cancer. We hypothesized that addition of IL-18, which can induce the proliferation of several immune effector cells through inducing IFNγ could synergize with IL-27 to enhance tumor growth control. We describe our findings on the effects of IL-27 gene delivery on prostate cancer cells and how sequential therapy with IL-18 enhanced the efficacy of IL-27. The combination of IL-27 followed by IL-18 (27→18) successfully reduced cancer cell viability, with significant effects in cell culture and in an immunocompetent mouse model. We also examined a novel chimeric cytokine, comprising an IL-27 targeted at the C-terminus with a short peptide, LSLITRL (27pepL). This novel cytokine targets a receptor upregulated in tumor cells (IL-6Rα) via the pepL ligand. Interestingly, when we compared the 27→18 combination with the single 27pepL therapy, we observed a similar efficacy for both. This efficacy was further enhanced when 27pepL was sequenced with IL-18 (27pepL→18). The observed reduction in tumor growth and significantly enriched canonical pathways and upstream regulators, as well as specific immune effector signatures (as determined by bioinformatics analyses in the tumor microenvironment) supported the therapeutic design, whereby IL-27 or 27pepL can be more effective when delivered with IL-18. This cytokine sequencing approach allows flexible incorporation of both gene delivery and recombinant cytokines as tools to augment IL-27's bioactivity and reengineer efficacy against prostate tumors and may prove applicable in other therapeutic settings.
Collapse
Affiliation(s)
- Marxa L. Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (S.K.); (C.M.R.-C.)
- Purdue Center for Cancer Research and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-5790
| | - Rachel Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA;
| | - Delphine Chan-Seng
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, F-67000 Strasbourg, France;
| | - Shreya Kumar
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (S.K.); (C.M.R.-C.)
| | - Cosette M. Rivera-Cruz
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (S.K.); (C.M.R.-C.)
| | - Todd S. Emrick
- Department of Polymer Science & Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA;
| |
Collapse
|
12
|
Takamori Y, Ando T, Fuji D, Yokoyama T, Yamamoto M, Kawakami T. In vitro display evolution of IL-6R-binding unnatural peptides ribosomally initiated and cyclized with m-(chloromethyl)benzoic acid. Biochem Biophys Res Commun 2020; 535:47-53. [PMID: 33340765 DOI: 10.1016/j.bbrc.2020.11.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022]
Abstract
The interaction of the multifunctional cytokine interleukin (IL)-6 and its receptor (IL-6R) is involved in various diseases, including not only autoimmune diseases such as rheumatoid arthritis but also cancer and cytokine storms in coronavirus disease 2019 (COVID-19). In this study, systematic evolution of ligands by exponential enrichment (SELEX) against human IL-6R from mRNA-displayed unnatural peptide library ribosomally initiated and cyclized with m-(chloromethyl)benzoic acid (mClPh) incorporated by genetic code expansion (sense suppression) was performed using the PURE (Protein synthesis Using Recombinant Elements) system. A novel 13-mer unnatural mClPh-cyclized peptide that binds to the extracellular domain of IL-6R was discovered from an extremely diverse random peptide library. In vitro affinity maturation of IL-6R-binding unnatural mClPh-cyclized peptide from focused libraries was performed, identifying two IL-6R-binding unnatural mClPh-cyclized peptides by next-generation sequencing. Because cyclization can increase the protease resistance of peptides, novel IL-6R-binding mClPh-cyclized peptides discovered in this study have the potential to be used for a variety of research, therapeutic, and diagnostic applications involving IL-6/IL-6R signaling.
Collapse
Affiliation(s)
- Yukio Takamori
- Department of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Takehiro Ando
- Department of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Daisuke Fuji
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Takumi Yokoyama
- Department of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Mizuki Yamamoto
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Takashi Kawakami
- Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
13
|
Beizavi Z, Zohouri M, Asadipour M, Ghaderi A. IL-27, a pleiotropic cytokine for fine-tuning the immune response in cancer. Int Rev Immunol 2020; 40:319-329. [PMID: 33146571 DOI: 10.1080/08830185.2020.1840565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interleukin (IL)-27, a member of the IL-6/IL-12 family, has an important role in modulating inflammation in partnership with innate and adaptive immune cells. IL-27 binding to IL-27R starts downstream signaling based on the target cells. It can instigate inflammation by inducing CD4+ T cell proliferation, Th1 polarization, cytotoxic T cell activation, generation of the natural killer cell, and macrophage and dendritic cell activation. However, by inducing programmed cell death and suppression of effector cells, IL-27 can suppress inflammation and return the immune response to hemostasis. Altogether, IL-27 displays multifaceted dual functions, which may result in either pro- or anti-inflammatory effects. Recent investigations indicated the antitumor activity of IL-27 via inducing Th1, and CTL responses and generating NK cells. On the other hand, IL-27 also can promote tumor cells' proliferation, survival, and angiogenesis. In the present review, we'll discuss recent advances concerning the role of IL-27 in inflammatory diseases such as infections, autoimmune diseases with a focus on cancer.
Collapse
Affiliation(s)
- Zahra Beizavi
- Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Zohouri
- Shiraz Institute for Cancer Research, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morvarid Asadipour
- Shiraz Institute for Cancer Research, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
15
|
Decker RE, Lamantia ZE, Emrick TS, Figueiredo ML. Sonodelivery in Skeletal Muscle: Current Approaches and Future Potential. Bioengineering (Basel) 2020; 7:E107. [PMID: 32916815 PMCID: PMC7552685 DOI: 10.3390/bioengineering7030107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
There are currently multiple approaches to facilitate gene therapy via intramuscular gene delivery, such as electroporation, viral delivery, or direct DNA injection with or without polymeric carriers. Each of these methods has benefits, but each method also has shortcomings preventing it from being established as the ideal technique. A promising method, ultrasound-mediated gene delivery (or sonodelivery) is inexpensive, widely available, reusable, minimally invasive, and safe. Hurdles to utilizing sonodelivery include choosing from a large variety of conditions, which are often dependent on the equipment and/or research group, and moderate transfection efficiencies when compared to some other gene delivery methods. In this review, we provide a comprehensive look at the breadth of sonodelivery techniques for intramuscular gene delivery and suggest future directions for this continuously evolving field.
Collapse
Affiliation(s)
- Richard E. Decker
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Zachary E. Lamantia
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Todd S. Emrick
- Department of Polymer Science & Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA;
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| |
Collapse
|
16
|
Figueiredo Neto M, Liu S, Salameh JW, Yokota H, Figueiredo ML. Interleukin-27 Gene Delivery Targeting IL-6Rα-Expressing Cells as a Stress Response Therapy. Int J Mol Sci 2020; 21:E1108. [PMID: 32046108 PMCID: PMC7038084 DOI: 10.3390/ijms21031108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 01/11/2023] Open
Abstract
Interleukin-27 (IL-27) has shown promise in halting tumor growth and mediating tumor regression in several models, including prostate cancer. We describe our findings on the effects of IL-27 on the gene expression changes of TC2R prostate adenocarcinoma cells. We utilized RNAseq to assess profile differences between empty vector control, vector delivering IL-27 modified at its C-terminus with a non-specific peptide, and IL-27 modified at the C-terminus with a peptide targeting the IL-6-Rα. The targeted IL-27 had higher bioactivity and activity in vivo in a recent study by our group, but the mechanisms underlying this effect had not been characterized in detail at the gene expression level on tumor cells. In the present work, we sought to examine potential mechanisms for targeted IL-27 enhanced activity directly on tumor cells. The targeted IL-27 appeared to modulate several changes that would be consistent with an anti-tumor effect, including upregulation in the Interferon (IFN) and Interferon regulatory factor (IRF), oxidative phosphorylation, Janus kinase/Signal transducers and activators of transcription (JAK/STAT), and eukaryotic initiation factor 2 (EIF2) signaling. Of these signaling changes predicted by ingenuity pathway analyses (IPA), the novel form also with the highest significance (-log(Benjamini-Hochberg (B-H)) p-value) was the EIF2 signaling upregulation. We validated this predicted change by assaying for eukaryotic initiation factor 2 alpha (eIF2α), or phosphorylated eIF2α (p-eIF2α), and caspase-3 levels. We detected an increase in the phosphorylated form of eIF2α and in the cleaved caspase-3 fraction, indicating that the EIF2 signaling pathway was upregulated in these prostate tumor cells following targeted IL-27 gene delivery. This approach of targeting cytokines to enhance their activity against cancer cells is a novel approach to help augment IL-27's bioactivity and efficacy against prostate tumors and could be extended to other conditions where it could help interfere with the EIF2α pathway and promote caspase-3 activation.
Collapse
Affiliation(s)
- Manoel Figueiredo Neto
- Department of Basic Medical Sciences and Interdisciplinary Biomedical Sciences Program, Purdue University, 625 Harrison Street, LYNN 2177, West Lafayette, IN 47907, USA; (M.F.N.); (J.W.S.)
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.L.); (H.Y.)
| | - Janelle Wes Salameh
- Department of Basic Medical Sciences and Interdisciplinary Biomedical Sciences Program, Purdue University, 625 Harrison Street, LYNN 2177, West Lafayette, IN 47907, USA; (M.F.N.); (J.W.S.)
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.L.); (H.Y.)
| | - Marxa Leão Figueiredo
- Department of Basic Medical Sciences and Interdisciplinary Biomedical Sciences Program, Purdue University, 625 Harrison Street, LYNN 2177, West Lafayette, IN 47907, USA; (M.F.N.); (J.W.S.)
- Purdue Center for Cancer Research and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|