1
|
Monceau A, Nath RG, Suárez-Calvet X, Musumeci O, Toscano A, Kierdaszuk B, Kostera-Pruszczyk A, Domínguez-González C, Hernández-Lain A, Paradas C, Rivas E, Papadimas G, Papadopoulos C, Chrysanthou-Piterou M, Gallardo E, Olivé M, Lilleker J, Roberts ME, Marchese D, Lunazzi G, Heyn H, Fernández-Simón E, Villalobos E, Clark J, Katsikis P, Collins C, Mehra P, Laidler Z, Vincent A, Tasca G, Marini-Bettolo C, Guglieri M, Straub V, Raben N, Díaz-Manera J. Decoding the muscle transcriptome of patients with late-onset Pompe disease reveals markers of disease progression. Brain 2024; 147:4213-4226. [PMID: 39045638 PMCID: PMC11629704 DOI: 10.1093/brain/awae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/25/2024] Open
Abstract
Late-onset Pompe disease (LOPD) is a rare genetic disorder caused by the deficiency of acid alpha-glucosidase leading to progressive cellular dysfunction owing to the accumulation of glycogen in the lysosome. The mechanism of relentless muscle damage (a classic manifestation of the disease) has been studied extensively by analysing the whole-muscle tissue; however, little, if anything, is known about transcriptional heterogeneity among nuclei within the multinucleated skeletal muscle cells. This is the first report of application of single-nucleus RNA sequencing to uncover changes in the gene expression profile in muscle biopsies from eight patients with LOPD and four muscle samples from age- and sex-matched healthy controls. We matched these changes with histological findings using GeoMx spatial transcriptomics to compare the transcriptome of control myofibres from healthy individuals with non-vacuolated (histologically unaffected) and vacuolated (histologically affected) myofibres of LODP patients. We observed an increase in the proportion of slow and regenerative muscle fibres and macrophages in LOPD muscles. The expression of the genes involved in glycolysis was reduced, whereas the expression of the genes involved in the metabolism of lipids and amino acids was increased in non-vacuolated fibres, indicating early metabolic abnormalities. Additionally, we detected upregulation of autophagy genes and downregulation of the genes involved in ribosomal and mitochondrial function leading to defective oxidative phosphorylation. Upregulation of genes associated with inflammation, apoptosis and muscle regeneration was observed only in vacuolated fibres. Notably, enzyme replacement therapy (the only available therapy for the disease) showed a tendency to restore dysregulated metabolism, particularly within slow fibres. A combination of single-nucleus RNA sequencing and spatial transcriptomics revealed the landscape of the normal and diseased muscle and highlighted the early abnormalities associated with disease progression. Thus, the application of these two new cutting-edge technologies provided insight into the molecular pathophysiology of muscle damage in LOPD and identified potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Alexandra Monceau
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Rasya Gokul Nath
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Xavier Suárez-Calvet
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Neuromuscular Disease Unit, 08041 Barcelona, Spain
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Antonio Toscano
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Biruta Kierdaszuk
- Department of Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Cristina Domínguez-González
- Department of Neurology, Neuromuscular Unit, Instituto de Investigación imas12, Hospital 12 de Octubre, 28041 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aurelio Hernández-Lain
- Department of Neurology, Neuromuscular Unit, Instituto de Investigación imas12, Hospital 12 de Octubre, 28041 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Paradas
- Neurology Department, Neuromuscular Disorders Unit, Instituto de Biomedicina de Sevilla, Hospital U Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
- Center for Biomedical Network Research on Neurodegenerative Disorders (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eloy Rivas
- Neurology Department, Neuromuscular Disorders Unit, Instituto de Biomedicina de Sevilla, Hospital U Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
- Center for Biomedical Network Research on Neurodegenerative Disorders (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - George Papadimas
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Constantinos Papadopoulos
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Margarita Chrysanthou-Piterou
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Eduard Gallardo
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Neuromuscular Disease Unit, 08041 Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servei de Neurologia, Unitat malalties neuromusculars, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Montse Olivé
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Neuromuscular Disease Unit, 08041 Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servei de Neurologia, Unitat malalties neuromusculars, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - James Lilleker
- Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PL, UK
- Muscle Disease Unit, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, M6 8HD, UK
| | - Mark E Roberts
- Muscle Disease Unit, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, M6 8HD, UK
| | - Domenica Marchese
- Centre for Genomic Regulation (CRG), CNAG-CRG, Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), 08028 Barcelona, Spain
| | - Giulia Lunazzi
- Centre for Genomic Regulation (CRG), CNAG-CRG, Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), 08028 Barcelona, Spain
| | - Holger Heyn
- Centre for Genomic Regulation (CRG), CNAG-CRG, Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), 08028 Barcelona, Spain
| | - Esther Fernández-Simón
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Elisa Villalobos
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - James Clark
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Panos Katsikis
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Catherine Collins
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Priyanka Mehra
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Zoe Laidler
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Amy Vincent
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
- Wellcome Trust Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 3NU, UK
| | - Giorgio Tasca
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordi Díaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK
| |
Collapse
|
2
|
Gaspar RC, Sakuma I, Nasiri A, Hubbard BT, LaMoia TE, Leitner BP, Tep S, Xi Y, Green EM, Ullman JC, Petersen KF, Shulman GI. Small molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease. Am J Physiol Endocrinol Metab 2024; 327:E524-E532. [PMID: 39171753 PMCID: PMC11482269 DOI: 10.1152/ajpendo.00175.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase (GAA). This enzyme is responsible for breaking down glycogen, leading to the abnormal accumulation of glycogen, which results in progressive muscle weakness and metabolic dysregulation. In this study, we investigated the hypothesis that the small molecule inhibition of glycogen synthase I (GYS1) may reduce muscle glycogen content and improve metabolic dysregulation in a mouse model of Pompe disease. To address this hypothesis, we studied four groups of male mice: a control group of wild-type (WT) B6129SF1/J mice fed either regular chow or a GYS1 inhibitor (MZ-101) diet (WT-GYS1), and Pompe model mice B6;129-Gaatm1Rabn/J fed either regular chow (GAA-KO) or MZ-101 diet (GAA-GYS1) for 7 days. Our findings revealed that GAA-KO mice exhibited abnormal glycogen accumulation in the gastrocnemius, heart, and diaphragm. In contrast, inhibiting GYS1 reduced glycogen levels in all tissues compared with GAA-KO mice. Furthermore, GAA-KO mice displayed reduced spontaneous activity during the dark cycle compared with WT mice, whereas GYS1 inhibition counteracted this effect. Compared with GAA-KO mice, GAA-GYS1 mice exhibited improved glucose tolerance and whole body insulin sensitivity. These improvements in insulin sensitivity could be attributed to increased AMP-activated protein kinase phosphorylation in the gastrocnemius of WT-GYS1 and GAA-GYS1 mice. Additionally, the GYS1 inhibitor led to a reduction in the phosphorylation of GSS641 and the LC3 autophagy marker. Together, our results suggest that targeting GYS1 could serve as a potential strategy for treating glycogen storage disorders and metabolic dysregulation.NEW & NOTEWORTHY We investigated the effects of small molecule inhibition of glycogen synthase I (GYS1) on glucose metabolism in a mouse model of Pompe disease. GYS1 inhibition reduces abnormal glycogen accumulation and molecular biomarkers associated with Pompe disease while also improving glucose intolerance. Our results collectively demonstrate that the GYS1 inhibitor represents a novel approach to substrate reduction therapy for Pompe disease.
Collapse
Affiliation(s)
- Rafael Calais Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Ali Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Brandon T Hubbard
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Traci E LaMoia
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Brooks P Leitner
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Samnang Tep
- Maze Therapeutics, South San Francisco, California,United States
| | - Yannan Xi
- Maze Therapeutics, South San Francisco, California,United States
| | - Eric M Green
- Maze Therapeutics, South San Francisco, California,United States
| | - Julie C Ullman
- Maze Therapeutics, South San Francisco, California,United States
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| |
Collapse
|
3
|
Do H, Meena NK, Raben N. Failure of Autophagy in Pompe Disease. Biomolecules 2024; 14:573. [PMID: 38785980 PMCID: PMC11118179 DOI: 10.3390/biom14050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy is an evolutionarily conserved lysosome-dependent degradation of cytoplasmic constituents. The system operates as a critical cellular pro-survival mechanism in response to nutrient deprivation and a variety of stress conditions. On top of that, autophagy is involved in maintaining cellular homeostasis through selective elimination of worn-out or damaged proteins and organelles. The autophagic pathway is largely responsible for the delivery of cytosolic glycogen to the lysosome where it is degraded to glucose via acid α-glucosidase. Although the physiological role of lysosomal glycogenolysis is not fully understood, its significance is highlighted by the manifestations of Pompe disease, which is caused by a deficiency of this lysosomal enzyme. Pompe disease is a severe lysosomal glycogen storage disorder that affects skeletal and cardiac muscles most. In this review, we discuss the basics of autophagy and describe its involvement in the pathogenesis of muscle damage in Pompe disease. Finally, we outline how autophagic pathology in the diseased muscles can be used as a tool to fast track the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Nina Raben
- M6P Therapeutics, 20 S. Sarah Street, St. Louis, MO 63108, USA; (H.D.); (N.K.M.)
| |
Collapse
|
4
|
Schoser B, Kishnani PS, Bratkovic D, Byrne BJ, Claeys KG, Díaz-Manera J, Laforêt P, Roberts M, Toscano A, van der Ploeg AT, Castelli J, Goldman M, Holdbrook F, Sitaraman Das S, Wasfi Y, Mozaffar T. 104-week efficacy and safety of cipaglucosidase alfa plus miglustat in adults with late-onset Pompe disease: a phase III open-label extension study (ATB200-07). J Neurol 2024; 271:2810-2823. [PMID: 38418563 PMCID: PMC11055775 DOI: 10.1007/s00415-024-12236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
The phase III double-blind PROPEL study compared the novel two-component therapy cipaglucosidase alfa + miglustat (cipa + mig) with alglucosidase alfa + placebo (alg + pbo) in adults with late-onset Pompe disease (LOPD). This ongoing open-label extension (OLE; NCT04138277) evaluates long-term safety and efficacy of cipa + mig. Outcomes include 6-min walk distance (6MWD), forced vital capacity (FVC), creatine kinase (CK) and hexose tetrasaccharide (Hex4) levels, patient-reported outcomes and safety. Data are reported as change from PROPEL baseline to OLE week 52 (104 weeks post-PROPEL baseline). Of 118 patients treated in the OLE, 81 continued cipa + mig treatment from PROPEL (cipa + mig group; 61 enzyme replacement therapy [ERT] experienced prior to PROPEL; 20 ERT naïve) and 37 switched from alg + pbo to cipa + mig (switch group; 29 ERT experienced; 8 ERT naive). Mean (standard deviation [SD]) change in % predicted 6MWD from baseline to week 104 was + 3.1 (8.1) for cipa + mig and - 0.5 (7.8) for the ERT-experienced switch group, and + 8.6 (8.6) for cipa + mig and + 8.9 (11.7) for the ERT-naïve switch group. Mean (SD) change in % predicted FVC was - 0.6 (7.5) for cipa + mig and - 3.8 (6.2) for the ERT-experienced switch group, and - 4.8 (6.5) and - 3.1 (6.7), respectively, in ERT-naïve patients. CK and Hex4 levels improved in both treatment groups by week 104 with cipa + mig treatment. Three patients discontinued the OLE due to infusion-associated reactions. No new safety signals were identified. Cipa + mig treatment up to 104 weeks was associated with overall maintained improvements (6MWD, biomarkers) or stabilization (FVC) from baseline with continued durability, and was well tolerated, supporting long-term benefits for patients with LOPD.Trial registration number: NCT04138277; trial start date: December 18, 2019.
Collapse
Affiliation(s)
- Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany.
| | | | - Drago Bratkovic
- PARC Research Clinic, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University International Centre for Life, Newcastle Upon Tyne, UK
| | - Pascal Laforêt
- Neurology Department, Nord/Est/Île-de-France Neuromuscular Reference Center, FHU PHENIX, Raymond-Poincaré Hospital, AP-HP, Garches, France
| | | | - Antonio Toscano
- ERN-NMD Center for Neuromuscular Disorders of Messina, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Byrne BJ, Schoser B, Kishnani PS, Bratkovic D, Clemens PR, Goker-Alpan O, Ming X, Roberts M, Vorgerd M, Sivakumar K, van der Ploeg AT, Goldman M, Wright J, Holdbrook F, Jain V, Benjamin ER, Johnson F, Das SS, Wasfi Y, Mozaffar T. Long-term safety and efficacy of cipaglucosidase alfa plus miglustat in individuals living with Pompe disease: an open-label phase I/II study (ATB200-02). J Neurol 2024; 271:1787-1801. [PMID: 38057636 PMCID: PMC10973052 DOI: 10.1007/s00415-023-12096-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Cipaglucosidase alfa plus miglustat (cipa + mig) is a novel, two-component therapy for Pompe disease. We report data from the Phase I/II ATB200-02 study for up to 48 months of treatment. Four adult cohorts, including one non-ambulatory ERT-experienced (n = 6) and three ambulatory cohorts, (two enzyme replacement therapy [ERT]-experienced cohorts [2-6 years (n = 11) and ≥ 7 years (n = 6)]), one ERT-naïve cohort (n = 6), received 20 mg/kg intravenous-infused cipa plus 260 mg oral mig biweekly. Change from baseline (CFBL) for multiple efficacy endpoints at 12, 24, 36, and 48 months, pharmacodynamics, pharmacokinetics, safety, and immunogenicity data were assessed. Six-minute walking distance (% predicted) improved at 12, 24, 36, and 48 months: pooled ambulatory ERT-experienced cohorts, mean(± standard deviation [SD]) CFBL: 6.1(± 7.84), n = 16; 5.4(± 10.56), n = 13; 3.4(± 14.66), n = 12; 5.9(± 17.36), n = 9, respectively; ERT-naïve cohort: 10.7(± 3.93), n = 6; 11.0(± 5.06), n = 6; 9.0(± 7.98), n = 5; 11.7(± 7.69), n = 4, respectively. Percent predicted forced vital capacity was generally stable in ERT-experienced cohorts, mean(± SD) CFBL - 1.2(± 5.95), n = 16; 1.0(± 7.96), n = 13; - 0.3(± 6.68), n = 10; 1.0(± 6.42), n = 6, respectively, and improved in the ERT-naïve cohort: 3.2(± 8.42), n = 6; 4.7(± 5.09), n = 6; 6.2(± 3.35), n = 5; 8.3(± 4.50), n = 4, respectively. Over 48 months, CK and Hex4 biomarkers improved in ambulatory cohorts. Overall, cipa + mig was well tolerated with a safety profile like alglucosidase alfa. ATB200-02 results show the potential benefits of cipa + mig as a long-term treatment option for Pompe disease. Trial registration number: NCT02675465 January 26, 2016.
Collapse
Affiliation(s)
| | - Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Drago Bratkovic
- PARC Research Clinic, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Paula R Clemens
- Department of Neurology, University of Pittsburgh School of Medicine and VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, USA
| | - Xue Ming
- Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
- Guam Regional Medical City, Dededo, Guam
| | | | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, Bochum, Germany
| | | | | | | | | | | | - Vipul Jain
- Amicus Therapeutics, Inc., Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
6
|
Meena NK, Ng Y, Randazzo D, Weigert R, Puertollano R, Raben N. Intravital imaging of muscle damage and response to therapy in a model of Pompe disease. Clin Transl Med 2024; 14:e1561. [PMID: 38445455 PMCID: PMC10915738 DOI: 10.1002/ctm2.1561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
- Naresh K. Meena
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, NIHBethesdaMarylandUSA
| | - Yeap Ng
- Intravital Microscopy CoreCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
- Laboratory of Cellular and Molecular BiologyCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Davide Randazzo
- Light Imaging SectionOffice of Science and TechnologyNational Institute of Arthritis and Musculoskeletal and Skin Diseases, NIHBethesdaMarylandUSA
| | - Roberto Weigert
- Intravital Microscopy CoreCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
- Laboratory of Cellular and Molecular BiologyCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Rosa Puertollano
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, NIHBethesdaMarylandUSA
| | - Nina Raben
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
7
|
Ullman JC, Mellem KT, Xi Y, Ramanan V, Merritt H, Choy R, Gujral T, Young LE, Blake K, Tep S, Homburger JR, O’Regan A, Ganesh S, Wong P, Satterfield TF, Lin B, Situ E, Yu C, Espanol B, Sarwaikar R, Fastman N, Tzitzilonis C, Lee P, Reiton D, Morton V, Santiago P, Won W, Powers H, Cummings BB, Hoek M, Graham RR, Chandriani SJ, Bainer R, DePaoli-Roach AA, Roach PJ, Hurley TD, Sun RC, Gentry MS, Sinz C, Dick RA, Noonberg SB, Beattie DT, Morgans DJ, Green EM. Small-molecule inhibition of glycogen synthase 1 for the treatment of Pompe disease and other glycogen storage disorders. Sci Transl Med 2024; 16:eadf1691. [PMID: 38232139 PMCID: PMC10962247 DOI: 10.1126/scitranslmed.adf1691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Glycogen synthase 1 (GYS1), the rate-limiting enzyme in muscle glycogen synthesis, plays a central role in energy homeostasis and has been proposed as a therapeutic target in multiple glycogen storage diseases. Despite decades of investigation, there are no known potent, selective small-molecule inhibitors of this enzyme. Here, we report the preclinical characterization of MZ-101, a small molecule that potently inhibits GYS1 in vitro and in vivo without inhibiting GYS2, a related isoform essential for synthesizing liver glycogen. Chronic treatment with MZ-101 depleted muscle glycogen and was well tolerated in mice. Pompe disease, a glycogen storage disease caused by mutations in acid α glucosidase (GAA), results in pathological accumulation of glycogen and consequent autophagolysosomal abnormalities, metabolic dysregulation, and muscle atrophy. Enzyme replacement therapy (ERT) with recombinant GAA is the only approved treatment for Pompe disease, but it requires frequent infusions, and efficacy is limited by suboptimal skeletal muscle distribution. In a mouse model of Pompe disease, chronic oral administration of MZ-101 alone reduced glycogen buildup in skeletal muscle with comparable efficacy to ERT. In addition, treatment with MZ-101 in combination with ERT had an additive effect and could normalize muscle glycogen concentrations. Biochemical, metabolomic, and transcriptomic analyses of muscle tissue demonstrated that lowering of glycogen concentrations with MZ-101, alone or in combination with ERT, corrected the cellular pathology in this mouse model. These data suggest that substrate reduction therapy with GYS1 inhibition may be a promising therapeutic approach for Pompe disease and other glycogen storage diseases.
Collapse
Affiliation(s)
- Julie C. Ullman
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Kevin T. Mellem
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Yannan Xi
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Vyas Ramanan
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Hanne Merritt
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Rebeca Choy
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Kerrigan Blake
- Maze Therapeutics; South San Francisco, California, 94080 USA
- Present address, Cellarity, Somerville, Massachusetts, 02143, USA
| | - Samnang Tep
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | - Adam O’Regan
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Sandya Ganesh
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Perryn Wong
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | - Baiwei Lin
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Eva Situ
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Cecile Yu
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Bryan Espanol
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Richa Sarwaikar
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Nathan Fastman
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | - Patrick Lee
- Maze Therapeutics; South San Francisco, California, 94080 USA
- Present address, Curie Bio, Boston, Massachusetts, 02115, USA
| | - Daniel Reiton
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Vivian Morton
- Maze Therapeutics; South San Francisco, California, 94080 USA
- Present address, Revolution Medicines, Redwood City, California, 94063, USA
| | - Pam Santiago
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Walter Won
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Hannah Powers
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | - Maarten Hoek
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | | | - Russell Bainer
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Anna A. DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter J. Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Thomas D. Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ramon C. Sun
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- USA Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew S. Gentry
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | | | - Ryan A. Dick
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | | | | | - Eric M. Green
- Maze Therapeutics; South San Francisco, California, 94080 USA
| |
Collapse
|
8
|
Gómez-Cebrián N, Gras-Colomer E, Poveda Andrés JL, Pineda-Lucena A, Puchades-Carrasco L. Omics-Based Approaches for the Characterization of Pompe Disease Metabolic Phenotypes. BIOLOGY 2023; 12:1159. [PMID: 37759559 PMCID: PMC10525434 DOI: 10.3390/biology12091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, inherited disorders of metabolism, characterized by defects in lysosomal enzymes, accessory proteins, membrane transporters or trafficking proteins. Pompe disease (PD) is produced by mutations in the acid alpha-glucosidase (GAA) lysosomal enzyme. This enzymatic deficiency leads to the aberrant accumulation of glycogen in the lysosome. The onset of symptoms, including a variety of neurological and multiple-organ pathologies, can range from birth to adulthood, and disease severity can vary between individuals. Although very significant advances related to the development of new treatments, and also to the improvement of newborn screening programs and tools for a more accurate diagnosis and follow-up of patients, have occurred over recent years, there exists an unmet need for further understanding the molecular mechanisms underlying the progression of the disease. Also, the reason why currently available treatments lose effectiveness over time in some patients is not completely understood. In this scenario, characterization of the metabolic phenotype is a valuable approach to gain insights into the global impact of lysosomal dysfunction, and its potential correlation with clinical progression and response to therapies. These approaches represent a discovery tool for investigating disease-induced modifications in the complete metabolic profile, including large numbers of metabolites that are simultaneously analyzed, enabling the identification of novel potential biomarkers associated with these conditions. This review aims to highlight the most relevant findings of recently published omics-based studies with a particular focus on describing the clinical potential of the specific metabolic phenotypes associated to different subgroups of PD patients.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Elena Gras-Colomer
- Pharmacy Department, Hospital Manises of Valencia, 46940 Valencia, Spain
| | | | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Pamplona, Spain
| | | |
Collapse
|
9
|
Fiege L, Duran I, Marquardt T. Improved Enzyme Replacement Therapy with Cipaglucosidase Alfa/Miglustat in Infantile Pompe Disease. Pharmaceuticals (Basel) 2023; 16:1199. [PMID: 37765007 PMCID: PMC10537092 DOI: 10.3390/ph16091199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease is a lysosomal storage disorder with impaired glycogen degradation caused by a deficiency of the enzyme acid α-glucosidase (GAA). Children with the severe infantile form do not survive beyond the first year of life without treatment. Since 2006, enzyme replacement therapy (ERT) with Alglucosidase alfa (Myozyme) has been available, which is a recombinant human GAA (rhGAA). Myozyme therapy has prolonged the life span of affected patients, but many patients showed a continuing, albeit slower, disease progression. A new generation of rhGAA, Cipaglucosidase alfa (Amicus) has a higher content of mannose-6-phosphate residues, which are necessary for efficient cellular uptake and lysosomal targeting. Cipaglucosidase alfa is co-administered with an enzyme stabilizer, Miglustat, which also optimizes the pharmacological properties. In mouse models, the superiority of Cipaglucosidase alfa/Miglustat compared to the previous standard therapy could be determined. Here, we report the disease course of a patient with severe infantile M. Pompe, who showed serious progression even with high-dose standard of care ERT. Changing the therapy to Cipaglucosidase alfa/Miglustat improved respiratory failure, cardiomyopathy, and motor functions significantly. The patient could be weaned from respiratory support and oxygen supplementation. Cardiac function was normalized. Most impressively, the patient, who had lost nearly all motor skills, acquired head control, learned to speak, and could move his wheelchair by himself. Overall, the patient's clinical situation has improved dramatically with the new ERT.
Collapse
Affiliation(s)
- Lina Fiege
- Department of General Pediatrics, Metabolic Diseases, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Ibrahim Duran
- Center of Prevention and Rehabilitation, UniReha, Medical Faculty and University Hospital of Cologne, 50931 Cologne, Germany;
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children’s Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
10
|
Meena NK, Randazzo D, Raben N, Puertollano R. AAV-mediated delivery of secreted acid α-glucosidase with enhanced uptake corrects neuromuscular pathology in Pompe mice. JCI Insight 2023; 8:e170199. [PMID: 37463048 PMCID: PMC10543735 DOI: 10.1172/jci.insight.170199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Gene therapy is under advanced clinical development for several lysosomal storage disorders. Pompe disease, a debilitating neuromuscular illness affecting infants, children, and adults with different severity, is caused by a deficiency of lysosomal glycogen-degrading enzyme acid α-glucosidase (GAA). Here, we demonstrated that adeno-associated virus-mediated (AAV-mediated) systemic gene transfer reversed glycogen storage in all key therapeutic targets - skeletal and cardiac muscles, the diaphragm, and the central nervous system - in both young and severely affected old Gaa-knockout mice. Furthermore, the therapy reversed secondary cellular abnormalities in skeletal muscle, such as those in autophagy and mTORC1/AMPK signaling. We used an AAV9 vector encoding a chimeric human GAA protein with enhanced uptake and secretion to facilitate efficient spread of the expressed protein among multiple target tissues. These results lay the groundwork for a future clinical development strategy in Pompe disease.
Collapse
Affiliation(s)
- Naresh K. Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Keyzor I, Shohet S, Castelli J, Sitaraman S, Veleva-Rotse B, Weimer JM, Fox B, Willer T, Tuske S, Crathorne L, Belzar KJ. Therapeutic Role of Pharmacological Chaperones in Lysosomal Storage Disorders: A Review of the Evidence and Informed Approach to Reclassification. Biomolecules 2023; 13:1227. [PMID: 37627292 PMCID: PMC10452329 DOI: 10.3390/biom13081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The treatment landscape for lysosomal storage disorders (LSDs) is rapidly evolving. An increase in the number of preclinical and clinical studies in the last decade has demonstrated that pharmacological chaperones are a feasible alternative to enzyme replacement therapy (ERT) for individuals with LSDs. A systematic search was performed to retrieve and critically assess the evidence from preclinical and clinical applications of pharmacological chaperones in the treatment of LSDs and to elucidate the mechanisms by which they could be effective in clinical practice. Publications were screened according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) reporting guidelines. Fifty-two articles evaluating 12 small molecules for the treatment of seven LSDs are included in this review. Overall, a substantial amount of preclinical and clinical data support the potential of pharmacological chaperones as treatments for Fabry disease, Gaucher disease, and Pompe disease. Most of the available clinical evidence evaluated migalastat for the treatment of Fabry disease. There was a lack of consistency in the terminology used to describe pharmacological chaperones in the literature. Therefore, the new small molecule chaperone (SMC) classification system is proposed to inform a standardized approach for new, emerging small molecule therapies in LSDs.
Collapse
Affiliation(s)
- Ian Keyzor
- Amicus Therapeutics Ltd., Marlow SL7 1HZ, UK
| | | | | | | | | | | | - Brian Fox
- Amicus Therapeutics Inc., Princeton, NJ 08542, USA
| | - Tobias Willer
- Amicus Therapeutics Inc., Philadelphia, PA 19104, USA
| | - Steve Tuske
- Amicus Therapeutics Inc., Philadelphia, PA 19104, USA
| | - Louise Crathorne
- Prescript Communications Ltd., Letchworth Garden City SG6 3TA, UK
| | - Klara J. Belzar
- Prescript Communications Ltd., Letchworth Garden City SG6 3TA, UK
| |
Collapse
|
12
|
Sánchez-Porras V, Guevara-Morales JM, Echeverri-Peña OY. From Acid Alpha-Glucosidase Deficiency to Autophagy: Understanding the Bases of POMPE Disease. Int J Mol Sci 2023; 24:12481. [PMID: 37569856 PMCID: PMC10419125 DOI: 10.3390/ijms241512481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Pompe disease (PD) is caused by mutations in the GAA gene, which encodes the lysosomal enzyme acid alpha-glucosidase, causing lysosomal glycogen accumulation, mainly in muscular tissue. Autophagic buildup is considered the main factor affecting skeletal muscle, although other processes are also involved. Uncovering how these mechanisms are interconnected could be an approximation to address long-lasting concerns, like the differential skeletal and cardiac involvement in each clinical phenotype. In this sense, a network reconstruction based on a comprehensive literature review of evidence found in PD enriched with the STRING database and other scientific articles is presented. The role of autophagic lysosome reformation, PGC-1α, MCOLN1, calcineurin, and Keap1 as intermediates between the events involved in the pathologic cascade is discussed and contextualized within their relationship with mTORC1/AMPK. The intermediates and mechanisms found open the possibility of new hypotheses and questions that can be addressed in future experimental studies of PD.
Collapse
Affiliation(s)
| | - Johana Maria Guevara-Morales
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 43-82, Ed. 54, Lab 303A, Bogotá 110231, Colombia;
| | - Olga Yaneth Echeverri-Peña
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 # 43-82, Ed. 54, Lab 303A, Bogotá 110231, Colombia;
| |
Collapse
|
13
|
Kinton S, Dufault MR, Zhang M, George K. Transcriptomic characterization of clinical skeletal muscle biopsy from late-onset Pompe patients. Mol Genet Metab 2023; 138:107526. [PMID: 36774918 DOI: 10.1016/j.ymgme.2023.107526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Pompe disease is a rare lysosomal storage disorder arising from recessive mutations in the acid α-glucosidase gene and resulting in the accumulation of glycogen, particularly in the cardiac and skeletal muscle. The current standard of care is administration of enzyme replacement therapy in the form of alglucosidase alfa or the recently approved avalglucosidase alfa. In order to better understand the underlying cellular processes that are disrupted in Pompe disease, we conducted gene expression analysis on skeletal muscle biopsies obtained from late-onset Pompe disease patients (LOPD) prior to treatment and following six months of enzyme replacement with avalglucosidase alfa. The LOPD patients had a distinct transcriptomic signature as compared to control patient samples, largely characterized by perturbations in pathways involved in lysosomal function and energy metabolism. Although patients were highly heterogeneous, they collectively exhibited a strong trend towards attenuation of the dysregulated genes following just six months of treatment. Notably, the enzyme replacement therapy had a strong stabilizing effect on gene expression, with minimal worsening in genes that were initially dysregulated. Many of the cellular process that were altered in LOPD patients were also affected in the more clinically severe infantile-onset (IOPD) patients. Additionally, both LOPD and IOPD patients demonstrated enrichment across several inflammatory pathways, despite a lack of overt immune cell infiltration. This study provides further insight into Pompe disease biology and demonstrates the positive effects of avalglucosidase alfa treatment.
Collapse
Affiliation(s)
- Sofia Kinton
- Rare and Neurologic Disease Research, Sanofi, 350 Water Street, Cambridge, MA, United States of America.
| | - Michael R Dufault
- Precision Medicine & Computational Biology, Sanofi, 350 Water Street, Cambridge, MA, United States of America
| | - Mindy Zhang
- Precision Medicine & Computational Biology, Sanofi, 350 Water Street, Cambridge, MA, United States of America
| | - Kelly George
- Rare and Neurologic Disease Research, Sanofi, 350 Water Street, Cambridge, MA, United States of America
| |
Collapse
|
14
|
Heller G, Bradbury AM, Sands MS, Bongarzone ER. Preclinical studies in Krabbe disease: A model for the investigation of novel combination therapies for lysosomal storage diseases. Mol Ther 2023; 31:7-23. [PMID: 36196048 PMCID: PMC9840155 DOI: 10.1016/j.ymthe.2022.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Krabbe disease (KD) is a lysosomal storage disease (LSD) caused by mutations in the galc gene. There are over 50 monogenetic LSDs, which largely impede the normal development of children and often lead to premature death. At present, there are no cures for LSDs and the available treatments are generally insufficient, short acting, and not without co-morbidities or long-term side effects. The last 30 years have seen significant advances in our understanding of LSD pathology as well as treatment options. Two gene therapy-based clinical trials, NCT04693598 and NCT04771416, for KD were recently started based on those advances. This review will discuss how our knowledge of KD got to where it is today, focusing on preclinical investigations, and how what was discovered may prove beneficial for the treatment of other LSDs.
Collapse
Affiliation(s)
- Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute Nationwide Children's Hospital Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH 43205, USA.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| |
Collapse
|
15
|
Canibano-Fraile R, Harlaar L, Dos Santos CA, Hoogeveen-Westerveld M, Demmers JAA, Snijders T, Lijnzaad P, Verdijk RM, van der Beek NAME, van Doorn PA, van der Ploeg AT, Brusse E, Pijnappel WWMP, Schaaf GJ. Lysosomal glycogen accumulation in Pompe disease results in disturbed cytoplasmic glycogen metabolism. J Inherit Metab Dis 2023; 46:101-115. [PMID: 36111639 PMCID: PMC10092494 DOI: 10.1002/jimd.12560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023]
Abstract
Pompe disease is an inherited metabolic myopathy caused by deficiency of acid alpha-glucosidase (GAA), resulting in lysosomal glycogen accumulation. Residual GAA enzyme activity affects disease onset and severity, although other factors, including dysregulation of cytoplasmic glycogen metabolism, are suspected to modulate the disease course. In this study, performed in mice and patient biopsies, we found elevated protein levels of enzymes involved in glucose uptake and cytoplasmic glycogen synthesis in skeletal muscle from mice with Pompe disease, including glycogenin (GYG1), glycogen synthase (GYS1), glucose transporter 4 (GLUT4), glycogen branching enzyme 1 (GBE1), and UDP-glucose pyrophosphorylase (UGP2). Expression levels were elevated before the loss of muscle mass and function. For first time, quantitative mass spectrometry in skeletal muscle biopsies from five adult patients with Pompe disease showed increased expression of GBE1 protein relative to healthy controls at the group level. Paired analysis of individual patients who responded well to treatment with enzyme replacement therapy (ERT) showed reduction of GYS1, GYG1, and GBE1 in all patients after start of ERT compared to baseline. These results indicate that metabolic changes precede muscle wasting in Pompe disease, and imply a positive feedforward loop in Pompe disease, in which lysosomal glycogen accumulation promotes cytoplasmic glycogen synthesis and glucose uptake, resulting in aggravation of the disease phenotype.
Collapse
Affiliation(s)
- Rodrigo Canibano-Fraile
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Laurike Harlaar
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Carlos A Dos Santos
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Jeroen A A Demmers
- Erasmus Center for Biomics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tim Snijders
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Section Neuropathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nadine A M E van der Beek
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Pieter A van Doorn
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Esther Brusse
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Gerben J Schaaf
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Nilsson MI, Crozier M, Di Carlo A, Xhuti D, Manta K, Roik LJ, Bujak AL, Nederveen JP, Tarnopolsky MG, Hettinga B, Meena NK, Raben N, Tarnopolsky MA. Nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants enhances autophagic clearance in Pompe disease. Mol Genet Metab 2022; 137:228-240. [PMID: 35718712 DOI: 10.1016/j.ymgme.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Alglucosidase alpha is an orphan drug approved for enzyme replacement therapy (ERT) in Pompe disease (PD); however, its efficacy is limited in skeletal muscle because of a partial blockage of autophagic flux that hinders intracellular trafficking and enzyme delivery. Adjunctive therapies that enhance autophagic flux and protect mitochondrial integrity may alleviate autophagic blockage and oxidative stress and thereby improve ERT efficacy in PD. In this study, we compared the benefits of ERT combined with a ketogenic diet (ERT-KETO), daily administration of an oral ketone precursor (1,3-butanediol; ERT-BD), a multi-ingredient antioxidant diet (ERT-MITO; CoQ10, α-lipoic acid, vitamin E, beetroot extract, HMB, creatine, and citrulline), or co-therapy with the ketone precursor and multi-ingredient antioxidants (ERT-BD-MITO) on skeletal muscle pathology in GAA-KO mice. We found that two months of 1,3-BD administration raised circulatory ketone levels to ≥1.2 mM, attenuated autophagic buildup in type 2 muscle fibers, and preserved muscle strength and function in ERT-treated GAA-KO mice. Collectively, ERT-BD was more effective vs. standard ERT and ERT-KETO in terms of autophagic clearance, dampening of oxidative stress, and muscle maintenance. However, the addition of multi-ingredient antioxidants (ERT-BD-MITO) provided the most consistent benefits across all outcome measures and normalized mitochondrial protein expression in GAA-KO mice. We therefore conclude that nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants may provide an alternative to ketogenic diets for inducing ketosis and enhancing autophagic flux in PD patients.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Michael Crozier
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Alessia Di Carlo
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Donald Xhuti
- Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Katherine Manta
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Liza J Roik
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Adam L Bujak
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Bart Hettinga
- Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Naresh K Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
17
|
Kok K, Kuo CL, Katzy RE, Lelieveld LT, Wu L, Roig-Zamboni V, van der Marel GA, Codée JDC, Sulzenbacher G, Davies GJ, Overkleeft HS, Aerts JMFG, Artola M. 1,6- epi-Cyclophellitol Cyclosulfamidate Is a Bona Fide Lysosomal α-Glucosidase Stabilizer for the Treatment of Pompe Disease. J Am Chem Soc 2022; 144:14819-14827. [PMID: 35917590 PMCID: PMC9389588 DOI: 10.1021/jacs.2c05666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
α-Glucosidase inhibitors are potential therapeutics
for the
treatment of diabetes, viral infections, and Pompe disease. Herein,
we report a 1,6-epi-cyclophellitol cyclosulfamidate
as a new class of reversible α-glucosidase inhibitors that displays
enzyme inhibitory activity by virtue of its conformational mimicry
of the substrate when bound in the Michaelis complex. The α-d-glc-configured cyclophellitol cyclosulfamidate 4 binds in a competitive manner the human lysosomal acid α-glucosidase
(GAA), ER α-glucosidases, and, at higher concentrations, intestinal
α-glucosidases, displaying an excellent selectivity over the
human β-glucosidases GBA and GBA2 and glucosylceramide synthase
(GCS). Cyclosulfamidate 4 stabilizes recombinant human
GAA (rhGAA, alglucosidase alfa, Myozyme) in cell medium and plasma
and facilitates enzyme trafficking to lysosomes. It stabilizes rhGAA
more effectively than existing small-molecule chaperones and does
so in vitro, in cellulo, and in vivo in zebrafish, thus representing a promising therapeutic
alternative to Miglustat for Pompe disease.
Collapse
Affiliation(s)
- Ken Kok
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Chi-Lin Kuo
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Rebecca E Katzy
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Lindsey T Lelieveld
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Liang Wu
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Véronique Roig-Zamboni
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille 13288, France
| | - Gijsbert A van der Marel
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Jeroen D C Codée
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gerlind Sulzenbacher
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille 13288, France
| | - Gideon J Davies
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Herman S Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
18
|
Hassan T, Huadong X. ARE ENZYME REPLACEMENT THERAPIES EFFECTIVE AGAINST LYSOSOMAL STORAGE DISORDERS? GOMAL JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.46903/gjms/19.02.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Lysosomal storage disorders are an agglomeration of genetic disorders such as Fabry disease, Gaucher disease, Pompe disease, Krabbe’s disease and mucopolysaccharidosis that typically impairs the prime orangs of humans, including brain, heart, musculoskeletal system, spleen, eye, and lungs. Patients with lysosomal storage disorders face mild to severe complications and even death. In order to address these health concerns, scientists are working by dint off, various therapies are introduced such as gene therapy, typical oral medicines, organ/ cell transplantation etc. However, hematopoietic stem cell transplantation and enzyme replacement therapy came out as best stakeholders to treat aforementioned disorders. Nonetheless, according to suggested data, it is concluded that presently enzyme replacement therapies are somehow ineffective for many lysosomal storage disorders till today. But we believe that in near future, as more and more research will be progressed, the ultimate therapy to these disorders will be developed.
Collapse
|
19
|
Schoser B, Roberts M, Byrne BJ, Sitaraman S, Jiang H, Laforêt P, Toscano A, Castelli J, Díaz-Manera J, Goldman M, van der Ploeg AT, Bratkovic D, Kuchipudi S, Mozaffar T, Kishnani PS. Safety and efficacy of cipaglucosidase alfa plus miglustat versus alglucosidase alfa plus placebo in late-onset Pompe disease (PROPEL): an international, randomised, double-blind, parallel-group, phase 3 trial. Lancet Neurol 2021; 20:1027-1037. [PMID: 34800400 DOI: 10.1016/s1474-4422(21)00331-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pompe disease is a rare disorder characterised by progressive loss of muscle and respiratory function due to acid α-glucosidase deficiency. Enzyme replacement therapy with recombinant human acid α-glucosidase, alglucosidase alfa, is the first approved treatment for the disease, but some patients do not respond, and many do not show a sustained benefit. We aimed to assess the safety and efficacy of an investigational two-component therapy (cipaglucosidase alfa, a novel recombinant human acid α-glucosidase, plus miglustat, an enzyme stabiliser) for late-onset Pompe disease. METHODS We did a randomised, double-blind, parallel-group, phase 3 trial at 62 neuromuscular and metabolic medical centres in 24 countries in the Americas, Asia-Pacific, and Europe. Eligible participants were aged 18 years or older with late-onset Pompe disease, and had either been receiving alglucosidase alfa for at least 2 years or were enzyme replacement therapy-naive. Participants were randomly assigned (2:1) using interactive response technology software, stratified by 6-min walk distance and previous enzyme replacement therapy status, to intravenous cipaglucosidase alfa (20 mg/kg) plus oral miglustat or to intravenous alglucosidase alfa (20 mg/kg) plus oral placebo once every 2 weeks for 52 weeks. Patients, investigators, and outcome assessors were masked to treatment assignment. The primary endpoint was change from baseline to week 52 in 6-min walk distance, assessed using a mixed-effect model for repeated measures analysis for comparison of superiority in the intention-to-treat population (all patients who received at least one dose of study drug). This study is now complete and is registered with ClinicalTrials.gov, NCT03729362. FINDINGS Between Dec 3, 2018, and Nov 26, 2019, 130 patients were screened for eligibility and 125 were enrolled and randomly assigned to receive cipaglucosidase alfa plus miglustat (n=85) or alglucosidase alfa plus placebo (n=40). Two patients in the alglucosidase alfa plus placebo group did not receive any dose due to absence of genotype confirmation of late-onset Pompe disease and were excluded from analysis. Six patients discontinued (one in the alglucosidase alfa plus placebo group, five in the cipaglucosidase alfa plus miglustat group), and 117 completed the study. At week 52, mean change from baseline in 6-min walk distance was 20·8 m (SE 4·6) in the cipaglucosidase alfa plus miglustat group versus 7·2 m (6·6) in the alglucosidase alfa plus placebo group using last observation carried forward (between-group difference 13·6 m [95% CI -2·8 to 29·9]). 118 (96%) of 123 patients experienced at least one treatment-emergent adverse event during the study; the incidence was similar between the cipaglucosidase alfa plus miglustat group (n=81 [95%]) and the alglucosidase alfa plus placebo group (n=37 [97%]). The most frequently reported treatment-emergent adverse events were fall (25 [29%] patients in the cipaglucosidase alfa plus miglustat group vs 15 [39%] in the alglucosidase alfa plus placebo group), headache (20 [24%] vs 9 [24%]), nasopharyngitis (19 [22%] vs 3 [8%]), myalgia (14 [16%] vs 5 [13%]), and arthralgia (13 [15%]) vs 5 [13%]). 12 serious adverse events occurred in eight patients in the cipaglucosidase alfa plus miglustat group; only one event (anaphylaxis) was deemed related to study drug. One serious adverse event (stroke) occurred in the alglucosidase alfa plus placebo group, which was deemed unrelated to study drug. There were no deaths. INTERPRETATION Cipaglucosidase alfa plus miglustat did not achieve statistical superiority to alglucosidase alfa plus placebo for improving 6-min walk distance in our overall population of patients with late-onset Pompe disease. Further studies should investigate the longer-term safety and efficacy of cipaglucosidase alfa plus miglustat and whether this investigational two-component therapy might provide benefits, particularly in respiratory function and in patients who have been receiving enzyme replacement therapy for more than 2 years, as suggested by our secondary and subgroup analyses. FUNDING Amicus Therapeutics.
Collapse
Affiliation(s)
- Benedikt Schoser
- Friedrich-Baur-Institut, Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | - Hai Jiang
- Amicus Therapeutics, Philadelphia, PA, USA
| | | | | | | | - Jordi Díaz-Manera
- Unitat de Malalties Neuromusculars Servei de Neurologia, Hospital de la Santa Creu i Sant Pau de Barcelona, Barcelona, Spain
| | | | | | - Drago Bratkovic
- PARC Research Clinic, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
20
|
Puertollano R, Raben N. New therapies for Pompe disease: are we closer to a cure? Lancet Neurol 2021; 20:973-975. [PMID: 34800404 DOI: 10.1016/s1474-4422(21)00358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Tarallo A, Damiano C, Strollo S, Minopoli N, Indrieri A, Polishchuk E, Zappa F, Nusco E, Fecarotta S, Porto C, Coletta M, Iacono R, Moracci M, Polishchuk R, Medina DL, Imbimbo P, Monti DM, De Matteis MA, Parenti G. Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease. EMBO Mol Med 2021; 13:e14434. [PMID: 34606154 PMCID: PMC8573602 DOI: 10.15252/emmm.202114434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pompe disease is a metabolic myopathy due to acid alpha-glucosidase deficiency. In addition to glycogen storage, secondary dysregulation of cellular functions, such as autophagy and oxidative stress, contributes to the disease pathophysiology. We have tested whether oxidative stress impacts on enzyme replacement therapy with recombinant human alpha-glucosidase (rhGAA), currently the standard of care for Pompe disease patients, and whether correction of oxidative stress may be beneficial for rhGAA therapy. We found elevated oxidative stress levels in tissues from the Pompe disease murine model and in patients' cells. In cells, stress levels inversely correlated with the ability of rhGAA to correct the enzymatic deficiency. Antioxidants (N-acetylcysteine, idebenone, resveratrol, edaravone) improved alpha-glucosidase activity in rhGAA-treated cells, enhanced enzyme processing, and improved mannose-6-phosphate receptor localization. When co-administered with rhGAA, antioxidants improved alpha-glucosidase activity in tissues from the Pompe disease mouse model. These results indicate that oxidative stress impacts on the efficacy of enzyme replacement therapy in Pompe disease and that manipulation of secondary abnormalities may represent a strategy to improve the efficacy of therapies for this disorder.
Collapse
Affiliation(s)
- Antonietta Tarallo
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Carla Damiano
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Sandra Strollo
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | - Nadia Minopoli
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Alessia Indrieri
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Institute for Genetic and Biomedical Research (IRGB)National Research Council (CNR)MilanItaly
| | | | - Francesca Zappa
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Present address:
Department of Molecular, Cellular, and Developmental BiologyUniversity of CaliforniaSanta BarbaraCAUSA
| | - Edoardo Nusco
- Telethon Institute of Genetics and MedicinePozzuoliItaly
| | - Simona Fecarotta
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Caterina Porto
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Marcella Coletta
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
- Present address:
IInd Division of NeurologyMultiple Sclerosis CenterUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Roberta Iacono
- Department of BiologyUniversity of Naples "Federico II", Complesso Universitario di Monte S. AngeloNaplesItaly
- Institute of Biosciences and BioResources ‐ National Research Council of ItalyNaplesItaly
| | - Marco Moracci
- Department of BiologyUniversity of Naples "Federico II", Complesso Universitario di Monte S. AngeloNaplesItaly
- Institute of Biosciences and BioResources ‐ National Research Council of ItalyNaplesItaly
| | | | - Diego Luis Medina
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| | - Paola Imbimbo
- Department of Chemical SciencesFederico II UniversityNaplesItaly
| | | | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Molecular Medicine and Medical BiotechnologiesFederico II UniversityNaplesItaly
| | - Giancarlo Parenti
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesFederico II UniversityNaplesItaly
| |
Collapse
|
22
|
Selvan N, Mehta N, Venkateswaran S, Brignol N, Graziano M, Sheikh MO, McAnany Y, Hung F, Madrid M, Krampetz R, Siano N, Mehta A, Brudvig J, Gotschall R, Weimer JM, Do HV. Endolysosomal N-glycan processing is critical to attain the most active form of the enzyme acid alpha-glucosidase. J Biol Chem 2021; 296:100769. [PMID: 33971197 PMCID: PMC8191302 DOI: 10.1016/j.jbc.2021.100769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Acid alpha-glucosidase (GAA) is a lysosomal glycogen-catabolizing enzyme, the deficiency of which leads to Pompe disease. Pompe disease can be treated with systemic recombinant human GAA (rhGAA) enzyme replacement therapy (ERT), but the current standard of care exhibits poor uptake in skeletal muscles, limiting its clinical efficacy. Furthermore, it is unclear how the specific cellular processing steps of GAA after delivery to lysosomes impact its efficacy. GAA undergoes both proteolytic cleavage and glycan trimming within the endolysosomal pathway, yielding an enzyme that is more efficient in hydrolyzing its natural substrate, glycogen. Here, we developed a tool kit of modified rhGAAs that allowed us to dissect the individual contributions of glycan trimming and proteolysis on maturation-associated increases in glycogen hydrolysis using in vitro and in cellulo enzyme processing, glycopeptide analysis by MS, and high-pH anion-exchange chromatography with pulsed amperometric detection for enzyme kinetics. Chemical modifications of terminal sialic acids on N-glycans blocked sialidase activity in vitro and in cellulo, thereby preventing downstream glycan trimming without affecting proteolysis. This sialidase-resistant rhGAA displayed only partial activation after endolysosomal processing, as evidenced by reduced catalytic efficiency. We also generated enzymatically deglycosylated rhGAA that was shown to be partially activated despite not undergoing proteolytic processing. Taken together, these data suggest that an optimal rhGAA ERT would require both N-glycan and proteolytic processing to attain the most efficient enzyme for glycogen hydrolysis and treatment of Pompe disease. Future studies should examine the amenability of next-generation ERTs to both types of cellular processing.
Collapse
Affiliation(s)
- Nithya Selvan
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Nickita Mehta
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Suresh Venkateswaran
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Nastry Brignol
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Matthew Graziano
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - M Osman Sheikh
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Yuliya McAnany
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Finn Hung
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Matthew Madrid
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Renee Krampetz
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Nicholas Siano
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Anuj Mehta
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Jon Brudvig
- Pediatrics & Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Russell Gotschall
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Jill M Weimer
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA
| | - Hung V Do
- Discovery Science Division, Amicus Therapeutics, Inc., Philadelphia, Pennsylvania, USA.
| |
Collapse
|
23
|
Muscle Proteomic Profile before and after Enzyme Replacement Therapy in Late-Onset Pompe Disease. Int J Mol Sci 2021; 22:ijms22062850. [PMID: 33799647 PMCID: PMC8001152 DOI: 10.3390/ijms22062850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Mutations in the acidic alpha-glucosidase (GAA) coding gene cause Pompe disease. Late-onset Pompe disease (LOPD) is characterized by progressive proximal and axial muscle weakness and atrophy, causing respiratory failure. Enzyme replacement therapy (ERT), based on recombinant human GAA infusions, is the only available treatment; however, the efficacy of ERT is variable. Here we address the question whether proteins at variance in LOPD muscle of patients before and after 1 year of ERT, compared withhealthy age-matched subjects (CTR), reveal a specific signature. Proteins extracted from skeletal muscle of LOPD patients and CTR were analyzed by combining gel based (two-dimensional difference gel electrophoresis) and label-free (liquid chromatography-mass spectrometry) proteomic approaches, and ingenuity pathway analysis. Upstream regulators targeting autophagy and lysosomal tethering were assessed by immunoblotting. 178 proteins were changed in abundance in LOPD patients, 47 of them recovered normal level after ERT. Defects in oxidative metabolism, muscle contractile protein regulation, cytoskeletal rearrangement, and membrane reorganization persisted. Metabolic changes, ER stress and UPR (unfolded protein response) contribute to muscle proteostasis dysregulation with active membrane remodeling (high levels of LC3BII/LC3BI) and accumulation of p62, suggesting imbalance in the autophagic process. Active lysosome biogenesis characterizes both LOPD PRE and POST, unparalleled by molecules involved in lysosome tethering (VAMP8, SNAP29, STX17, and GORASP2) and BNIP3. In conclusion this study reveals a specific signature that suggests ERT prolongation and molecular targets to ameliorate patient’s outcome.
Collapse
|
24
|
Myerowitz R, Puertollano R, Raben N. Impaired autophagy: The collateral damage of lysosomal storage disorders. EBioMedicine 2021; 63:103166. [PMID: 33341443 PMCID: PMC7753127 DOI: 10.1016/j.ebiom.2020.103166] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage disorders (LSDs), which number over fifty, are monogenically inherited and caused by mutations in genes encoding proteins that are involved in lysosomal function. Lack of the functional protein results in storage of a distinctive material within the lysosomes, which for years was thought to determine the pathophysiology of the disorder. However, our current view posits that the primary storage material disrupts the normal role of the lysosome in the autophagic pathway resulting in the secondary storage of autophagic debris. It is this "collateral damage" which is common to the LSDs but nonetheless intricately nuanced in each. We have selected five LSDs resulting from defective proteins that govern widely different lysosomal functions including glycogen degradation (Pompe), lysosomal transport (Cystinosis), lysosomal trafficking (Danon), glycolipid degradation (Gaucher) and an unidentified function (Batten) and argue that despite the disparate functions, these proteins, when mutant, all impair the autophagic process uniquely.
Collapse
Affiliation(s)
- Rachel Myerowitz
- Department of Biology St. Mary's College of Maryland, St. Mary's City Maryland, 20686, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, 50 South Dr./Room 3533, Bethesda, MD 20892, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, 50 South Dr./Room 3533, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Colella P, Sellier P, Gomez MJ, Biferi MG, Tanniou G, Guerchet N, Cohen-Tannoudji M, Moya-Nilges M, van Wittenberghe L, Daniele N, Gjata B, Krijnse-Locker J, Collaud F, Simon-Sola M, Charles S, Cagin U, Mingozzi F. Gene therapy with secreted acid alpha-glucosidase rescues Pompe disease in a novel mouse model with early-onset spinal cord and respiratory defects. EBioMedicine 2020; 61:103052. [PMID: 33039711 PMCID: PMC7553357 DOI: 10.1016/j.ebiom.2020.103052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Pompe disease (PD) is a neuromuscular disorder caused by deficiency of acidalpha-glucosidase (GAA), leading to motor and respiratory dysfunctions. Available Gaa knock-out (KO) mouse models do not accurately mimic PD, particularly its highly impaired respiratory phenotype. Methods Here we developed a new mouse model of PD crossing Gaa KOB6;129 with DBA2/J mice. We subsequently treated Gaa KODBA2/J mice with adeno-associated virus (AAV) vectors expressing a secretable form of GAA (secGAA). Findings Male Gaa KODBA2/J mice present most of the key features of the human disease, including early lethality, severe respiratory impairment, cardiac hypertrophy and muscle weakness. Transcriptome analyses of Gaa KODBA2/J, compared to the parental Gaa KOB6;129 mice, revealed a profoundly impaired gene signature in the spinal cord and a similarly deregulated gene expression in skeletal muscle. Muscle and spinal cord transcriptome changes, biochemical defects, respiratory and muscle function in the Gaa KODBA2/J model were significantly improved upon gene therapy with AAV vectors expressing secGAA. Interpretation These data show that the genetic background impacts on the severity of respiratory function and neuroglial spinal cord defects in the Gaa KO mouse model of PD. Our findings have implications for PD prognosis and treatment, show novel molecular pathophysiology mechanisms of the disease and provide a unique model to study PD respiratory defects, which majorly affect patients. Funding This work was supported by Genethon, the French Muscular Dystrophy Association (AFM), the European Commission (grant nos. 667751, 617432, and 797144), and Spark Therapeutics.
Collapse
Affiliation(s)
- Pasqualina Colella
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France.
| | - Pauline Sellier
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | - Maria G Biferi
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Guillaume Tanniou
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Nicolas Guerchet
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | | | | | - Natalie Daniele
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Bernard Gjata
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | | | - Fanny Collaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Marcelo Simon-Sola
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Severine Charles
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Umut Cagin
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France
| | - Federico Mingozzi
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris Saclay, Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France; Spark Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Characterization of Gait and Postural Regulation in Late-Onset Pompe Disease. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10197001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pompe disease is a multisystemic disorder with the hallmark of progressive skeletal muscle weakness that often results in difficulties in walking and balance. However, detailed characterization of gait and postural regulation with this disease is lacking. The objective of this investigation was to determine if differences exist between the gait and postural regulation of LOPD patients and a matched control group. The gaits of 16 patients with LOPD were assessed using a gait analysis mobile system (RehaGait) and a dynamometric treadmill (FDM-T 1.8). The Interactive Balance System (IBS) was used to evaluate postural regulation and stability. All measures were compared to individual reference data. Demographic (age, gender), morphological (body height, body mass) and clinical data (muscle strength according to the Medical Research Council Scale (MRC Scale), as well as the 6-min walking test and a 10-m fast walk) were also recorded. Compared to individual reference data, LOPD patients presented with reduced gait velocity, cadence and time in single stand. A total of 87% of LOPD patients had abnormalities during posturographic analysis presenting with differences in postural subsystems. This study provides objective data demonstrating impaired gait and posture in LOPD patients. For follow-up analysis and as outcome measurements during medical or physiotherapeutic interventions, the findings of this investigation may be useful.
Collapse
|
27
|
Meena NK, Raben N. Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules 2020; 10:E1339. [PMID: 32962155 PMCID: PMC7564159 DOI: 10.3390/biom10091339] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Pompe disease, also known as glycogen storage disease type II, is caused by the lack or deficiency of a single enzyme, lysosomal acid alpha-glucosidase, leading to severe cardiac and skeletal muscle myopathy due to progressive accumulation of glycogen. The discovery that acid alpha-glucosidase resides in the lysosome gave rise to the concept of lysosomal storage diseases, and Pompe disease became the first among many monogenic diseases caused by loss of lysosomal enzyme activities. The only disease-specific treatment available for Pompe disease patients is enzyme replacement therapy (ERT) which aims to halt the natural course of the illness. Both the success and limitations of ERT provided novel insights in the pathophysiology of the disease and motivated the scientific community to develop the next generation of therapies that have already progressed to the clinic.
Collapse
Affiliation(s)
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|