1
|
Yu S, Zhao Q, Zhang C, Fu D, Zhu X, Zhou J, Ma W, Dong Z, Zhai X, Jiang L, Han X, Zhang S, Wu X, Dong X. Methodological Validation and Inter-Laboratory Comparison of Microneutralization Assay for Detecting Anti-AAV9 Neutralizing Antibody in Human. Viruses 2024; 16:1512. [PMID: 39459848 PMCID: PMC11512302 DOI: 10.3390/v16101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Anti-AAV neutralizing Abs (NAbs) titer is usually measured by cell-based microneutralization (MN) assay and is crucial for patient screening in AAV-based gene therapy clinical trials. However, achieving uniform operation and comparable results among different laboratories remains challenging. Here, we established a standardized MN assay for anti-AAV9 NAbs in human sera or plasma and transferred the method to the other two research teams. Then, we validated its parameters and tested a set of eight human samples in blind across all laboratories. The end-point titer, defined by a transduction inhibition of 50% (IC50), was calculated using curve-fit modelling. A mouse neutralizing monoclonal antibody in human negative serum was used for system quality control (QC), requiring inter-assay titer variation of <4-fold difference or geometric coefficient of variation (%GCV) of <50%. The assay demonstrated a sensitivity of 54 ng/mL and no cross-reactivity to 20 μg/mL anti-AAV8 MoAb. The intra-assay and inter-assay variation for the low positive QC were 7-35% and 22-41%, respectively. The titers of the blind samples showed excellent reproducibility within and among laboratories, with a %GCV of 18-59% and 23-46%, respectively. This study provides a commonly transferrable MN assay for evaluating anti-AAV9 NAbs in humans, supporting its application in clinical trials.
Collapse
Affiliation(s)
| | - Qian Zhao
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | - Diyi Fu
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xueyang Zhu
- Genecradle Therapeutics Inc., Beijing 100176, China
| | | | - Wenhao Ma
- Genecradle Therapeutics Inc., Beijing 100176, China
| | - Zheyue Dong
- Beijing FivePlus Gene Technology Co., Ltd., Beijing 102629, China
| | - Xiaoliang Zhai
- Beijing Joinn Laboratory Co., Ltd., Beijing 100176, China
| | - Lijie Jiang
- Beijing Joinn Laboratory Co., Ltd., Beijing 100176, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shuyang Zhang
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Complex Sever and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaobing Wu
- Genecradle Therapeutics Inc., Beijing 100176, China
| | - Xiaoyan Dong
- Genecradle Therapeutics Inc., Beijing 100176, China
| |
Collapse
|
2
|
Soth S, Takakura M, Suekawa M, Onishi T, Hirohata K, Hashimoto T, Maruno T, Fukuhara M, Tsunaka Y, Torisu T, Uchiyama S. Quantification of full and empty particles of adeno-associated virus vectors via a novel dual fluorescence-linked immunosorbent assay. Mol Ther Methods Clin Dev 2024; 32:101291. [PMID: 39070291 PMCID: PMC11283060 DOI: 10.1016/j.omtm.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The adeno-associated virus (AAV) vector is one of the most advanced platforms for gene therapy because of its low immunogenicity and non-pathogenicity. The concentrations of both AAV vector empty particles, which do not contain DNA and do not show any efficacy, and AAV vector full particles (FPs), which contain DNA, are important quality attributes. In this study, a dual fluorescence-linked immunosorbent assay (dFLISA), which uses two fluorescent dyes to quantify capsid and genome titers in a single analysis, was established. In dFLISA, capture of AAV particles, detection of capsid proteins, and release and detection of the viral genome are performed in the same well. We demonstrated that the capsid and genomic titers determined by dFLISA were comparable with those of analytical ultracentrifugation. The FP ratios determined by dFLISA were in good agreement with the expected values. In addition, we showed that dFLISA can quantify the genomic and capsid titers of crude samples. dFLISA can be easily modified for measuring other AAV vector serotypes and AAV vectors with different genome lengths. These features make dFLISA a valuable tool for the future development of AAV-based gene therapies.
Collapse
Affiliation(s)
- Sereirath Soth
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikako Takakura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Suekawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Onishi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiichi Hirohata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tamami Hashimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Fukuhara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsunaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
3
|
Li G, Tian S, Sun X, Zhao M, Zhang F, Zhang JP, Cheng T, Zhang XB. Leveraging CRISPR-Cas9 for Accurate Detection of AAV-Neutralizing Antibodies: The AAV-HDR Method. Hum Gene Ther 2024; 35:490-505. [PMID: 38069573 DOI: 10.1089/hum.2023.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Affiliation(s)
- Guohua Li
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Saining Tian
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xinyu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tao Cheng
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
4
|
Pabinger I, Ayash-Rashkovsky M, Escobar M, Konkle BA, Mingot-Castellano ME, Mullins ES, Negrier C, Pan L, Rajavel K, Yan B, Chapin J. Multicenter assessment and longitudinal study of the prevalence of antibodies and related adaptive immune responses to AAV in adult males with hemophilia. Gene Ther 2024; 31:273-284. [PMID: 38355967 PMCID: PMC11090810 DOI: 10.1038/s41434-024-00441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Adeno-associated virus (AAV) based gene therapy has demonstrated effective disease control in hemophilia. However, pre-existing immunity from wild-type AAV exposure impacts gene therapy eligibility. The aim of this multicenter epidemiologic study was to determine the prevalence and persistence of preexisting immunity against AAV2, AAV5, and AAV8, in adult participants with hemophilia A or B. Blood samples were collected at baseline and annually for ≤3 years at trial sites in Austria, France, Germany, Italy, Spain, and the United States. At baseline, AAV8, AAV2, and AAV5 neutralizing antibodies (NAbs) were present in 46.9%, 53.1%, and 53.4% of participants, respectively; these values remained stable at Years 1 and 2. Co-prevalence of NAbs to at least two serotypes and all three serotypes was present at baseline for ~40% and 38.2% of participants, respectively. For each serotype, ~10% of participants who tested negative for NAbs at baseline were seropositive at Year 1. At baseline, 38.3% of participants had detectable cell mediated immunity by ELISpot, although no correlations were observed with the humoral response. In conclusion, participants with hemophilia may have significant preexisting immunity to AAV capsids. Insights from this study may assist in understanding capsid-based immunity trends in participants considering AAV vector-based gene therapy.
Collapse
Affiliation(s)
- Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Miguel Escobar
- University of Texas Health Science Center, McGovern Medical School and Gulf States Hemophilia and Thrombophilia Center, Houston, TX, USA
| | - Barbara A Konkle
- BloodWorks Northwest, Seattle, WA, USA
- Division of Hematology, University of Washington School of Medicine, Seattle, WA, USA
| | - María Eva Mingot-Castellano
- Hospital Regional Universitario de Málaga, Málaga, Spain
- Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Eric S Mullins
- Division of Hematology, Cincinnati Children's Hospital Medical Center and University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - Claude Negrier
- UR4609 Hemostase & Thrombose, University Lyon 1, Lyon, France
| | - Luying Pan
- Takeda Development Center Americas Inc, Cambridge, MA, USA
| | | | - Brian Yan
- Takeda Development Center Americas Inc, Cambridge, MA, USA
| | - John Chapin
- Takeda Development Center Americas Inc, Cambridge, MA, USA.
| |
Collapse
|
5
|
Wessels U, Neff F, Fakhiri J, Mayer K, Brinkmann U, Stubenrauch K. Novel assay format for total anti-adeno-associated virus antibody detection with low capsid consumption and built-in specificity control. Bioanalysis 2024; 16:431-442. [PMID: 38497775 PMCID: PMC11216498 DOI: 10.4155/bio-2023-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Aim: To develop an assay format for detection of total anti-adeno-associated virus 2 (AAV2) antibodies with low capsid material consumption. Methods: An immune complex (IC) assay format was developed. The format is based on the formation of ICs in solution and their subsequent detection using an anti-AAV2 antibody for capture and an antibody against the study species IgG for detection. Results: The feasibility of the IC assay for detection of preexisting and treatment-emergent anti-AAV2 antibodies was demonstrated in cynomolgus monkey and human serum samples, including samples from a preclinical study with AAV2-based therapies. Conclusion: The presented IC assay is an easy-to-perform total anti-AAV2 antibody assay that requires a small amount of unlabeled capsid material and provides an intrinsic specificity control.
Collapse
Affiliation(s)
- Uwe Wessels
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
- Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Florian Neff
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
| | - Julia Fakhiri
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
| | - Kay Stubenrauch
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center, Munich, Germany
| |
Collapse
|
6
|
Pan Y, Rohde M, Zeitler J, Namburi SVS, Cao L, Hu J, Meyer K, Lu Y. A sensitive AAV transduction inhibition assay assists evaluation of critical factors for detection and concordance of pre-existing antibodies. Mol Ther Methods Clin Dev 2023; 31:101126. [PMID: 37920239 PMCID: PMC10618111 DOI: 10.1016/j.omtm.2023.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Pre-existing antibodies to viral capsids may have a negative impact on the efficacy and safety of adeno-associated virus (AAV)-based gene therapies. Total antibody (TAb) and/or cell-based transduction inhibition (TI) assays have been used to exclude seropositive individuals in clinical studies. Published AAV seroprevalence and patient enrollment criteria regarding antibody status lack comparability between assay formats, hindering a direct cross-study comparison. To identify critical factors impacting TI assay detection of AAV neutralizing antibodies (NAbs), we created a reporter construct expressing NanoLuc® luciferase (Nluc) that enabled a more sensitive and robust detection of AAV6 NAbs than using firefly luciferase. Assessment of additional factors including multiplicity of infection, cell lines, viral production, and capsid purity revealed the reporter is the major determinant of assay sensitivity impacting NAb detection. The Nluc reporter was further used to assess seroprevalence to AAV5, 8, and 9. Last, we compared AAV6 Nluc TI with two TAb assay formats. A higher correlation of Nluc TI was observed with direct binding (90%) than with the more sensitive bridging TAb assay (65%), suggesting both assay sensitivity and TAb formats contribute to AAV seropositivity concordance. Our results support a need to standardize assay formats to ensure proper assessment of pre-existing AAV immunity.
Collapse
Affiliation(s)
- Yonghua Pan
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Michelle Rohde
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Jennifer Zeitler
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | | | - Liching Cao
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Jing Hu
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Kathleen Meyer
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Yanmei Lu
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| |
Collapse
|
7
|
Pan H, Liu YF, Luo Y, Chen L, Shen B, Song S, Liu M, Wang Z, Wu W, Li M, Zhang Y. Goats with low levels of AAV antibody may serve as candidates for large animal gene therapy. Exp Eye Res 2023; 233:109514. [PMID: 37207869 DOI: 10.1016/j.exer.2023.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
AAV vector-mediated gene therapy has been proposed as a feasible strategy for several eye diseases. However, AAV antibodies in the serum prior to treatment hinder the transduction efficiency and thus the therapeutic effect. Therefore, it is necessary to evaluate AAV antibodies in the serum before gene therapy. As large animals, goats are more closely related to humans than rodents and more economically available than nonhuman primates. Here, we first evaluated the AAV2 antibody serum level in rhesus monkeys before AAV injection. Then, we optimized a cell-based neutralizing antibody assay for detecting AAV antibodies in the serum of Saanen goats and evaluated the consistency of the cell-based neutralizing antibody assay and ELISA for goat serum antibody evaluation. The cell-based neutralizing antibody assay showed that the percentage of macaques with low antibody levels was 42.86%; however, there were no macaques with low antibody levels when the serum was evaluated by ELISA. The proportion of goats with low antibody levels was 56.67% according to the neutralizing antibody assay and 33. 33% according to the ELISA, and McNemar's test showed that the results of the two assays were not significantly different (P = 0.754), but that their consistency is poor (Kappa = 0.286, P = 0.114). Moreover, longitudinal evaluation of serum antibodies before and after intravitreal injection of AAV2 in goats revealed that the level of AAV antibodies increased and transduction inhibition subsequently increased, as reported in humans, indicating that transduction inhibition should be taken into account at different stages of gene therapy. In summary, starting with an evaluation of monkey serum antibodies, we optimized a detection method of goat serum antibodies, providing an alternative large animal model for gene therapy, and our serum antibody measurement method may be applied to other large animals.
Collapse
Affiliation(s)
- Huirong Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu-Fen Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuting Luo
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lili Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bingyan Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shihan Song
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingyue Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhuowei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Mengyun Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Shaoxing People's Hospital, Shaoxing, 312000, China.
| | - Yikui Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
8
|
Arjomandnejad M, Dasgupta I, Flotte TR, Keeler AM. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023; 37:311-329. [PMID: 36862289 PMCID: PMC9979149 DOI: 10.1007/s40259-023-00585-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Verma S, Nwosu SN, Razdan R, Upadhyayula SR, Phan HC, Koroma AA, Leguizamo I, Correa NS, Kuipa M, Lee D, Vanderford TH, Gardner MR. Seroprevalence of Adeno-Associated Virus Neutralizing Antibodies in Males with Duchenne Muscular Dystrophy. Hum Gene Ther 2023; 34:430-438. [PMID: 36324212 PMCID: PMC10210220 DOI: 10.1089/hum.2022.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Adeno-associated virus (AAV)-based gene therapies are emerging strategies in Duchenne muscular dystrophy (DMD) treatment. Exposure to wild-type AAV can lead to development of neutralizing antibodies (NAbs) and blocking of AAV transduction, thereby limiting the delivery of AAV vector-based gene therapy. Therefore, it is imperative to check for the presence of AAV NAbs in a patient who is a candidate for gene therapy. We prospectively enrolled 101 genetically confirmed males with DMD (median age 11 years, 48% ambulatory and 59% on steroids) and performed AAV neutralization assays against AAV2, AAV8, AAV9, and AAVrh74 serotypes. The serotype analysis showed that AAV9 (36%) and AAVrh74 (32%) seroprevalence was lower compared with AAV2 (56%) and AAV8 (47%). Interestingly, age was not correlated with NAb titer for any of the capsids. NAb responses were observed at a higher frequency in African American participants and at a lower frequency in Caucasian participants for all four serotypes. Further analysis showed no significant differences in NAb titers regardless of serotype and whether participants were taking steroids or not. Finally, we observed higher AAV8, AAV9, and AAVrh74 seroprevalence and significantly higher AAV2 and AAV8 NAb titers in participants who were ambulatory compared with nonambulatory participants. Overall, these data identify AAV9 and AAVrh74 as the two serotypes with lower pre-existing NAb titers in this study's cohort of 101 males with DMD, possibly showing their utility in future gene therapy applications in treatment of this cohort of patients with DMD.
Collapse
Affiliation(s)
- Sumit Verma
- Department of Pediatric Neurology and Neurosciences, Children's Healthcare of Atlanta, and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stella N. Nwosu
- Department of Pediatric Neurology and Neurosciences, Children's Healthcare of Atlanta, and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Raj Razdan
- Department of Pediatric Neurology and Neurosciences, Children's Healthcare of Atlanta, and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Saila R. Upadhyayula
- Department of Pediatric Neurology and Neurosciences, Children's Healthcare of Atlanta, and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Han C. Phan
- Department of Pediatric Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abubakarr A. Koroma
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Isai Leguizamo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Natalie S. Correa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Michael Kuipa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - David Lee
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thomas H. Vanderford
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Matthew R. Gardner
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Davis-Gardner ME, Weber JA, Xie J, Pekrun K, Alexander EA, Weisgrau KL, Furlott JR, Rakasz EG, Kay MA, Gao G, Farzan M, Gardner MR. A strategy for high antibody expression with low anti-drug antibodies using AAV9 vectors. Front Immunol 2023; 14:1105617. [PMID: 37153616 PMCID: PMC10161250 DOI: 10.3389/fimmu.2023.1105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Use of adeno-associated virus (AAV) vectors is complicated by host immune responses that can limit transgene expression. Recent clinical trials using AAV vectors to deliver HIV broadly neutralizing antibodies (bNAbs) by intramuscular administration resulted in poor expression with anti-drug antibodies (ADA) responses against the bNAb. Methods Here we compared the expression of, and ADA responses against, an anti-SIV antibody ITS01 when delivered by five different AAV capsids. We first evaluated ITS01 expression from AAV vectors three different 2A peptides. Rhesus macaques were selected for the study based on preexisiting neutralizing antibodies by evaluating serum samples in a neutralization assay against the five capsids used in the study. Macaques were intramuscularly administered AAV vectors at a 2.5x10^12 vg/kg over eight administration sites. ITS01 concentrations and anti-drug antibodies (ADA) were measured by ELISA and a neutralization assay was conducted to confirm ex vivo antibody potency. Results We observed that ITS01 expressed three-fold more efficiently in mice from AAV vectors in which heavy and light-chain genes were separated by a P2A ribosomal skipping peptide, compared with those bearing F2A or T2A peptides. We then measured the preexisting neutralizing antibody responses against three traditional AAV capsids in 360 rhesus macaques and observed that 8%, 16%, and 42% were seronegative for AAV1, AAV8, and AAV9, respectively. Finally, we compared ITS01 expression in seronegative macaques intramuscularly transduced with AAV1, AAV8, or AAV9, or with the synthetic capsids AAV-NP22 or AAV-KP1. We observed at 30 weeks after administration that AAV9- and AAV1-delivered vectors expressed the highest concentrations of ITS01 (224 µg/mL, n=5, and 216 µg/mL, n=3, respectively). The remaining groups expressed an average of 35-73 µg/mL. Notably, ADA responses against ITS01 were observed in six of the 19 animals. Lastly, we demonstrated that the expressed ITS01 retained its neutralizing activity with nearly the same potency of purified recombinant protein. Discussion Overall, these data suggest that the AAV9 capsid is a suitable choice for intramuscular expression of antibodies in nonhuman primates.
Collapse
Affiliation(s)
- Meredith E. Davis-Gardner
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Jesse A. Weber
- Department of Immunology and Microbiology, University of Florida (UF) Scripps Biomedical Research, University of Florida, Jupiter, FL, United States
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Katja Pekrun
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, United States
| | - Eric A. Alexander
- Wisconsin National Primate Research Center, University of Madison-Wisconsin, Madison, WI, United States
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Madison-Wisconsin, Madison, WI, United States
| | - Jessica R. Furlott
- Wisconsin National Primate Research Center, University of Madison-Wisconsin, Madison, WI, United States
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Madison-Wisconsin, Madison, WI, United States
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, United States
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Michael Farzan
- Department of Immunology and Microbiology, University of Florida (UF) Scripps Biomedical Research, University of Florida, Jupiter, FL, United States
| | - Matthew R. Gardner
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Dai Y, Dong H, Gleason C, Mora J, Kolaitis G, Balasubramanian N, Surapaneni S, Kozhich A, Jawa V. Comparison of Pre-existing Anti-AAV8 Total Antibody Screening and Confirmatory Assays with a Cell-Based Neutralizing Assay in Normal Human Serum. AAPS J 2023; 25:35. [PMID: 37012501 DOI: 10.1208/s12248-023-00805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Pre-existing adeno-associated viruses (AAV) neutralizing antibodies (NAb) can prevent AAV vectors from transducing target tissues. The immune responses can include binding/total antibodies (TAb) and neutralizing antibodies (NAb). This study is aimed at comparing total antibody assay (TAb) and cell-based NAb assay against AAV8 to help inform the best assay format for patient exclusion criteria. We developed a chemiluminescence-based enzyme-linked immunosorbent assay to analyze AAV8 TAb in human serum. The specificity of AAV8 TAb was determined using a confirmatory assay. A COS-7-based assay was used to analyze anti-AAV8 NAbs. The TAb screening cut point factor was determined to be 2.65, and the confirmatory cut point (CCP) was 57.1%. The prevalence of AAV8 TAb in 84 normal subjects was 40%, of which 24% were NAb positive and 16% were NAb negative. All NAb-positive subjects were confirmed to be TAb-positive and also passed the CCP-positive criteria. All 16 NAb-negative subjects did not pass the CCP criterion for the positive specificity test. There was a high concordance between AAV8 TAb confirmatory assay and NAb assay. The confirmatory assay improved the specificity of the TAb screening test and confirmed neutralizing activity. We proposed a tiered assay approach, in which an anti-AAV8 screening assay should be followed by a confirmatory assay during pre-enrollment for patient exclusions for AAV8 gene therapy. This approach can be used in lieu of developing a NAb assay and can be also implemented as a companion diagnostic assay for post-marketing seroreactivity assessments due to ease of development and use.
Collapse
Affiliation(s)
- Yanshan Dai
- Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb Company, Princeton, New Jersey, 08543, USA.
| | - Huijin Dong
- Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb Company, Princeton, New Jersey, 08543, USA
| | - Carol Gleason
- Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb Company, Princeton, New Jersey, 08543, USA
| | - Johanna Mora
- Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb Company, Princeton, New Jersey, 08543, USA
| | - Gerry Kolaitis
- Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb Company, Princeton, New Jersey, 08543, USA
| | - Nanda Balasubramanian
- Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb Company, Princeton, New Jersey, 08543, USA
| | - Sekhar Surapaneni
- Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb Company, Princeton, New Jersey, 08543, USA
| | - Alexander Kozhich
- Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb Company, Princeton, New Jersey, 08543, USA
| | - Vibha Jawa
- Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb Company, Princeton, New Jersey, 08543, USA
| |
Collapse
|
12
|
Schulz M, Levy DI, Petropoulos CJ, Bashirians G, Winburn I, Mahn M, Somanathan S, Cheng SH, Byrne BJ. Binding and neutralizing anti-AAV antibodies: Detection and implications for rAAV-mediated gene therapy. Mol Ther 2023; 31:616-630. [PMID: 36635967 PMCID: PMC10014285 DOI: 10.1016/j.ymthe.2023.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Assessment of anti-adeno-associated virus (AAV) antibodies in patients prior to systemic gene therapy administration is an important consideration regarding efficacy and safety of the therapy. Approximately 30%-60% of individuals have pre-existing anti-AAV antibodies. Seroprevalence is impacted by multiple factors, including geography, age, capsid serotype, and assay type. Anti-AAV antibody assays typically measure (1) transduction inhibition by detecting the neutralizing capacity of antibodies and non-antibody neutralizing factors, or (2) total anti-capsid binding antibodies, regardless of neutralizing activity. Presently, there is a paucity of head-to-head data and standardized approaches associating assay results with clinical outcomes. In addition, establishing clinically relevant screening titer cutoffs is complex. Thus, meaningful comparisons across assays are nearly impossible. Although complex, establishing screening assays in routine clinical practice to identify patients with antibody levels that may impact favorable treatment outcomes is achievable for both transduction inhibition and total antibody assays. Formal regulatory approval of such assays as companion diagnostic tests will confirm their suitability for specific recombinant AAV gene therapies. This review covers current approaches to measure anti-AAV antibodies in patient plasma or serum, their potential impact on therapeutic safety and efficacy, and investigative strategies to mitigate the effects of pre-existing anti-AAV antibodies in patients.
Collapse
Affiliation(s)
- Martin Schulz
- Pfizer, 235 East 42nd Street, New York, NY 10017, USA
| | - Daniel I Levy
- Pfizer, 235 East 42nd Street, New York, NY 10017, USA
| | | | | | - Ian Winburn
- Pfizer, 235 East 42nd Street, New York, NY 10017, USA
| | - Matthias Mahn
- Pfizer, 235 East 42nd Street, New York, NY 10017, USA
| | | | - Seng H Cheng
- Pfizer, 235 East 42nd Street, New York, NY 10017, USA
| | - Barry J Byrne
- University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA.
| |
Collapse
|
13
|
Kuoch H, Krotova K, Graham ML, Brantly ML, Aslanidi G. Multiplexing AAV Serotype-Specific Neutralizing Antibodies in Preclinical Animal Models and Humans. Biomedicines 2023; 11:biomedicines11020523. [PMID: 36831059 PMCID: PMC9953293 DOI: 10.3390/biomedicines11020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The accurate assessment of AAV-specific pre-existing humoral immunity due to natural viral infection is critical for the efficient use of clinical gene therapy. The method described in the present study applies equivalent infection conditions to each AAV serotype (AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, and AAVAnc80L65). In the current study, we validated the assay by assessing AAV-neutralizing antibody titers in a limited cohort of random human donors and well-established preclinical large animal models, including dogs and non-human primates (NHPs). We achieved a rapid and accurate evaluation of neutralizing titers for each individual subject that can be used for clinical enrollment based on specific AAV serotypes and individualized selection of the most suitable AAV serotype for each specific patient.
Collapse
Affiliation(s)
- Hisae Kuoch
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Karina Krotova
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Melanie L. Graham
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55108, USA
| | - Mark L. Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Medical School, University of Florida, Gainesville, FL 32610, USA
| | - George Aslanidi
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Correspondence: ; Tel.: +1-507-437-9622; Fax: +1-507-437-9606
| |
Collapse
|
14
|
Haar J, Blazevic D, Strobel B, Kreuz S, Michelfelder S. MSD-based assays facilitate a rapid and quantitative serostatus profiling for the presence of anti-AAV antibodies. Mol Ther Methods Clin Dev 2022; 25:360-369. [PMID: 35573045 PMCID: PMC9065051 DOI: 10.1016/j.omtm.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/14/2022] [Indexed: 11/22/2022]
Abstract
Adeno-associated virus (AAV) vector applications are often limited by capsid-directed humoral immune responses, mainly through neutralizing antibodies (NAbs), which are present throughout the human population due to natural AAV infections. Currently, antibody levels are often quantified via ELISA-based protocols or by cellular NAb assays and less frequently by in vivo NAb assays in mice. These methods need optimization for each serotype and are often not applicable to AAV variants with poor in vitro transduction. To tackle these limitations, we have established Meso Scale Discovery (MSD)-based assays for the quantification of binding antibodies (BAbs) and NAbs against the three most commonly used AAV serotypes, AAV2, AAV8, and AAV9. Both assays detect anti-AAV-IgG1-3 with high sensitivity and consistency as shown in a screen of sera from 40 healthy human donors. Subsequently, BAb and NAb titers were determined for identification of seronegative animals in a non-human primate (NHP) cohort. Moreover, the MSD-based BAb assay protocol was extended to a panel of 14 different AAV serotypes. In summary, our platform allows a rapid and quantitative assessment of the immunological properties of any natural or engineered AAV variant irrespective of transduction efficiency and enables high-throughput screens.
Collapse
Affiliation(s)
- Janina Haar
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Dragica Blazevic
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Benjamin Strobel
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Sebastian Kreuz
- Boehringer Ingelheim Venture Fund GmbH, 55218 Ingelheim am Rhein, Germany
| | - Stefan Michelfelder
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| |
Collapse
|