1
|
Wang J, Xiao N, Zhu Z, Qiao H, Zhao F, Zhang L, Gou J, Lu M, He Y, Lu H, Li Q. Comparing acute versus AIDS ART initiation on HIV-1 integration sites and clonal expansion. Signal Transduct Target Ther 2025; 10:23. [PMID: 39788938 PMCID: PMC11718275 DOI: 10.1038/s41392-024-02113-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Early antiretroviral therapy (ART) initiation is known to limit the establishment of the HIV reservoir, with studies suggesting benefits such as a reduced number of infected cells and a smaller latent reservoir. However, the long-term impact of early ART initiation on the dynamics of the infected cell pool remains unclear, and clinical evidence directly comparing proviral integration site counts between early and late ART initiation is limited. In this study, we used Linear Target Amplification-PCR (LTA-PCR) and Next Generation Sequencing to compare unique integration site (UIS) clonal counts between individuals who initiated ART during acute HIV infection stage (Acute-ART group) and those in the AIDS stage (AIDS-ART group). Our analysis revealed distinct clonal distribution patterns, with greater UIS heterogeneity in Acute-ART group and more homogeneity in AIDS-ART group. Monoclonal UIS accumulation, predominantly in-gene regions, was influenced by ART timing and duration, with early treatment delaying this process. Host cell genes integrated by HIV provirus as monoclonal types were enriched in cell cycle and lymphocyte activation pathways. Tumor suppressor genes (TSGs) were more frequently integrated as monoclonal types in AIDS-ART group, suggesting potential risk factors. Overall, we introduced a sequencing method to assess provirus size in human peripheral blood and identified the widespread presence of monoclonal distribution of UIS in AIDS-ART group after long-term treatment. The early intervention helps slow the progress of clonal expansion of infected cells, reducing the formation of stable and persistent reservoirs, and ultimately posing fewer barriers to achieving a functional cure.
Collapse
Affiliation(s)
- Jun Wang
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong Province, China
- Clinical Research Center, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Nan Xiao
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong Province, China
| | - Zhengnong Zhu
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong Province, China
| | - Haiyan Qiao
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong Province, China
| | - Fang Zhao
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong Province, China
| | - Lukun Zhang
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong Province, China
| | - Jizhou Gou
- Department of Pathology, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong Province, China
| | - Mengji Lu
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong Province, China
- Institute of virology, Essen University Hospital, University of Duisburg-Essen, Essen, 45147, Germany
| | - Yun He
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong Province, China.
| | - Hongzhou Lu
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong Province, China.
| | - Qian Li
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518112, Guangdong Province, China.
| |
Collapse
|
2
|
Singh K, Fronza R, Evens H, Chuah MK, VandenDriessche T. Comprehensive analysis of off-target and on-target effects resulting from liver-directed CRISPR-Cas9-mediated gene targeting with AAV vectors. Mol Ther Methods Clin Dev 2024; 32:101365. [PMID: 39655309 PMCID: PMC11626537 DOI: 10.1016/j.omtm.2024.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Comprehensive genome-wide studies are needed to assess the consequences of adeno-associated virus (AAV) vector-mediated gene editing. We evaluated CRISPR-Cas-mediated on-target and off-target effects and examined the integration of the AAV vectors employed to deliver the CRISPR-Cas components to neonatal mice livers. The guide RNA (gRNA) was specifically designed to target the factor IX gene (F9). On-target and off-target insertions/deletions were examined by whole-genome sequencing (WGS). Efficient F9-targeting (36.45% ± 18.29%) was apparent, whereas off-target events were rare or below the WGS detection limit since only one single putative insertion was detected out of 118 reads, based on >100 computationally predicted off-target sites. AAV integrations were identified by WGS and shearing extension primer tag selection ligation-mediated PCR (S-EPTS/LM-PCR) and occurred preferentially in CRISPR-Cas9-induced double-strand DNA breaks in the F9 locus. In contrast, AAV integrations outside F9 were not in proximity to any of ∼5,000 putative computationally predicted off-target sites (median distance of 70 kb). Moreover, without relying on such off-target prediction algorithms, analysis of DNA sequences close to AAV integrations outside the F9 locus revealed no homology to the F9-specific gRNA. This study supports the use of S-EPTS/LM-PCR for direct in vivo comprehensive, sensitive, and unbiased off-target analysis.
Collapse
Affiliation(s)
- Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Hanneke Evens
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
3
|
Ismail AM, Witt E, Bouwman T, Clark W, Yates B, Franco M, Fong S. The longitudinal kinetics of AAV5 vector integration profiles and evaluation of clonal expansion in mice. Mol Ther Methods Clin Dev 2024; 32:101294. [PMID: 39104575 PMCID: PMC11298592 DOI: 10.1016/j.omtm.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
Adeno-associated virus (AAV)-based vectors are used clinically for gene transfer and persist as extrachromosomal episomes. A small fraction of vector genomes integrate into the host genome, but the theoretical risk of tumorigenesis depends on vector regulatory features. A mouse model was used to investigate integration profiles of an AAV serotype 5 (AAV5) vector produced using Sf and HEK293 cells that mimic key features of valoctocogene roxaparvovec (AAV5-hFVIII-SQ), a gene therapy for severe hemophilia A. The majority (95%) of vector genome reads were derived from episomes, and mean (± standard deviation) integration frequency was 2.70 ± 1.26 and 1.79 ± 0.86 integrations per 1,000 cells for Sf- and HEK293-produced vector. Longitudinal integration analysis suggested integrations occur primarily within 1 week, at low frequency, and their abundance was stable over time. Integration profiles were polyclonal and randomly distributed. No major differences in integration profiles were observed for either vector production platform, and no integrations were associated with clonal expansion. Integrations were enriched near transcription start sites of genes highly expressed in the liver (p = 1 × 10-4) and less enriched for genes of lower expression. We found no evidence of tumorigenesis or fibrosis caused by the vector integrations.
Collapse
Affiliation(s)
| | - Evan Witt
- BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | | | - Wyatt Clark
- BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | | | - Matteo Franco
- ProtaGene CGT GmbH, Heidelberg 69120, Germany
- ProtaGene Inc., Burlington, MA 01803, USA
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| |
Collapse
|
4
|
Diaby M, Wu H, Gao B, Shi S, Wang B, Wang S, Wang Y, Wu Z, Chen C, Wang X, Song C. A Naturally Active Spy Transposon Discovered from the Insect Genome of Colletes gigas as a Promising Novel Gene Transfer Tool. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400969. [PMID: 38774947 PMCID: PMC11304231 DOI: 10.1002/advs.202400969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Indexed: 08/09/2024]
Abstract
Novel active DNA transposons, such as Spy transposons from the PHIS superfamily, are identified through bioinformatics in this study. The native transposases cgSpy and cvSpy displayed transposition activities of approximately 85% and 35% compared to the hyperactive piggyBac transposase (hyPB). The cgSpy transposon showed unique characteristics, including a lack of overproduction inhibition and reduced efficiency for insertion sizes between 3.1 to 8.5 kb. Integration preferences of cgSpy are found in genes and regulatory regions, making it suitable for genetic manipulation. Evaluation in T-cell engineering demonstrated that cgSpy-mediated chimeric antigen receptor (CAR) modification is comparable to the PB system, indicating its potential utility in cell therapy. This study unveils the promising application of the active native transposase, Spy, from Colletes gigas, as a valuable tool for genetic engineering, particularly in T-cell manipulation.
Collapse
Affiliation(s)
- Mohamed Diaby
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Han Wu
- School of Basic Medical SciencesShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055China
| | - Bo Gao
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Shasha Shi
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Bingqing Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Saisai Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Yali Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Zherui Wu
- School of Basic Medical SciencesShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055China
| | - Cai Chen
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Xiaoyan Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Chengyi Song
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| |
Collapse
|
5
|
Sorel N, Díaz-Pascual F, Bessot B, Sadek H, Mollet C, Chouteau M, Zahn M, Gil-Farina I, Tajer P, van Eggermond M, Berghuis D, Lankester AC, André I, Gabriel R, Cavazzana M, Pike-Overzet K, Staal FJT, Lagresle-Peyrou C. Restoration of T and B Cell Differentiation after RAG1 Gene Transfer in Human RAG1 Defective Hematopoietic Stem Cells. Biomedicines 2024; 12:1495. [PMID: 39062069 PMCID: PMC11275127 DOI: 10.3390/biomedicines12071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recombinase-activating gene (RAG)-deficient SCID patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. The two RAG genes act as a required dimer to initiate gene recombination. Gene therapy is a valid treatment alternative for RAG-SCID patients who lack a suitable bone marrow donor, but developing such therapy for RAG1/2 has proven challenging. Using a clinically approved lentiviral vector with a codon-optimized RAG1 gene, we report here preclinical studies using CD34+ cells from four RAG1-SCID patients. We used in vitro T cell developmental assays and in vivo assays in xenografted NSG mice. The RAG1-SCID patient CD34+ cells transduced with the RAG1 vector and transplanted into NSG mice led to restored human B and T cell development. Together with favorable safety data on integration sites, these results substantiate an ongoing phase I/II clinical trial for RAG1-SCID.
Collapse
Affiliation(s)
- Nataël Sorel
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | | | - Boris Bessot
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| | - Hanem Sadek
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Chloé Mollet
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| | - Myriam Chouteau
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Marco Zahn
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Irene Gil-Farina
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Parisa Tajer
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marja van Eggermond
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dagmar Berghuis
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Arjan C. Lankester
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Richard Gabriel
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, 75015 Paris, France;
- Imagine Institute UMR1163, Université Paris Cité, Sorbonne Paris Cité, 75015 Paris, France
| | - Kasrin Pike-Overzet
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, 75015 Paris, France;
| | - Frank J. T. Staal
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Chantal Lagresle-Peyrou
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| |
Collapse
|
6
|
Borges B, Varthaliti A, Schwab M, Clarke MT, Pivetti C, Gupta N, Cadwell CR, Guibinga G, Phillips S, Del Rio T, Ozsolak F, Imai-Leonard D, Kong L, Laird DJ, Herzeg A, Sumner CJ, MacKenzie TC. Prenatal AAV9-GFP administration in fetal lambs results in transduction of female germ cells and maternal exposure to virus. Mol Ther Methods Clin Dev 2024; 32:101263. [PMID: 38827250 PMCID: PMC11141462 DOI: 10.1016/j.omtm.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Prenatal somatic cell gene therapy (PSCGT) could potentially treat severe, early-onset genetic disorders such as spinal muscular atrophy (SMA) or muscular dystrophy. Given the approval of adeno-associated virus serotype 9 (AAV9) vectors in infants with SMA by the U.S. Food and Drug Administration, we tested the safety and biodistribution of AAV9-GFP (clinical-grade and dose) in fetal lambs to understand safety and efficacy after umbilical vein or intracranial injection on embryonic day 75 (E75) . Umbilical vein injection led to widespread biodistribution of vector genomes in all examined lamb tissues and in maternal uteruses at harvest (E96 or E140; term = E150). There was robust GFP expression in brain, spinal cord, dorsal root ganglia (DRGs), without DRG toxicity and excellent transduction of diaphragm and quadriceps muscles. However, we found evidence of systemic toxicity (fetal growth restriction) and maternal exposure to the viral vector (transient elevation of total bilirubin and a trend toward elevation in anti-AAV9 antibodies). There were no antibodies against GFP in ewes or lambs. Analysis of fetal gonads demonstrated GFP expression in female (but not male) germ cells, with low levels of integration-specific reads, without integration in select proto-oncogenes. These results suggest potential therapeutic benefit of AAV9 PSCGT for neuromuscular disorders, but warrant caution for exposure of female germ cells.
Collapse
Affiliation(s)
- Beltran Borges
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Antonia Varthaliti
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marisa Schwab
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maria T Clarke
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Pivetti
- Department of Surgery, University of California, Davis, Davis, CA 95817, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Weill Neurohub, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ghiabe Guibinga
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Shirley Phillips
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Tony Del Rio
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Fatih Ozsolak
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Denise Imai-Leonard
- Comparative Pathology Laboratory, University of California, Davis, Davis, CA 95616, USA
| | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akos Herzeg
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Batty P, Fong S, Franco M, Sihn CR, Swystun LL, Afzal S, Harpell L, Hurlbut D, Pender A, Su C, Thomsen H, Wilson C, Youssar L, Winterborn A, Gil-Farina I, Lillicrap D. Vector integration and fate in the hemophilia dog liver multiple years after AAV-FVIII gene transfer. Blood 2024; 143:2373-2385. [PMID: 38452208 DOI: 10.1182/blood.2023022589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Gene therapy using adeno-associated virus (AAV) vectors is a promising approach for the treatment of monogenic disorders. Long-term multiyear transgene expression has been demonstrated in animal models and clinical studies. Nevertheless, uncertainties remain concerning the nature of AAV vector persistence and whether there is a potential for genotoxicity. Here, we describe the mechanisms of AAV vector persistence in the liver of a severe hemophilia A dog model (male = 4, hemizygous; and female = 4, homozygous), more than a decade after portal vein delivery. The predominant vector form was nonintegrated episomal structures with levels correlating with long-term transgene expression. Random integration was seen in all samples (median frequency, 9.3e-4 sites per cell), with small numbers of nonrandom common integration sites associated with open chromatin. No full-length integrated vectors were found, supporting predominant episomal vector-mediated long-term transgene expression. Despite integration, this was not associated with oncogene upregulation or histopathological evidence of tumorigenesis. These findings support the long-term safety of this therapeutic modality.
Collapse
Affiliation(s)
- Paul Batty
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Sylvia Fong
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
- Research, BioMarin Pharmaceutical, Novato, CA
| | | | | | - Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | - Lorianne Harpell
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David Hurlbut
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Abbey Pender
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Cheng Su
- Data Science, BioMarin Pharmaceutical, Novato, CA
| | - Hauke Thomsen
- ProtaGene CGT GmbH, Heidelberg, Germany
- MSB Medical School Berlin, Berlin, Germany
| | | | | | - Andrew Winterborn
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
8
|
Lemmens M, Dorsheimer L, Zeller A, Dietz-Baum Y. Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503767. [PMID: 38821669 DOI: 10.1016/j.mrgentox.2024.503767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.
Collapse
Affiliation(s)
| | - Lena Dorsheimer
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany.
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Yasmin Dietz-Baum
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| |
Collapse
|
9
|
Yang S, Xu J, Dai Y, Jin S, Sun Y, Li J, Liu C, Ma X, Chen Z, Chen L, Hou J, Mi JQ, Chen SJ. Neutrophil activation and clonal CAR-T re-expansion underpinning cytokine release syndrome during ciltacabtagene autoleucel therapy in multiple myeloma. Nat Commun 2024; 15:360. [PMID: 38191582 PMCID: PMC10774397 DOI: 10.1038/s41467-023-44648-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Cytokine release syndrome (CRS) is the most common complication of chimeric antigen receptor redirected T cells (CAR-T) therapy. CAR-T toxicity management has been greatly improved, but CRS remains a prime safety concern. Here we follow serum cytokine levels and circulating immune cell transcriptomes longitudinally in 26 relapsed/refractory multiple myeloma patients receiving the CAR-T product, ciltacabtagene autoleucel, to understand the immunological kinetics of CRS. We find that although T lymphocytes and monocytes/macrophages are the major overall cytokine source in manifest CRS, neutrophil activation peaks earlier, before the onset of severe symptoms. Intracellularly, signaling activation dominated by JAK/STAT pathway occurred prior to cytokine cascade and displayed regular kinetic changes. CRS severity is accurately described and potentially predicted by temporal cytokine secretion signatures. Notably, CAR-T re-expansion is found in three patients, including a fatal case characterized by somatic TET2-mutation, clonal expanded cytotoxic CAR-T, broadened cytokine profiles and irreversible hepatic toxicity. Together, our findings show that a latent phase with distinct immunological changes precedes manifest CRS, providing an optimal window and potential targets for CRS therapeutic intervention and that CAR-T re-expansion warrants close clinical attention and laboratory investigation to mitigate the lethal risk.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shiwei Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenglin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaolin Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lijuan Chen
- Department of Hematology, First affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Castiello MC, Di Verniere M, Draghici E, Fontana E, Penna S, Sereni L, Zecchillo A, Minuta D, Uva P, Zahn M, Gil-Farina I, Annoni A, Iaia S, Ott de Bruin LM, Notarangelo LD, Pike-Overzet K, Staal FJT, Villa A, Capo V. Partial correction of immunodeficiency by lentiviral vector gene therapy in mouse models carrying Rag1 hypomorphic mutations. Front Immunol 2023; 14:1268620. [PMID: 38022635 PMCID: PMC10679457 DOI: 10.3389/fimmu.2023.1268620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Recombination activating genes (RAG) 1 and 2 defects are the most frequent form of severe combined immunodeficiency (SCID). Patients with residual RAG activity have a spectrum of clinical manifestations ranging from Omenn syndrome to delayed-onset combined immunodeficiency, often associated with granulomas and/or autoimmunity (CID-G/AI). Lentiviral vector (LV) gene therapy (GT) has been proposed as an alternative treatment to the standard hematopoietic stem cell transplant and a clinical trial for RAG1 SCID patients recently started. However, GT in patients with hypomorphic RAG mutations poses additional risks, because of the residual endogenous RAG1 expression and the general state of immune dysregulation and associated inflammation. Methods In this study, we assessed the efficacy of GT in 2 hypomorphic Rag1 murine models (Rag1F971L/F971L and Rag1R972Q/R972Q), exploiting the same LV used in the clinical trial encoding RAG1 under control of the MND promoter. Results and discussion Starting 6 weeks after transplant, GT-treated mice showed a decrease in proportion of myeloid cells and a concomitant increase of B, T and total white blood cells. However, counts remained lower than in mice transplanted with WT Lin- cells. At euthanasia, we observed a general redistribution of immune subsets in tissues, with the appearance of mature recirculating B cells in the bone marrow. In the thymus, we demonstrated correction of the block at double negative stage, with a modest improvement in the cortical/medullary ratio. Analysis of antigenspecific IgM and IgG serum levels after in vivo challenge showed an amelioration of antibody responses, suggesting that the partial immune correction could confer a clinical benefit. Notably, no overt signs of autoimmunity were detected, with B-cell activating factor decreasing to normal levels and autoantibodies remaining stable after GT. On the other hand, thymic enlargement was frequently observed, although not due to vector integration and insertional mutagenesis. In conclusion, our work shows that GT could partially alleviate the combined immunodeficiency of hypomorphic RAG1 patients and that extensive efficacy and safety studies with alternative models are required before commencing RAG gene therapy in thesehighly complex patients.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Sara Penna
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Sereni
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Zecchillo
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Denise Minuta
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Uva
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Andrea Annoni
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Iaia
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lisa M. Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Valentina Capo
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
11
|
Jain N, Zhao Z, Feucht J, Koche R, Iyer A, Dobrin A, Mansilla-Soto J, Yang J, Zhan Y, Lopez M, Gunset G, Sadelain M. TET2 guards against unchecked BATF3-induced CAR T cell expansion. Nature 2023; 615:315-322. [PMID: 36755094 PMCID: PMC10511001 DOI: 10.1038/s41586-022-05692-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2022] [Indexed: 02/10/2023]
Abstract
Further advances in cell engineering are needed to increase the efficacy of chimeric antigen receptor (CAR) and other T cell-based therapies1-5. As T cell differentiation and functional states are associated with distinct epigenetic profiles6,7, we hypothesized that epigenetic programming may provide a means to improve CAR T cell performance. Targeting the gene that encodes the epigenetic regulator ten-eleven translocation 2 (TET2)8 presents an interesting opportunity as its loss may enhance T cell memory9,10, albeit not cause malignancy9,11,12. Here we show that disruption of TET2 enhances T cell-mediated tumour rejection in leukaemia and prostate cancer models. However, loss of TET2 also enables antigen-independent CAR T cell clonal expansions that may eventually result in prominent systemic tissue infiltration. These clonal proliferations require biallelic TET2 disruption and sustained expression of the AP-1 factor BATF3 to drive a MYC-dependent proliferative program. This proliferative state is associated with reduced effector function that differs from both canonical T cell memory13,14 and exhaustion15,16 states, and is prone to the acquisition of secondary somatic mutations, establishing TET2 as a guardian against BATF3-induced CAR T cell proliferation and ensuing genomic instability. Our findings illustrate the potential of epigenetic programming to enhance T cell immunity but highlight the risk of unleashing unchecked proliferative responses.
Collapse
Affiliation(s)
- Nayan Jain
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Zeguo Zhao
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Judith Feucht
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
- University Children's Hospital, Tübingen, Germany
| | - Richard Koche
- Centre for Epigenetics Research, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Archana Iyer
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Anton Dobrin
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Jorge Mansilla-Soto
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Julie Yang
- Centre for Epigenetics Research, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Yingqian Zhan
- Centre for Epigenetics Research, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Michael Lopez
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Gertrude Gunset
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Michel Sadelain
- Centre for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Centre, New York, NY, USA.
| |
Collapse
|
12
|
Sobrino S, Magnani A, Semeraro M, Martignetti L, Cortal A, Denis A, Couzin C, Picard C, Bustamante J, Magrin E, Joseph L, Roudaut C, Gabrion A, Soheili T, Cordier C, Lortholary O, Lefrere F, Rieux-Laucat F, Casanova JL, Bodard S, Boddaert N, Thrasher AJ, Touzot F, Taque S, Suarez F, Marcais A, Guilloux A, Lagresle-Peyrou C, Galy A, Rausell A, Blanche S, Cavazzana M, Six E. Severe hematopoietic stem cell inflammation compromises chronic granulomatous disease gene therapy. Cell Rep Med 2023; 4:100919. [PMID: 36706754 PMCID: PMC9975109 DOI: 10.1016/j.xcrm.2023.100919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023]
Abstract
X-linked chronic granulomatous disease (CGD) is associated with defective phagocytosis, life-threatening infections, and inflammatory complications. We performed a clinical trial of lentivirus-based gene therapy in four patients (NCT02757911). Two patients show stable engraftment and clinical benefits, whereas the other two have progressively lost gene-corrected cells. Single-cell transcriptomic analysis reveals a significantly lower frequency of hematopoietic stem cells (HSCs) in CGD patients, especially in the two patients with defective engraftment. These two present a profound change in HSC status, a high interferon score, and elevated myeloid progenitor frequency. We use elastic-net logistic regression to identify a set of 51 interferon genes and transcription factors that predict the failure of HSC engraftment. In one patient, an aberrant HSC state with elevated CEBPβ expression drives HSC exhaustion, as demonstrated by low repopulation in a xenotransplantation model. Targeted treatments to protect HSCs, coupled to targeted gene expression screening, might improve clinical outcomes in CGD.
Collapse
Affiliation(s)
- Steicy Sobrino
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Alessandra Magnani
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Michaela Semeraro
- Clinical Investigation Center CIC 1419, Necker-Enfants Malades Hospital, GH Paris Centre, Université Paris Cité, AP-HP, Paris, France
| | - Loredana Martignetti
- Clinical Bioinformatics Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Akira Cortal
- Clinical Bioinformatics Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Adeline Denis
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Chloé Couzin
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cité, Paris, France; Lymphocyte Activation and Susceptibility to EBV Infection Laboratory, INSERM UMR 1163, Imagine Institute, Paris, France; Centre de Références des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Jacinta Bustamante
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cité, Paris, France; Human Genetics of Infectious Diseases Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Elisa Magrin
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Laure Joseph
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Cécile Roudaut
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Aurélie Gabrion
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Tayebeh Soheili
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Corinne Cordier
- Plateforme de Cytométrie en Flux, Structure Fédérative de Recherche Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Olivier Lortholary
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cité, Imagine Institute, Paris, France
| | - François Lefrere
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Department of Adult Hematology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Frédéric Rieux-Laucat
- Immunogenetics of Pediatric Autoimmune Diseases Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Jean-Laurent Casanova
- Human Genetics of Infectious Diseases Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Sylvain Bodard
- Department of Adult Radiology, Necker Enfants-Malades Hospital, AP-HP, Université Paris Cité, Paris, France; Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, INSERM UMR 1163 and UMR 1299, Imagine Institute, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - Adrian J Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fabien Touzot
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Sophie Taque
- CHU de Rennes, Département de Pédiatrie, Rennes, France
| | - Felipe Suarez
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cité, Imagine Institute, Paris, France; Imagine Institute, Université Paris Cité, Paris, France
| | - Ambroise Marcais
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, Université Paris Cité, Imagine Institute, Paris, France
| | - Agathe Guilloux
- Mathematics and Modelization Laboratory, CNRS, Université Paris-Saclay, Université d'Evry, Evry, France
| | - Chantal Lagresle-Peyrou
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | - Anne Galy
- Genethon, Evry-Courcouronnes, France; Université Paris-Saclay, University Evry, Inserm, Genethon (UMR_S951), Evry-Courcouronnes, France
| | - Antonio Rausell
- Clinical Bioinformatics Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France; Service de Médecine Génomique des Maladies Rares, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - Stephane Blanche
- Department of Pediatric Immunology, Hematology, and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Marina Cavazzana
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France; Imagine Institute, Université Paris Cité, Paris, France.
| | - Emmanuelle Six
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| |
Collapse
|
13
|
Pais G, Spinozzi G, Cesana D, Benedicenti F, Albertini A, Bernardo ME, Gentner B, Montini E, Calabria A. ISAnalytics enables longitudinal and high-throughput clonal tracking studies in hematopoietic stem cell gene therapy applications. Brief Bioinform 2023; 24:bbac551. [PMID: 36545803 PMCID: PMC9910212 DOI: 10.1093/bib/bbac551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Longitudinal clonal tracking studies based on high-throughput sequencing technologies supported safety and long-term efficacy and unraveled hematopoietic reconstitution in many gene therapy applications with unprecedented resolution. However, monitoring patients over a decade-long follow-up entails a constant increase of large data volume with the emergence of critical computational challenges, unfortunately not addressed by currently available tools. Here we present ISAnalytics, a new R package for comprehensive and high-throughput clonal tracking studies using vector integration sites as markers of cellular identity. Once identified the clones externally from ISAnalytics and imported in the package, a wide range of implemented functionalities are available to users for assessing the safety and long-term efficacy of the treatment, here described in a clinical trial use case for Hurler disease, and for supporting hematopoietic stem cell biology in vivo with longitudinal analysis of clones over time, proliferation and differentiation. ISAnalytics is conceived to be metadata-driven, enabling users to focus on biological questions and hypotheses rather than on computational aspects. ISAnalytics can be fully integrated within laboratory workflows and standard procedures. Moreover, ISAnalytics is designed with efficient and scalable data structures, benchmarked with previous methods, and grants reproducibility and full analytical control through interactive web-reports and a module with Shiny interface. The implemented functionalities are flexible for all viral vector-based clonal tracking applications as well as genetic barcoding or cancer immunotherapies.
Collapse
Affiliation(s)
- Giulia Pais
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Giulio Spinozzi
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Daniela Cesana
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Fabrizio Benedicenti
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Alessandra Albertini
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Maria Ester Bernardo
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Bernhard Gentner
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Eugenio Montini
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Andrea Calabria
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| |
Collapse
|
14
|
Handyside B, Ismail AM, Zhang L, Yates B, Xie L, Sihn CR, Murphy R, Bouwman T, Kim CK, De Angelis R, Karim OA, McIntosh NL, Doss MX, Shroff S, Pungor E, Bhat VS, Bullens S, Bunting S, Fong S. Vector genome loss and epigenetic modifications mediate decline in transgene expression of AAV5 vectors produced in mammalian and insect cells. Mol Ther 2022; 30:3570-3586. [PMID: 36348622 PMCID: PMC9734079 DOI: 10.1016/j.ymthe.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 1013 vg/kg of vector, and blood and liver samples were collected through week 57. For all vectors, peak expression (weeks 12-24) declined by 50% to week 57. For Sf- and HEK293-produced oversized vectors, serum hA1AT was initially comparable, but in weeks 12-57, Sf vectors provided significantly higher expression. For HEK293 oversized vectors, liver genomes decreased continuously through week 57 and significantly correlated with A1AT protein. In RNA-sequencing analysis, HEK293 vector-treated mice had significantly higher inflammatory responses in liver at 12 weeks compared with Sf vector- and vehicle-treated mice. Thus, HEK293 vector genome loss led to decreased transgene protein. For Sf-produced vectors, genomes did not decrease from peak expression. Instead, vector genome accessibility significantly decreased from peak to week 57 and correlated with transgene RNA. Vector DNA interactions with active histone marks (H3K27ac/H3K4me3) were significantly reduced from peak to week 57, suggesting that epigenetic regulation impacts transgene expression of Sf-produced vectors.
Collapse
Affiliation(s)
- Britta Handyside
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Lening Zhang
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Bridget Yates
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Lin Xie
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Choong-Ryoul Sihn
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Ryan Murphy
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Taren Bouwman
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Chan Kyu Kim
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | - Omair A. Karim
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | | | | - Shilpa Shroff
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Erno Pungor
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Vikas S. Bhat
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sherry Bullens
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Stuart Bunting
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA,Corresponding author: Sylvia Fong, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA.
| |
Collapse
|
15
|
A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy. Gene Ther 2022; 30:288-296. [PMID: 35835952 DOI: 10.1038/s41434-022-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
A hematopoietic stem cell (HSC) gene therapy (GT) using lentiviral vectors has attracted interest as a promising treatment approach for neuropathic lysosomal storage diseases. To proceed with the clinical development of HSC-GT, evaluation of the therapeutic potential of gene-transduced human CD34+ (hCD34+) cells in vivo is one of the key issues before human trials. Here, we established an immunodeficient murine model of mucopolysaccharidosis type II (MPS II), which are transplantable human cells, and demonstrated the application of those mice in evaluating the therapeutic efficacy of gene-modified hCD34+ cells. NOG/MPS II mice, which were generated using CRISPR/Cas9, exhibited a reduction of disease-causing enzyme iduronate-2-sulfatatase (IDS) activity and the accumulation of glycosaminoglycans in their tissues. When we transplanted hCD34+ cells transduced with a lentiviral vector carrying the IDS gene into NOG/MPS II mice, a significant amelioration of biochemical pathophenotypes was observed in the visceral and neuronal tissues of those mice. In addition, grafted cells in the NOG/MPS II mice showed the oligoclonal integration pattern of the vector, but no obvious clonal dominance was detected in the mice. Our findings indicate the promising application of NOG/MPS II mice to preclinical study of HSC-GT for MPS II using human cells.
Collapse
|
16
|
Vanderbilt CM, Bowman AS, Middha S, Petrova-Drus K, Tang YW, Chen X, Wang Y, Chang J, Rekhtman N, Busam KJ, Gupta S, Hameed M, Arcila ME, Ladanyi M, Berger MF, Dogan S, Zehir A. Defining Novel DNA Virus-Tumor Associations and Genomic Correlates Using Prospective Clinical Tumor/Normal Matched Sequencing Data. J Mol Diagn 2022; 24:515-528. [PMID: 35331965 PMCID: PMC9127461 DOI: 10.1016/j.jmoldx.2022.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
This study is the largest analysis of DNA viruses in solid tumors with associated genomics. To achieve this, a novel method for discovery of DNA viruses from matched tumor/normal next-generation sequencing samples was developed and validated. This method performed comparably to reference methods for the detection of high-risk (HR) human papilloma virus (HPV) (area under the receiver operating characteristic curve = 0.953). After virus identification in 48,148 consecutives samples from 42,846 unique patients, novel virus tumor associations were established by segregating tumor types to determine whether each DNA virus was enriched in each of the tumor types compared with the remaining cohort. All firmly established solid tumor-virus associations (eg, HR HPV in cervical cancer) were confirmed, and the novel associations discovered included: human herpes virus 6 in neuroblastoma, human herpes virus 7 in esophagogastric cancer, and HPV42 in digital papillary adenocarcinoma. These associations were confirmed in an independent validation cohort. HR HPV- and Epstein-Barr virus-associated tumors showed newly discovered genomic associations, including a lower tumor mutation burden. The study demonstrated the ability to study the role of DNA viruses in human cancer from clinical genomics data and established the largest cohort that can be utilized as a validation set for future discovery efforts.
Collapse
Affiliation(s)
- Chad M Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Anita S Bowman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sumit Middha
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kseniya Petrova-Drus
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yi-Wei Tang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xin Chen
- Atila Biosystems Inc., Mountain View, California
| | | | - Jason Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Klaus J Busam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sounak Gupta
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Meera Hameed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria E Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Snjezana Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Dastidar S, Majumdar D, Tipanee J, Singh K, Klein AF, Furling D, Chuah MK, VandenDriessche T. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Mol Ther 2022; 30:75-91. [PMID: 34371182 PMCID: PMC8753376 DOI: 10.1016/j.ymthe.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
CTG repeat expansion (CTGexp) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTGexp repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis. Certain genes were of particular interest due to their role in cardiac development, maturation, and function (TPM4, CYP2J2, DMD, MBNL3, CACNA1H, ROCK2, ACTB) or their association with splicing (SMN2, GCFC2, MBNL3). Moreover, while comparing isogenic CRISPR-Cas9-corrected versus non-corrected DM1 cardiomyocytes, a prominent difference in the splicing pattern for a number of candidate genes was apparent pertaining to genes that are associated with cardiac function (TNNT, TNNT2, TTN, TPM1, SYNE1, CACNA1A, MTMR1, NEBL, TPM1), cellular signaling (NCOR2, CLIP1, LRRFIP2, CLASP1, CAMK2G), and other DM1-related genes (i.e., NUMA1, MBNL2, LDB3) in addition to the disease-causing DMPK gene itself. Subsequent validation using a selected gene subset, including MBNL1, MBNL2, INSR, ADD3, and CRTC2, further confirmed correction of the spliceopathy following CTGexp repeat excision. To our knowledge, the present study provides the first comprehensive unbiased transcriptome-wide analysis of the differential splicing landscape in DM1 patient-derived cardiac cells after excision of the CTGexp repeat using CRISPR-Cas9, showing reversal of the abnormal cardiac spliceopathy in DM1.
Collapse
Affiliation(s)
- Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Debanjana Majumdar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Arnaud F. Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Marinee K. Chuah, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Thierry VandenDriessche, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
18
|
Scott S, Hallwirth CV, Hartkopf F, Grigson S, Jain Y, Alexander IE, Bauer DC, O W Wilson L. Isling: a tool for detecting integration of wild-type viruses and clinical vectors. J Mol Biol 2021; 434:167408. [PMID: 34929203 DOI: 10.1016/j.jmb.2021.167408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Detecting viral and vector integration events is a key step when investigating interactions between viral and host genomes. This is relevant in several fields, including virology, cancer research and gene therapy. For example, investigating integrations of wild-type viruses such as human papillomavirus and hepatitis B virus has proven to be crucial for understanding the role of these integrations in cancer. Furthermore, identifying the extent of vector integration is vital for determining the potential for genotoxicity in gene therapies. To address these questions, we developed isling, the first tool specifically designed for identifying viral integrations in both wild-type and vector from next-generation sequencing data. Isling addresses complexities in integration behaviour including integration of fragmented genomes and integration junctions with ambiguous locations in a host or vector genome, and can also flag possible vector recombinations. We show that isling is up to 1.6-fold faster and up to 170% more accurate than other viral integration tools, and performs well on both simulated and real datasets. Isling is therefore an efficient and application-agnostic tool that will enable a broad range of investigations into viral and vector integration. These include comparisons between integrations of wild-type viruses and gene therapy vectors, as well as assessing the genotoxicity of vectors and understanding the role of viruses in cancer.
Collapse
Affiliation(s)
- Suzanne Scott
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia; Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, Australia; The Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, Australia; The Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Felix Hartkopf
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Susanna Grigson
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Yatish Jain
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, Australia; The Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia; Discipline of Child and Adolescent Health,Faculty of Medicine and Health,The University of Sydney, Sydney, New South Wales, Australia
| | - Denis C Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia; Discipline of Child and Adolescent Health,Faculty of Medicine and Health,The University of Sydney, Sydney, New South Wales, Australia; Macquarie University, Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie Park, Australia.
| | - Laurence O W Wilson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia; Macquarie University, Applied BioSciences, Faculty of Science and Engineering, Macquarie Park, Australia.
| |
Collapse
|
19
|
Bushman FD, Cantu A, Everett J, Sabatino D, Berry C. Challenges in estimating numbers of vectors integrated in gene-modified cells using DNA sequence information. Mol Ther 2021; 29:3328-3331. [PMID: 34717818 PMCID: PMC8636165 DOI: 10.1016/j.ymthe.2021.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Adrian Cantu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Denise Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Berry
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Bougnères P, Hacein-Bey-Abina S, Labik I, Adamsbaum C, Castaignède C, Bellesme C, Schmidt M. Long-Term Follow-Up of Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy. Hum Gene Ther 2021; 32:1260-1269. [PMID: 33789438 DOI: 10.1089/hum.2021.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In 2009, cerebral adrenoleukodystrophy (c-ALD) became the first brain disease to be treated with lentiviral (LV)-based hematopoietic stem cell gene therapy with the ABCD1 gene in four boys (P1-P4) who had demyelinating lesions expected to be lethal in the short term and no bone marrow donor. We report the clinical and magnetic resonance imaging (MRI) follow-up over a mean of 8.8 years posttransplant. In parallel, vector genome copies, expression of transgenic ALD protein (ALDP), and viral integration sites were determined in peripheral blood cells. Prior to transplant, the four patients had a normal or near normal neurocognitive status but gadolinium-enhanced demyelination in various brain regions. Gadolinium diffusion disappeared during the first year posttransplant. P3 kept a near normal status until 8.3 years of follow-up, but P1, P2, and P4 showed major cognitive degradation around 9, 28, and 60 months posttransplant. Neurological status and demyelination stabilized until last evaluation in P2, but deteriorated in both P1 at 10 years and P4 at 3 years posttransplant. The proportion of myeloid and lymphoid cells expressing transgenic ALDP decreased by half within 5 years then stabilized around 5% to 10%. Integration site analysis revealed a durable polyclonal distribution of genetically corrected hematopoietic cells. No adverse effects were observed. The long-term arrest of demyelination at MRI and persistence of transduced hematopoietic progenitors support that LV gene therapy may be a safe and durable treatment of c-ALD. However, the neurological degradation observed in three out of four patients mitigates the benefit of this therapy, calling for an earlier intervention, more potent vectors, and additional therapeutic strategies.
Collapse
Affiliation(s)
- Pierre Bougnères
- UMR1195 INSERM, Le Kremlin Bicêtre, France.,Université Paris Saclay, MIRCen Institute/Neuratris, Fontenay-aux-Roses, France.,Therapy Design Consulting, Vincennes, France
| | - Salima Hacein-Bey-Abina
- Clinical Immunology Laboratory, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris Saclay, Paris, France.,UTCBS, CNRS UMR8258, INSERM U1267, Faculté de Pharmacie de Paris, Université de Paris, Le Kremlin-Bicêtre, France
| | | | | | - Clémence Castaignède
- Pediatric Neurology, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Céline Bellesme
- Pediatric Neurology, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
21
|
Afzal S, Fronza R, Schmidt M. VSeq-Toolkit: Comprehensive Computational Analysis of Viral Vectors in Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:752-757. [PMID: 32346552 PMCID: PMC7177155 DOI: 10.1016/j.omtm.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
Viral vector characterization and analysis are important components for the development of safe gene therapeutic products, elucidating the potential genotoxic and immunogenic effects of vectors and establishing their safety profiles. Here, we present VSeq-Toolkit, which offers varying analysis modes for viral gene therapy data. The first mode determines the undesirable known contaminants and their frequency in viral preparations or other sequencing data. The second mode is designed for the analysis of intra-vector fusion breakpoints and the third mode for unraveling the viral-host fusion events distribution. Analysis modes of our toolkit can be executed independently or together and allow the analysis of multiple viral vectors concurrently. It has been designed and evaluated for the analysis of short read high-throughput sequencing data, including whole-genome or targeted sequencing. VSeq-Toolkit is developed in Perl and Bash programming languages and is available at https://github.com/CompMeth/VSeq-Toolkit.
Collapse
Affiliation(s)
- Saira Afzal
- Department of Translational Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Corresponding author: Saira Afzal, Department of Translational Oncology (G100), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | | | - Manfred Schmidt
- Department of Translational Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| |
Collapse
|
22
|
Calabria A, Beretta S, Merelli I, Spinozzi G, Brasca S, Pirola Y, Benedicenti F, Tenderini E, Bonizzoni P, Milanesi L, Montini E. γ-TRIS: a graph-algorithm for comprehensive identification of vector genomic insertion sites. Bioinformatics 2020; 36:1622-1624. [PMID: 31589304 PMCID: PMC7703754 DOI: 10.1093/bioinformatics/btz747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Abstract
Summary Retroviruses and their vector derivatives integrate semi-randomly in the genome of host cells and are inherited by their progeny as stable genetic marks. The retrieval and mapping of the sequences flanking the virus-host DNA junctions allows the identification of insertion sites in gene therapy or virally infected patients, essential for monitoring the evolution of genetically modified cells in vivo. However, since ∼30% of insertions land in low complexity or repetitive regions of the host cell genome, they cannot be correctly assigned and are currently discarded, limiting the accuracy and predictive power of clonal tracking studies. Here, we present γ-TRIS, a new graph-based genome-free alignment tool for identifying insertion sites even if embedded in low complexity regions. By using γ-TRIS to reanalyze clinical studies, we observed improvements in clonal quantification and tracking. Availability and implementation Source code at https://bitbucket.org/bereste/g-tris. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Stefano Beretta
- Università degli Studi di Milano Bicocca, Dipartimento di Informatica Sistemistica e Comunicazione (DiSCO), Viale Sarca, 336, 20126, Milano, Italy.,National Research Council, Institute for Biomedical Technologies, Via Fratelli Cervi, 93, 20090, Segrate, Italy
| | - Ivan Merelli
- National Research Council, Institute for Biomedical Technologies, Via Fratelli Cervi, 93, 20090, Segrate, Italy
| | - Giulio Spinozzi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.,Università degli Studi di Milano Bicocca, Dipartimento di Informatica Sistemistica e Comunicazione (DiSCO), Viale Sarca, 336, 20126, Milano, Italy
| | - Stefano Brasca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Yuri Pirola
- Università degli Studi di Milano Bicocca, Dipartimento di Informatica Sistemistica e Comunicazione (DiSCO), Viale Sarca, 336, 20126, Milano, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Erika Tenderini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Paola Bonizzoni
- Università degli Studi di Milano Bicocca, Dipartimento di Informatica Sistemistica e Comunicazione (DiSCO), Viale Sarca, 336, 20126, Milano, Italy
| | - Luciano Milanesi
- National Research Council, Institute for Biomedical Technologies, Via Fratelli Cervi, 93, 20090, Segrate, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| |
Collapse
|
23
|
Río P, Navarro S, Wang W, Sánchez-Domínguez R, Pujol RM, Segovia JC, Bogliolo M, Merino E, Wu N, Salgado R, Lamana ML, Yañez RM, Casado JA, Giménez Y, Román-Rodríguez FJ, Álvarez L, Alberquilla O, Raimbault A, Guenechea G, Lozano ML, Cerrato L, Hernando M, Gálvez E, Hladun R, Giralt I, Barquinero J, Galy A, García de Andoín N, López R, Catalá A, Schwartz JD, Surrallés J, Soulier J, Schmidt M, Díaz de Heredia C, Sevilla J, Bueren JA. Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia. Nat Med 2019; 25:1396-1401. [PMID: 31501599 DOI: 10.1038/s41591-019-0550-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a DNA repair syndrome generated by mutations in any of the 22 FA genes discovered to date1,2. Mutations in FANCA account for more than 60% of FA cases worldwide3,4. Clinically, FA is associated with congenital abnormalities and cancer predisposition. However, bone marrow failure is the primary pathological feature of FA that becomes evident in 70-80% of patients with FA during the first decade of life5,6. In this clinical study (ClinicalTrials.gov, NCT03157804 ; European Clinical Trials Database, 2011-006100-12), we demonstrate that lentiviral-mediated hematopoietic gene therapy reproducibly confers engraftment and proliferation advantages of gene-corrected hematopoietic stem cells (HSCs) in non-conditioned patients with FA subtype A. Insertion-site analyses revealed the multipotent nature of corrected HSCs and showed that the repopulation advantage of these cells was not due to genotoxic integrations of the therapeutic provirus. Phenotypic correction of blood and bone marrow cells was shown by the acquired resistance of hematopoietic progenitors and T lymphocytes to DNA cross-linking agents. Additionally, an arrest of bone marrow failure progression was observed in patients with the highest levels of gene marking. The progressive engraftment of corrected HSCs in non-conditioned patients with FA supports that gene therapy should constitute an innovative low-toxicity therapeutic option for this life-threatening disorder.
Collapse
Affiliation(s)
- Paula Río
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Susana Navarro
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Wei Wang
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany.,GeneWerk, Heidelberg, Germany
| | - Rebeca Sánchez-Domínguez
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Roser M Pujol
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Instituto de Investigaciones Biomédicas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - José C Segovia
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Massimo Bogliolo
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Instituto de Investigaciones Biomédicas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Eva Merino
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Servicio de Hematología y Oncología Pediátrica, Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Ning Wu
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Rocío Salgado
- Servicio de Hematología, Hospital Universitario Fundación Jiménez Diaz, Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - María L Lamana
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Rosa M Yañez
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - José A Casado
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Yari Giménez
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Francisco J Román-Rodríguez
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Lara Álvarez
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Omaira Alberquilla
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Anna Raimbault
- Université de Paris (IRSL, INSERM, CNRS), Paris, France.,Hôpital Saint-Louis, Paris, France
| | - Guillermo Guenechea
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - M Luz Lozano
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Laura Cerrato
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Miriam Hernando
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Eva Gálvez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Servicio de Hematología y Oncología Pediátrica, Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Raquel Hladun
- Servicio de Oncología y Hematología Pediátricas, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Irina Giralt
- Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | | | | | | | - Ricardo López
- Osakidetza Basque Health Service, Pediatric Oncology and Hematology Unit, Cruces University Hospital, Barakaldo, Spain
| | - Albert Catalá
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Servicio de Hematología y Oncología, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Jordi Surrallés
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Instituto de Investigaciones Biomédicas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jean Soulier
- Université de Paris (IRSL, INSERM, CNRS), Paris, France.,Hôpital Saint-Louis, Paris, France
| | - Manfred Schmidt
- Division of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany.,GeneWerk, Heidelberg, Germany
| | - Cristina Díaz de Heredia
- Servicio de Oncología y Hematología Pediátricas, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Julián Sevilla
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.,Servicio de Hematología y Oncología Pediátrica, Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Juan A Bueren
- Hematopoietic Innovative Therapies Division, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain. .,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
24
|
Di WL, Lwin SM, Petrova A, Bernadis C, Syed F, Farzaneh F, Moulding D, Martinez AE, Sebire NJ, Rampling D, Virasami A, Zamiri M, Wang W, Hara H, Kadiyirire T, Abdul-Wahab A, Martinez-Queipo M, Harper JI, McGrath JA, Thrasher AJ, Mellerio JE, Qasim W. Generation and Clinical Application of Gene-Modified Autologous Epidermal Sheets in Netherton Syndrome: Lessons Learned from a Phase 1 Trial. Hum Gene Ther 2019; 30:1067-1078. [PMID: 31288584 DOI: 10.1089/hum.2019.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Netherton syndrome (NS) is a rare autosomal recessive skin disorder caused by mutations in SPINK5. It is a debilitating condition with notable mortality in the early years of life. There is no curative treatment. We undertook a nonrandomized, open-label, feasibility, and safety study using autologous keratinocytes transduced with a lentiviral vector encoding SPINK5 under the control of the human involucrin promoter. Six NS subjects were recruited, and gene-modified epithelial sheets were successfully generated in three of five subjects. The sheets exhibited expression of correctly sized lympho-epithelial Kazal-type-related inhibitor (LEKTI) protein after modification. One subject was grafted with a 20 cm2 gene-modified graft on the left anterior thigh without any adverse complications and was monitored by serial sampling for 12 months. Recovery within the graft area was compared against an area outside by morphology, proviral copy number and expression of the SPINK5 encoded protein, LEKTI, and its downstream target kallikrein 5, which exhibited transient functional correction. The study confirmed the feasibility of generating lentiviral gene-modified epidermal sheets for inherited skin diseases such as NS, but sustained LEKTI expression is likely to require the identification, targeting, and engraftment of long-lived keratinocyte stem cell populations for durable therapeutic effects. Important learning points for the application of gene-modified epidermal sheets are discussed.
Collapse
Affiliation(s)
- Wei-Li Di
- Infection, Immunity and Inflammation Programme, UCL GOS Institute of Child Health, London, United Kingdom
| | - Su M Lwin
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | - Anastasia Petrova
- Infection, Immunity and Inflammation Programme, UCL GOS Institute of Child Health, London, United Kingdom
| | - Catina Bernadis
- Plastic Surgery Unit, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Farhatullah Syed
- Infection, Immunity and Inflammation Programme, UCL GOS Institute of Child Health, London, United Kingdom
| | - Farzin Farzaneh
- Cell and Gene Therapy-King's (CGT-K), School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Dale Moulding
- Light Microscopy Core Facility, UCL GOS Institute of Child Health, London, United Kingdom
| | - Anna E Martinez
- Dermatology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Neil J Sebire
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Dyanne Rampling
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Alex Virasami
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Mozheh Zamiri
- School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Wei Wang
- Department of Translational Oncology, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Heidelberg, Germany.,GeneWerk GmbH, Heidelberg, Germany
| | - Havinder Hara
- Infection, Immunity and Inflammation Programme, UCL GOS Institute of Child Health, London, United Kingdom
| | - Tendai Kadiyirire
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | - Alya Abdul-Wahab
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | | | - John I Harper
- Infection, Immunity and Inflammation Programme, UCL GOS Institute of Child Health, London, United Kingdom
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Programme, UCL GOS Institute of Child Health, London, United Kingdom
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | - Waseem Qasim
- Infection, Immunity and Inflammation Programme, UCL GOS Institute of Child Health, London, United Kingdom
| |
Collapse
|
25
|
Huang D, Zhao D, Li J, Wu Y, Du L, Xia XH, Li X, Deng Y, Li Z, Huang Y. Continuous Vector-free Gene Transfer with a Novel Microfluidic Chip and Nanoneedle Array. Curr Drug Deliv 2019; 16:164-170. [PMID: 30332957 DOI: 10.2174/1567201815666181017095044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/24/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Delivery of foreign cargoes into cells is of great value for bioengineering research and therapeutic applications. OBJECTIVE In this study, we proposed and established a carrier-free gene delivery platform utilizing staggered herringbone channel and silicon nanoneedle array, to achieve high-throughput in vitro gene transfection. METHODS With this microchip, fluidic micro vortices could be induced by the staggered-herringboneshaped grooves within the channel, which increased the contact frequency of the cells with the channel substrate. Transient disruptions on the cell membrane were well established by the nanoneedle array on the substrate. RESULT Compared to the conventional nanoneedle-based delivery system, proposed microfluidic chip achieved flow-through treatment with high gene transfection efficiency (higher than 20%) and ideal cell viability (higher than 95%). CONCLUSION It provides a continuous processing environment that can satisfy the transfection requirement of large amounts of biological molecules, showing high potential and promising prospect for both basic research and clinical application.
Collapse
Affiliation(s)
- Dong Huang
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Deyao Zhao
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Jinhui Li
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Yuting Wu
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Lili Du
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Xin-Hua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiaoqiong Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotheranotics, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotheranotics, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhihong Li
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotheranotics, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
26
|
AAVvector-mediated in vivo reprogramming into pluripotency. Nat Commun 2018; 9:2651. [PMID: 29985406 PMCID: PMC6037684 DOI: 10.1038/s41467-018-05059-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
In vivo reprogramming of somatic cells into induced pluripotent stem cells (iPSC) holds vast potential for basic research and regenerative medicine. However, it remains hampered by a need for vectors to express reprogramming factors (Oct-3/4, Klf4, Sox2, c-Myc; OKSM) in selected organs. Here, we report OKSM delivery vectors based on pseudotyped Adeno-associated virus (AAV). Using the AAV-DJ capsid, we could robustly reprogram mouse embryonic fibroblasts with low vector doses. Swapping to AAV8 permitted to efficiently reprogram somatic cells in adult mice by intravenous vector delivery, evidenced by hepatic or extra-hepatic teratomas and iPSC in the blood. Notably, we accomplished full in vivo reprogramming without c-Myc. Most iPSC generated in vitro or in vivo showed transcriptionally silent, intronic or intergenic vector integration, likely reflecting the increased host genome accessibility during reprogramming. Our approach crucially advances in vivo reprogramming technology, and concurrently facilitates investigations into the mechanisms and consequences of AAV persistence. In vivo reprogramming of somatic cells is hampered by the need for vectors to express the OKSM factors in selected organs. Here the authors report new AAV-based vectors capable of in vivo reprogramming at low doses.
Collapse
|
27
|
VISPA2: a scalable pipeline for high-throughput identification and annotation of vector integration sites. BMC Bioinformatics 2017; 18:520. [PMID: 29178837 PMCID: PMC5702242 DOI: 10.1186/s12859-017-1937-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 01/09/2023] Open
Abstract
Background Bioinformatics tools designed to identify lentiviral or retroviral vector insertion sites in the genome of host cells are used to address the safety and long-term efficacy of hematopoietic stem cell gene therapy applications and to study the clonal dynamics of hematopoietic reconstitution. The increasing number of gene therapy clinical trials combined with the increasing amount of Next Generation Sequencing data, aimed at identifying integration sites, require both highly accurate and efficient computational software able to correctly process “big data” in a reasonable computational time. Results Here we present VISPA2 (Vector Integration Site Parallel Analysis, version 2), the latest optimized computational pipeline for integration site identification and analysis with the following features: (1) the sequence analysis for the integration site processing is fully compliant with paired-end reads and includes a sequence quality filter before and after the alignment on the target genome; (2) an heuristic algorithm to reduce false positive integration sites at nucleotide level to reduce the impact of Polymerase Chain Reaction or trimming/alignment artifacts; (3) a classification and annotation module for integration sites; (4) a user friendly web interface as researcher front-end to perform integration site analyses without computational skills; (5) the time speedup of all steps through parallelization (Hadoop free). Conclusions We tested VISPA2 performances using simulated and real datasets of lentiviral vector integration sites, previously obtained from patients enrolled in a hematopoietic stem cell gene therapy clinical trial and compared the results with other preexisting tools for integration site analysis. On the computational side, VISPA2 showed a > 6-fold speedup and improved precision and recall metrics (1 and 0.97 respectively) compared to previously developed computational pipelines. These performances indicate that VISPA2 is a fast, reliable and user-friendly tool for integration site analysis, which allows gene therapy integration data to be handled in a cost and time effective fashion. Moreover, the web access of VISPA2 (http://openserver.itb.cnr.it/vispa/) ensures accessibility and ease of usage to researches of a complex analytical tool. We released the source code of VISPA2 in a public repository (https://bitbucket.org/andreacalabria/vispa2). Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1937-9) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Shieh FS, Jongeneel P, Steffen JD, Lin S, Jain S, Song W, Su YH. ChimericSeq: An open-source, user-friendly interface for analyzing NGS data to identify and characterize viral-host chimeric sequences. PLoS One 2017; 12:e0182843. [PMID: 28829778 PMCID: PMC5567911 DOI: 10.1371/journal.pone.0182843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq’s pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community.
Collapse
Affiliation(s)
- Fwu-Shan Shieh
- JBS Science, Inc., Doylestown, Pennsylvania, United States of America
- U-Screen Dx Inc., Doylestown, Pennsylvania, United States of America
| | - Patrick Jongeneel
- JBS Science, Inc., Doylestown, Pennsylvania, United States of America
| | - Jamin D. Steffen
- JBS Science, Inc., Doylestown, Pennsylvania, United States of America
| | - Selena Lin
- U-Screen Dx Inc., Doylestown, Pennsylvania, United States of America
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Surbhi Jain
- JBS Science, Inc., Doylestown, Pennsylvania, United States of America
| | - Wei Song
- JBS Science, Inc., Doylestown, Pennsylvania, United States of America
- U-Screen Dx Inc., Doylestown, Pennsylvania, United States of America
- * E-mail: (Y.H.S.); (W.S.)
| | - Ying-Hsiu Su
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- The Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail: (Y.H.S.); (W.S.)
| |
Collapse
|