1
|
Xu C, Yi M, Xiao Z, Xiang F, Wu M, Zhang Z, Zheng Y, Gong Y, Li Y, Su L, Liao Y, Zhang P, Xia B, Liao D, Lin L. New idea of Fuke Qianjin capsule in treating sequelae of pelvic inflammatory disease: Anti-inflammatory in the early stage and reparative in the later stage. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119066. [PMID: 39528116 DOI: 10.1016/j.jep.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sequelae of pelvic inflammatory disease (SPID) occurs in female internal genitalia and surrounding connective tissue. Recent clinical studies have shown that the traditional Chinese medicine Fuke Qianjin capsule (FKQ) can shorten the course of this disease, but its pharmacological effects and potential mechanism have not been fully elucidated. AIM OF THE STUDY This study aimed to investigate the efficacy and underlying mechanisms of FKQ in the treatment of SPID. METHODS In this study, we first established a mixed infection model to explore the protective effect of FKQ on common pathogens of SPID. Afterwards, mixed bacterial infection and mechanical injury were used in a SPID rat model to explore the protective mechanism of FKQ on SPID rats. Inflammation, repair and immune cells were tested. RESULTS FKQ has a protective effect against infections caused by SPID pathogenic bacterial and may reduce mortality from mixed infections. In the SPID model, FKQ improved pathological damage to the uterus, reduced the area of uterine fibrosis, and inhibited the levels of cytokines (TNF-α, IL-6, IL-1β, IL-18, TGF-β1 and VEGF) caused by pathogenic bacteria. Moreover, FKQ treatment reduced the accumulation of NLRP3, Caspase-1, GSDMD Vimentin, and Cytokeratin 18 in the uterus and suppressed the expression of TGF-β1 and VEGF in the fallopian tubes, thereby reducing inflammation and promoting mucosal repair. In addition, FKQ can restore the immune function balance of SPID rats by increasing the proportion of Treg cells in the spleen and thymus in a rat model of SPID, reducing the proportion of Th17 lymphocytes, and promoting an immunological balance of Treg/Th17 cells, thereby regulating the immune system of the body. CONCLUSION In summary, FKQ treatment for SPID is the result of a fourfold combination of antibacterial, anti-inflammatory, reparative and immune-enhancing activities.
Collapse
Affiliation(s)
- Chunfang Xu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Meijin Yi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhikui Xiao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Mengyao Wu
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yuanqing Zheng
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Liang Su
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Yingyan Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Li Y, He Y. Therapeutic applications of stem cell-derived exosomes in radiation-induced lung injury. Cancer Cell Int 2024; 24:403. [PMID: 39695650 DOI: 10.1186/s12935-024-03595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Radiation-induced lung injury is a common complication of chest tumor radiotherapy; however, effective clinical treatments are still lacking. Stem cell-derived exosomes, which contain various signaling molecules such as proteins, lipids, and miRNAs, not only retain the tissue repair and reconstruction properties of stem cells but also offer improved stability and safety. This presents significant potential for treating radiation-induced lung injury. Nonetheless, the clinical adoption of stem cell-derived exosomes for this purpose remains limited due to scientific, practical, and regulatory challenges. In this review, we highlight the current pathology and therapies for radiation-induced lung injury, focusing on the potential applications and therapeutic mechanisms of stem cell-derived exosomes. We also discuss the limitations of existing stem cell-derived exosomes and outline future directions for exosome-based treatments for radiation-induced lung injury.
Collapse
Affiliation(s)
- Ying Li
- Department of Radiotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan He
- Department of Radiotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Al Saihati HA, Badr OA, Dessouky AA, Mostafa O, Samir Farid A, Aborayah NH, Abdullah Aljasir M, Baioumy B, Mahmoud Taha N, El-Sherbiny M, Hamed Al-Serwi R, Ramadan MM, Salim RF, Shaheen D, E M Ali F, Ebrahim N. Exploring the cytoprotective role of mesenchymal stem Cell-Derived exosomes in chronic liver Fibrosis: Insights into the Nrf2/Keap1/p62 signaling pathway. Int Immunopharmacol 2024; 141:112934. [PMID: 39178516 DOI: 10.1016/j.intimp.2024.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Hepatic fibrosis is a common pathology present in most chronic liver diseases. Autophagy is a lysosome-mediated intracellular catabolic and recycling process that plays an essential role in maintaining normal hepatic functions. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor responsible for the regulation of cellular anti-oxidative stress response. This study was designed to assess the cytoprotective effect of mesenchymal stem cell-derived exosomes (MSC-exos) on endothelial-mesenchymal transition (EMT) in Carbon Tetrachloride (CCL4) induced liver fibrosis. Rats were treated with 0.1 ml of CCL4 twice weekly for 8 weeks, followed by administration of a single dose of MSC-exos. Rats were then sacrificed after 4 weeks, and liver samples were collected for gene expression analyses, Western blot, histological studies, immunohistochemistry, and transmission electron microscopy. Our results showed that MSC-exos administration decreased collagen deposition, apoptosis, and inflammation. Exosomes modulate the Nrf2/Keap1/p62 pathway, restoring autophagy and Nrf2 levels through modulation of the non-canonical pathway of Nrf2/Keap1/p62. Additionally, MSC-exos regulated miR-153-3p, miR-27a, miR-144 and miRNA-34a expression. In conclusion, the present study shed light on MSC-exos as a cytoprotective agent against EMT and tumorigenesis in chronic liver inflammation.
Collapse
Affiliation(s)
- Hajir A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Saudi Arabia.
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Egypt.
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Ola Mostafa
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Egypt.
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt.
| | - Nashwa H Aborayah
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Egypt, Department of Pharmacology, Mutah University, Mutah 61710, Jordan.
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Bodour Baioumy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Egypt.
| | | | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt.
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah City, United Arab Emirates; Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt.
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha Universit, Egypt.
| | - Dalia Shaheen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Stem Cell Unit, Egypt.
| |
Collapse
|
4
|
Chang J, Huang C, Li S, Jiang X, Chang H, Li M. Research Progress Regarding the Effect and Mechanism of Dietary Polyphenols in Liver Fibrosis. Molecules 2023; 29:127. [PMID: 38202710 PMCID: PMC10779665 DOI: 10.3390/molecules29010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The development of liver fibrosis is a result of chronic liver injuries may progress to liver cirrhosis and liver cancer. In recent years, liver fibrosis has become a major global problem, and the incidence rate and mortality are increasing year by year. However, there are currently no approved treatments. Research on anti-liver-fibrosis drugs is a top priority. Dietary polyphenols, such as plant secondary metabolites, have remarkable abilities to reduce lipid metabolism, insulin resistance and inflammation, and are attracting more and more attention as potential drugs for the treatment of liver diseases. Gradually, dietary polyphenols are becoming the focus for providing an improvement in the treatment of liver fibrosis. The impact of dietary polyphenols on the composition of intestinal microbiota and the subsequent production of intestinal microbial metabolites has been observed to indirectly modulate signaling pathways in the liver, thereby exerting regulatory effects on liver disease. In conclusion, there is evidence that dietary polyphenols can be therapeutically useful in preventing and treating liver fibrosis, and we highlight new perspectives and key questions for future drug development.
Collapse
Affiliation(s)
- Jiayin Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Congying Huang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Siqi Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Xiaolei Jiang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou 014040, China
| |
Collapse
|
5
|
Gwon MG, Leem J, An HJ, Gu H, Bae S, Kim JH, Park KK. The decoy oligodeoxynucleotide against HIF-1α and STAT5 ameliorates atopic dermatitis-like mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102036. [PMID: 37799329 PMCID: PMC10550406 DOI: 10.1016/j.omtn.2023.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease caused by an immune disorder. Mast cells are known to be activated and granulated to maintain an allergic reaction, including rhinitis, asthma, and AD. Although hypoxia-inducible factor-1 alpha (HIF-1α) and signal transducer and activator of transcription 5 (STAT5) play crucial roles in mast cell survival and granulation, their effects need to be clarified in allergic disorders. Thus, we designed decoy oligodeoxynucleotide (ODN) synthetic DNA, without open ends, containing complementary sequences for HIF-1α and STAT5 to suppress the transcriptional activities of HIF-1α and STAT5. In this study, we demonstrated the effects of HIF-1α/STAT5 ODN using AD-like in vivo and in vitro models. The HIF-1α/STAT5 decoy ODN significantly alleviated cutaneous symptoms similar to AD, including morphology changes, immune cell infiltration, skin barrier dysfunction, and inflammatory response. In the AD model, it also inhibited mast cell infiltration and degranulation in skin tissue. These results suggest that the HIF-1α/STAT5 decoy ODN ameliorates the AD-like disorder and immunoglobulin E (IgE)-induced mast cell activation by disrupting HIF-1α/STAT5 signaling pathways. Taken together, these findings suggest the possibility of HIF-1α/STAT5 as therapeutic targets and their decoy ODN as a potential therapeutic tool for AD.
Collapse
Affiliation(s)
- Mi-Gyeong Gwon
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Hyun-Jin An
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Hyemin Gu
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Seongjae Bae
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Jong Hyun Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| |
Collapse
|
6
|
Gole L, Liu F, Ong KH, Li L, Han H, Young D, Marini GPL, Wee A, Zhao J, Rao H, Yu W, Wei L. Quantitative image-based collagen structural features predict the reversibility of hepatitis C virus-induced liver fibrosis post antiviral therapies. Sci Rep 2023; 13:6384. [PMID: 37076590 PMCID: PMC10115775 DOI: 10.1038/s41598-023-33567-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
The novel targeted therapeutics for hepatitis C virus (HCV) in last decade solved most of the clinical needs for this disease. However, despite antiviral therapies resulting in sustained virologic response (SVR), a challenge remains where the stage of liver fibrosis in some patients remains unchanged or even worsens, with a higher risk of cirrhosis, known as the irreversible group. In this study, we provided novel tissue level collagen structural insight into early prediction of irreversible cases via image based computational analysis with a paired data cohort (of pre- and post-SVR) following direct-acting-antiviral (DAA)-based treatment. Two Photon Excitation and Second Harmonic Generation microscopy was used to image paired biopsies from 57 HCV patients and a fully automated digital collagen profiling platform was developed. In total, 41 digital image-based features were profiled where four key features were discovered to be strongly associated with fibrosis reversibility. The data was validated for prognostic value by prototyping predictive models based on two selected features: Collagen Area Ratio and Collagen Fiber Straightness. We concluded that collagen aggregation pattern and collagen thickness are strong indicators of liver fibrosis reversibility. These findings provide the potential implications of collagen structural features from DAA-based treatment and paves the way for a more comprehensive early prediction of reversibility using pre-SVR biopsy samples to enhance timely medical interventions and therapeutic strategies. Our findings on DAA-based treatment further contribute to the understanding of underline governing mechanism and knowledge base of structural morphology in which the future non-invasive prediction solution can be built upon.
Collapse
Affiliation(s)
- Laurent Gole
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
| | - Feng Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China
| | - Kok Haur Ong
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | - Longjie Li
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | - Hao Han
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
| | - David Young
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
| | - Gabriel Pik Liang Marini
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | - Aileen Wee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital, Singapore, Singapore
| | - Jingmin Zhao
- Department of Pathology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Huiying Rao
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China.
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore.
- Bioinformatics Institute, A*STAR, Singapore, Singapore.
| | - Lai Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China.
- Department of Hepatobiliary and Pancreatic Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
7
|
Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, Bishayee A, Kumar AP, Sethi G. Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev 2023. [PMID: 36929669 DOI: 10.1002/med.21948] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a complex process with a primordial role in cellular transformation whereby an epithelial cell transforms and acquires a mesenchymal phenotype. This transformation plays a pivotal role in tumor progression and self-renewal, and exacerbates resistance to apoptosis and chemotherapy. EMT can be initiated and promoted by deregulated oncogenic signaling pathways, hypoxia, and cells in the tumor microenvironment, resulting in a loss-of-epithelial cell polarity, cell-cell adhesion, and enhanced invasive/migratory properties. Numerous transcriptional regulators, such as Snail, Slug, Twist, and ZEB1/ZEB2 induce EMT through the downregulation of epithelial markers and gain-of-expression of the mesenchymal markers. Additionally, signaling cascades such as Wnt/β-catenin, Notch, Sonic hedgehog, nuclear factor kappa B, receptor tyrosine kinases, PI3K/AKT/mTOR, Hippo, and transforming growth factor-β pathways regulate EMT whereas they are often deregulated in cancers leading to aberrant EMT. Furthermore, noncoding RNAs, tumor-derived exosomes, and epigenetic alterations are also involved in the modulation of EMT. Therefore, the regulation of EMT is a vital strategy to control the aggressive metastatic characteristics of tumor cells. Despite the vast amount of preclinical data on EMT in cancer progression, there is a lack of clinical translation at the therapeutic level. In this review, we have discussed thoroughly the role of the aforementioned transcription factors, noncoding RNAs (microRNAs, long noncoding RNA, circular RNA), signaling pathways, epigenetic modifications, and tumor-derived exosomes in the regulation of EMT in cancers. We have also emphasized the contribution of EMT to drug resistance and possible therapeutic interventions using plant-derived natural products, their semi-synthetic derivatives, and nano-formulations that are described as promising EMT blockers.
Collapse
Affiliation(s)
- Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hin Chong Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia Centre for Materials Interface, Pontedera, Pisa, Italy
| | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Kovner A, Zaparina O, Kapushchak Y, Minkova G, Mordvinov V, Pakharukova M. Jagged-1/Notch Pathway and Key Transient Markers Involved in Biliary Fibrosis during Opisthorchis felineus Infection. Trop Med Infect Dis 2022; 7:364. [PMID: 36355906 PMCID: PMC9697314 DOI: 10.3390/tropicalmed7110364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/20/2023] Open
Abstract
Chronic opisthorchiasis associated with Opisthorchis felineus infection is accompanied by severe fibrotic complications. It is of high practical significance to elucidate the mechanisms of hepatic fibrosis in chronic infection dynamics. The goal of the study is to investigate the temporal profile of key markers and the Jagged1/Notch signaling pathway in the implementation of fibrosis in a chronic O. felineus infection. For the first time, using histological methods and real-time PCR analysis, we demonstrated the activation of the Jagged1/Notch pathway in liver fibrogenesis, including the activation of the Hes1 and Hey1 target genes during experimental opisthorchiasis in Mesocricetus auratus. Cluster analysis followed by regression analysis of key markers during the infection showed that Jagged1 and Mmp9have the greatest contribution to the development of cholangiofibrosis and periductal fibrosis. Moreover, we detected a significant increase in the number of Jagged1-positive cells in the liver of chronic opisthorchiasis patients compared to that of the control group without infection. The results of the study are extremely informative both in terms of investigation both diverse fibrosis mechanisms as well as potential targets in complex antihelmintic therapy.
Collapse
Affiliation(s)
- Anna Kovner
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Oxana Zaparina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yaroslav Kapushchak
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Galina Minkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Viatcheslav Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Maria Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Institute of Molecular Biology and Biophysics, Subdivision of FRC FTM, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630117, Russia
| |
Collapse
|
9
|
Munakarmi S, Gurau Y, Shrestha J, Risal P, Park HS, Shin HB, Jeong YJ. Hepatoprotective Effects of a Natural Flavanol 3,3'-Diindolylmethane against CCl 4-Induced Chronic Liver Injury in Mice and TGFβ1-Induced EMT in Mouse Hepatocytes via Activation of Nrf2 Cascade. Int J Mol Sci 2022; 23:ijms231911407. [PMID: 36232707 PMCID: PMC9569868 DOI: 10.3390/ijms231911407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis is a form of irregular wound-healing response with acute and chronic injury triggered by the deposition of excessive extracellular matrix. Epithelial-mesenchymal transition (EMT) is a dynamic process that plays a crucial role in the fibrogenic response and pathogenesis of liver fibrosis. In the present study, we postulated a protective role of 3,3'-diindolylmethane (DIM) against TGF-β1 mediated epithelial-mesenchymal transition (EMT) in vitro and carbon tetrachloride (CCl4)-induced liver fibrosis in mice. TGF-β1-induced AML-12 hepatocyte injury was evaluated by monitoring cell morphology, measuring reactive oxygen species (ROS) and mitochondrial membrane potential, and quantifying apoptosis, inflammatory, and EMT-related proteins. Furthermore, CCl4-induced liver fibrosis in mice was evaluated by performing liver function tests, including serum ALT and AST, total bilirubin, and albumin to assess liver injury and by performing H&E and Sirius red staining to determine the degree of liver fibrosis. Immunoblotting was performed to determine the expression levels of inflammation, apoptosis, and Nrf2/HO-1 signaling-related proteins. DIM treatment significantly restored TGF-β1-induced morphological changes, inhibited the expression of mesenchymal markers by activating E-cadherin, decreased mitochondrial membrane potential, reduced ROS intensity, and upregulated levels of Nrf2-responsive antioxidant genes. In the mouse model of CCl4-induced liver fibrosis, DIM remarkably attenuated liver injury and liver fibrosis, as reflected by the reduced ALT and AST parameters with increased serum Alb activity and fewer lesions in H&E staining. It also mitigated the fibrosis area in Sirius red and Masson staining. Taken together, our results suggest a possible molecular mechanism of DIM by suppressing TGF-β1-induced EMT in mouse hepatocytes and CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yamuna Gurau
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Juna Shrestha
- Alka Hospital Private Limited, Jwalakhel, Kathmandu 446010, Nepal
| | - Prabodh Risal
- Department of Biochemistry, School of Medical Sciences, Kathmandu University, Dhulikhel 45200, Nepal
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Pathology, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Hyun Beak Shin
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yeon Jun Jeong
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence:
| |
Collapse
|
10
|
Synthetic Non-Coding RNA for Suppressing mTOR Translation to Prevent Renal Fibrosis Related to Autophagy in UUO Mouse Model. Int J Mol Sci 2022; 23:ijms231911365. [PMID: 36232665 PMCID: PMC9569483 DOI: 10.3390/ijms231911365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
The global burden of chronic kidney disease is increasing, and the majority of these diseases are progressive. Special site-targeted drugs are emerging as alternatives to traditional drugs. Oligonucleotides (ODNs) have been proposed as effective therapeutic tools in specific molecular target therapies for several diseases. We designed ring-type non-coding RNAs (ncRNAs), also called mTOR ODNs to suppress mammalian target rapamycin (mTOR) translation. mTOR signaling is associated with excessive cell proliferation and fibrogenesis. In this study, we examined the effects of mTOR suppression on chronic renal injury. To explore the regulation of fibrosis and inflammation in unilateral ureteral obstruction (UUO)-induced injury, we injected synthesized ODNs via the tail vein of mice. The expression of inflammatory-related markers (interleukin-1β, tumor necrosis factor-α), and that of fibrosis (α-smooth muscle actin, fibronectin), was decreased by synthetic ODNs. Additionally, ODN administration inhibited the expression of autophagy-related markers, microtubule-associated protein light chain 3, Beclin1, and autophagy-related gene 5-12. We confirmed that ring-type ODNs inhibited fibrosis, inflammation, and autophagy in a UUO mouse model. These results suggest that mTOR may be involved in the regulation of autophagy and fibrosis and that regulating mTOR signaling may be a therapeutic strategy against chronic renal injury.
Collapse
|
11
|
Lee SJ, Kim YA, Park KK. Anti-Fibrotic Effect of Synthetic Noncoding Decoy ODNs for TFEB in an Animal Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23158138. [PMID: 35897713 PMCID: PMC9330689 DOI: 10.3390/ijms23158138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Despite emerging evidence suggesting that autophagy occurs during renal interstitial fibrosis, the role of autophagy activation in fibrosis and the mechanism by which autophagy influences fibrosis remain controversial. Transcription factor EB (TFEB) is a master regulator of autophagy-related gene transcription, lysosomal biogenesis, and autophagosome formation. In this study, we examined the preventive effects of TFEB suppression on renal fibrosis. We injected synthesized TFEB decoy oligonucleotides (ODNs) into the tail veins of unilateral ureteral obstruction (UUO) mice to explore the regulation of autophagy in UUO-induced renal fibrosis. The expression of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and collagen was decreased by TFEB decoy ODN. Additionally, TEFB ODN administration inhibited the expression of microtubule-associated protein light chain 3 (LC3), Beclin1, and hypoxia-inducible factor-1α (HIF-1α). We confirmed that TFEB decoy ODN inhibited fibrosis and autophagy in a UUO mouse model. The TFEB decoy ODNs also showed anti-inflammatory effects. Collectively, these results suggest that TFEB may be involved in the regulation of autophagy and fibrosis and that regulating TFEB activity may be a promising therapeutic strategy against kidney diseases.
Collapse
|
12
|
Jung HJ, An HJ, Gwon MG, Gu H, Bae S, Lee SJ, Kim YA, Leem J, Park KK. Anti-Fibrotic Effect of Synthetic Noncoding Oligodeoxynucleotide for Inhibiting mTOR and STAT3 via the Regulation of Autophagy in an Animal Model of Renal Injury. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030766. [PMID: 35164031 PMCID: PMC8840279 DOI: 10.3390/molecules27030766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Renal fibrosis is a common process of various kidney diseases. Autophagy is an important cell biology process to maintain cellular homeostasis. In addition, autophagy is involved in the pathogenesis of various renal disease, including acute kidney injury, glomerular diseases, and renal fibrosis. However, the functional role of autophagy in renal fibrosis remains poorly unclear. The mammalian target of rapamycin (mTOR) plays a negative regulatory role in autophagy. Signal transducer and activator of transcription 3 (STAT3) is an important intracellular signaling that may regulate a variety of inflammatory responses. In addition, STAT3 regulates autophagy in various cell types. Thus, we synthesized the mTOR/STAT3 oligodeoxynucleotide (ODN) to regulate the autophagy. The aim of this study was to investigate the beneficial effect of mTOR/STAT3 ODN via the regulation of autophagy appearance on unilateral ureteral obstruction (UUO)-induced renal fibrosis. This study showed that UUO induced inflammation, tubular atrophy, and tubular interstitial fibrosis. However, mTOR/STAT3 ODN suppressed UUO-induced renal fibrosis and inflammation. The autophagy markers have no statistically significant relation, whereas mTOR/STAT3 ODN suppressed the apoptosis in tubular cells. These results suggest the possibility of mTOR/STAT3 ODN for preventing renal fibrosis. However, the role of mTOR/STAT3 ODN on autophagy regulation needs to be further investigated.
Collapse
Affiliation(s)
- Hyun Jin Jung
- Department of Urology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (H.-J.A.); (M.-G.G.); (H.G.); (S.B.); (S.-J.L.); (Y.-A.K.)
| | - Mi-Gyeong Gwon
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (H.-J.A.); (M.-G.G.); (H.G.); (S.B.); (S.-J.L.); (Y.-A.K.)
| | - Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (H.-J.A.); (M.-G.G.); (H.G.); (S.B.); (S.-J.L.); (Y.-A.K.)
| | - Seongjae Bae
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (H.-J.A.); (M.-G.G.); (H.G.); (S.B.); (S.-J.L.); (Y.-A.K.)
| | - Sun-Jae Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (H.-J.A.); (M.-G.G.); (H.G.); (S.B.); (S.-J.L.); (Y.-A.K.)
| | - Young-Ah Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (H.-J.A.); (M.-G.G.); (H.G.); (S.B.); (S.-J.L.); (Y.-A.K.)
| | - Jaechan Leem
- Department of Immunology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Korea; (H.-J.A.); (M.-G.G.); (H.G.); (S.B.); (S.-J.L.); (Y.-A.K.)
- Correspondence: ; Tel.: +82-53-650-4149; Fax: +82-53-650-4834
| |
Collapse
|
13
|
Fu H, Chu D, Geng X. Downregulation of miR-17 suppresses TGF-β1-mediated renal fibrosis through targeting Smad7. Mol Cell Biochem 2021; 476:3051-3064. [PMID: 33797702 DOI: 10.1007/s11010-021-04140-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
MiR-17 is found upregulated in diabetic mice; however, its effect(s) on renal fibrosis of diabetic nephropathy remain(s) unknown. This study aimed to explore the mechanism underlying the downregulation of miR-17 in renal fibrosis of diabetic nephropathy (DN). Patients with diabetes mellitus (DM) and DN and normal healthy individual controls, mice (db/db, db/m), and human mesangial cells (HMCs) and human proximal tubule epithelial cells (HK-2) were used as research subjects in the study. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the expression of miR-17 in the serum samples, renal tissues and cells. Acid-Schiff (PAS) and Masson staining experiments were performed to detect glomerular mesangial matrix and collagen deposition. Levels of fibrosis-related proteins (E-Cadherin (E-cad), vimentin, fibronectin and collagen I) were measured by Western blot (WB). The target gene of miR-17 was predicted by TargetScan 7.2 and confirmed by dual-luciferase reporter analysis. The study found that miR-17 expression was elevated in the serums of DN patients as well as in the serums and kidney tissues of db/db mice. db/db mice showed a severe renal fibrosis condition. The levels of E-cad in db/db mice, HMC and HK-2 cells were increased by downregulating miR-17 expression, while expressions of vimentin, fibronectin and collagen I were reduced. Smad7 was predicted to be the target gene of miR-17, and its expression was promoted by downregulation of miR-17. Moreover, the reduced Smad7 expression could inhibit the expressions of fibrosis-related proteins, which, however, can be ameliorated by the downregulation of miR-17. In addition, downregulation of miR-17 could suppress renal fibrosis mediated by TGF-β1 through targeting Smad7, which might be a clinical therapeutic target for patients with DN.
Collapse
Affiliation(s)
- Haixia Fu
- Department of Nephrology, Qingdao Municipal Hospital, No.5, Middle Donghai Road, Qingdao, 266071, Shandong, China
| | - Debo Chu
- Department of Nephrology, Qingdao Haici Med Ctr, Qingdao, China
| | - Xiuli Geng
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, China.
| |
Collapse
|
14
|
Elnfarawy AA, Nashy AE, Abozaid AM, Komber IF, Elweshahy RH, Abdelrahman RS. Vinpocetine attenuates thioacetamide-induced liver fibrosis in rats. Hum Exp Toxicol 2021; 40:355-368. [PMID: 32840391 DOI: 10.1177/0960327120947453] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Liver fibrosis is associated with increased mortality and morbidity. However, there is not effective treatment so far. Vinpocetine (Vinpo) is a synthetic derivative of vinca alkaloid vincamine. Limited previous reports have shown some beneficial effects of Vinpo in different organ fibrosis, but the ability of Vinpo to inhibit liver fibrosis induced by thioacetamide (TAA) has not been reported, that is why we investigate the potential ability of this vinca alkaloid derivative to attenuate liver fibrosis. Hepatic fibrosis was induced in male Sprague Dawley rats by TAA (200 mg/kg; ip; 3 times/week) for 6 weeks. Daily treatments with Vinpo (10-20 mg/kg/day; orally) ameliorated TAA-induced hepatic oxidative stress and histopathological damage as indicated by a decrease in liver injury markers, LDH, hepatic MDA, and NOx levels, as well as increase anti-oxidative parameters. Besides, the anti-fibrotic efficacy of Vinpo was confirmed by decreasing hydroxyproline, and α-SMA. Also, the anti-inflammatory effect of Vinpo was explored by decreasing IL-6 and TNF-α levels. Our novel findings were that Vinpo decreased VEGF/Ki-67 expression in the liver confirming its effect on angiogenesis and proliferation. These findings reveal the anti-fibrotic effect of Vinpo against TAA-induced liver fibrosis in rats, and suggest the modulation of oxidative stress, inflammation, angiogenesis and proliferation as mechanistic cassette underlines this effect.
Collapse
Affiliation(s)
| | - Asmaa E Nashy
- 158395Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Alaa M Abozaid
- 158395Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | | | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, Saudi Arabia
- Department of Pharmacology and Toxicology, 158395Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
15
|
Adenina S, Louisa M, Soetikno V, Arozal W, Wanandi SI. The Effect of Alpha Mangostin on Epithelial-Mesenchymal Transition on Human Hepatocellular Carcinoma HepG2 Cells Surviving Sorafenib via TGF-β/Smad Pathways. Adv Pharm Bull 2020; 10:648-655. [PMID: 33062605 PMCID: PMC7539313 DOI: 10.34172/apb.2020.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose: This study was intended to find out the impact of alpha mangostin administration on the epithelial-mesenchymal transition (EMT) markers and TGF-β/Smad pathways in hepatocellular carcinoma Hep-G2 cells surviving sorafenib. Methods: Hepatocellular carcinoma HepG2 cells were treated with sorafenib 10 μM. Cells surviving sorafenib treatment (HepG2surv) were then treated vehicle, sorafenib, alpha mangostin, or combination of sorafenib and alpha mangostin. Afterward, cells were observed for their morphology with an inverted microscope and counted for cell viability. The concentrations of transforming growth factor (TGF)-β1 in a culture medium were examined using ELISA. The mRNA expressions of TGF-β1, TGF-β1-receptor, Smad3, Smad7, E-cadherin, and vimentin were evaluated using quantitative reverse transcriptase–polymerase chain reaction. The protein level of E-cadherin was also determined using western blot analysis. Results: Treatment of alpha mangostin and sorafenib caused a significant decrease in the viability of sorafenib-surviving HepG2 cells versus control (both groups with P <0.05). Our study found that alpha mangostin treatment increased the expressions of vimentin (P <0.001 versus control). In contrast, alpha mangostin treatment tends to decrease the expressions of Smad7 and E-cadherin (both with P >0.05). In line with our findings, the expressions of TGF-β1 and Smad3 are significantly upregulated after alpha mangostin administration (both with P <0.05) versus control. Conclusion: Alpha mangostin reduced cell viability of sorafenib-surviving HepG2 cells; however, it also enhanced epithelial–mesenchymal transition markers by activating TGF-β/Smad pathways.
Collapse
Affiliation(s)
- Syarinta Adenina
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics Faculty of Medicine, Universitas Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics Faculty of Medicine, Universitas Indonesia
| | - Wawaimuli Arozal
- Department of Pharmacology and Therapeutics Faculty of Medicine, Universitas Indonesia
| | | |
Collapse
|
16
|
Astragaloside IV Synergizes with Ferulic Acid to Alleviate Hepatic Fibrosis in Bile Duct-Ligated Cirrhotic Rats. Dig Dis Sci 2020; 65:2925-2936. [PMID: 31900718 DOI: 10.1007/s10620-019-06017-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Due to the multi-factorial etiology of hepatic fibrosis, multi-target therapeutics based on combinatory drugs is known to be a promising strategy for the disease. AIMS The present study attempted to test the hypothesis that astragaloside IV combined with ferulic acid synergistically inhibits activation of hepatic stellate cells in vivo. METHODS Bile duct-ligated rats were treated with astragaloside IV or/and ferulic acid for 28 days. Liver fibrosis was measured by histological examination. The oxidative stress-related biomarkers were measured with spectrophotometry. Expressions of mRNA and protein were measured by real-time PCR and Western blotting. RESULTS Bile duct-ligated rat treatment with astragaloside IV and ferulic acid in combination resulted in synergistic alleviation of hepatic fibrosis. Simultaneously, activation of hepatic stellate cells was significantly inhibited by the combination therapy when compared with astragaloside IV or ferulic acid alone. Interestingly, astragaloside IV, but not ferulic acid, induced accumulation of Nrf2 in the nucleus, synthesized antioxidant enzymes through negative regulation of glycogen synthase kinase-3β, scavenged reactive oxygen species, and, in turn, suppressed hepatic stellate cells activation in bile duct-ligated rats. Conversely, ferulic acid, but not astragaloside IV, suppressed TGF-β1 and its receptors expression, which resulted in downregulation of Smad3 and Smad4. CONCLUSIONS These findings suggest that the combination of astragaloside IV and ferulic acid synergistically induces deactivation of hepatic stellate cells through inhibition of the TGF-β pathway and activation of the Nrf2 pathway, and suggest that combination of astragaloside IV and ferulic acid is a promising candidate for the treatment of hepatic fibrosis.
Collapse
|
17
|
Gao J, Yang J, Yu W, Hao R, Fan J, Wei J. Gooseberry anthocyanins protect mice hepatic fibrosis by inhibiting TGF-β/Smad pathway. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Qin X, Wu K, Zuo C, Lin M. The Expression and Role of Hypoxia-induced Factor-1α in Human Tenon's Capsule Fibroblasts under Hypoxia. Curr Eye Res 2020; 46:417-425. [PMID: 32767899 DOI: 10.1080/02713683.2020.1805470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To determine the expression of hypoxia-induced factor-1α (HIF-1α) and its downstream factors in human Tenon's capsule fibroblasts (HTFs) and changes in HTFs biological functions, we explored the role of HIF-1α in HTFs under hypoxia to provide a basis for studying the regulation of HIF-1α in wound healing after glaucoma surgery. MATERIALS AND METHODS we established HTFs hypoxia model in vitro, meanwhile the HIF-1α agonist VH298 or inhibitor KC7F2 was added to HTFs, and the normoxia group was used as a control. Western blot, immunofluorescence and ELISA were used to detect the expression of HIF-1α, vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), Smads and collagen I. The proliferation of HTFs was quantified by cell counting kit-8, and cell migration was tested by healing scratch test. RESULTS HIF-1α protein expression increased under hypoxia, peaked from 4-24 h, and then decreased. The secretion of VEGF and TGF-β increased with prolonged hypoxia time. VH298 and KC7F2 upregulated and downregulated the levels of VEGF and TGF-β, respectively, suggesting that HIF-1α upregulates and downregulates the levels of VEGF and TGF-β in HTFs under hypoxia, respectively. HIF-1α upregulated the proliferation, migration and collagen synthesis of HTFs under hypoxia. CONCLUSIONS Regulating HIF-1α and its downstream factors effectively regulated HTFs proliferation, migration and collagen synthesis. HIF-1α is a promising regulator in the study of wound healing after glaucoma surgery.
Collapse
Affiliation(s)
- Xi Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
19
|
Zhao Y, Wang Z, Zhou J, Feng D, Li Y, Hu Y, Zhang F, Chen Z, Wang G, Ma X, Tian X, Yao J. LncRNA Mical2/miR-203a-3p sponge participates in epithelial-mesenchymal transition by targeting p66Shc in liver fibrosis. Toxicol Appl Pharmacol 2020; 403:115125. [PMID: 32659284 DOI: 10.1016/j.taap.2020.115125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is regulated by reactive oxygen species (ROS) in liver fibrosis. p66Shc is a redox enzyme, but its role of EMT is unclear in liver fibrosis. Long noncoding RNAs (lncRNAs) have been implicated as important regulators in numerous physiological and pathological processes and generally acting as a microRNA (miRNA) sponge to regulate gene expression. The aim of the current study was to evaluate the contribution of p66Shc to EMT in liver fibrosis and the regulation of p66Shc by lncRNA sponge. In vivo, p66Shc silencing prevented carbon tetrachloride (CCl4)-induced EMT as evidenced by the upregulation of E-cadherin, downregulation of Vimentin and N-cadherin, and inhibition of oxidative stress and extracellular matrix (ECM) components. Moreover, in vitro, TGF-β1 significantly enhanced ECM components, as well as the development of the EMT phenotype. These effects were abrogated by p66Shc downregulation and aggravated by p66Shc overexpression. Mechanistically, p66Shc contributed to EMT via mediating ROS, as evidenced by p66Shc downregulation inhibiting EMT under exogenous hydrogen peroxide (H2O2) stimulation. Furthermore, we found that molecule interacting with CasL2 (Mical2) lncRNA functioned as an endogenous miR-203a-3p sponge to regulate p66Shc expression. Both Mical2 silencing and miR-203a-3p agomiR treatment downregulated p66Shc expression, thus suppressing EMT in vivo and in vitro. Notably, the increased p66Shc and Mical2 levels and decreased miR-203a-3p levels in murine fibrosis were consistent with those in patients with liver fibrosis. In sum, our study reveals that p66Shc is critical for liver fibrosis and that Mical2, miR-203a-3p and p66Shc compose a novel regulatory pathway in liver fibrosis.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Dongcheng Feng
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yang Li
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yan Hu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Feng Zhang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhao Chen
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Guangzhi Wang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Xiaofeng Tian
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
20
|
Zhang L, Zhang Y, Chang X, Zhang X. Imbalance in mitochondrial dynamics induced by low PGC-1α expression contributes to hepatocyte EMT and liver fibrosis. Cell Death Dis 2020; 11:226. [PMID: 32269221 PMCID: PMC7142080 DOI: 10.1038/s41419-020-2429-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
An imbalance in mitochondrial dynamics induced by oxidative stress may lead to hepatocyte epithelial mesenchymal transition (EMT) and liver fibrosis. However, the underlying molecular mechanisms have not been fully elucidated. This study investigated the role of mitochondrial dynamics in hepatocyte EMT and liver fibrosis using an in vitro human (L-02 cells, hepatic cell line) and an in vivo mouse model of liver fibrosis. Findings showed that oxidative stress-induced mitochondrial DNA damage was associated with abnormal mitochondrial fission and hepatocyte EMT. The reactive oxygen species (ROS) scavengers apocynin and mito-tempo effectively attenuated carbon tetrachloride (CCl4)-induced abnormal mitochondrial fission and liver fibrosis. Restoring mitochondrial biogenesis attenuated hepatocyte EMT. Oxidative stress-induced abnormal hepatocyte mitochondrial fission events by a mechanism that involved the down regulation of PGC-1α. PGC-1α knockout mice challenged with CCl4 had increased abnormal mitochondrial fission and more severe liver fibrosis than wild type mice. These results indicate that PGC-1α has a protective role in oxidative stress-induced-hepatocyte EMT and liver fibrosis.
Collapse
Affiliation(s)
- Linzhong Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanghao Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinxiang Chang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Zhang Q, Chang X, Wang H, Liu Y, Wang X, Wu M, Zhan H, Li S, Sun Y. TGF-β1 mediated Smad signaling pathway and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro. ENVIRONMENTAL TOXICOLOGY 2020; 35:419-429. [PMID: 31737983 DOI: 10.1002/tox.22878] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/20/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Nickel oxide nanoparticles (Nano NiO) bears hepatotoxicity, while whether it leads to liver fibrosis remains unclear. The aim of this study was to establish the Nano NiO-induced hepatic fibrosis model in vivo and investigate the roles of transforming growth factor β1 (TGF-β1) in Smad pathway activation, epithelial-mesenchymal transition (EMT) occurrence, and extracellular matrix (ECM) deposition in vitro. Male Wistar rats were exposed to 0.015, 0.06, and 0.24 mg/kg Nano NiO by intratracheal instilling twice a week for 9 weeks. HepG2 cells were treated with 100 μg/mL Nano NiO and TGF-β1 inhibitor (SB431542) to explore the mechanism of collagen formation. Results of Masson staining as well as the elevated levels of type I collagen (Col-I) and Col-III suggested that Nano NiO resulted in hepatic fibrosis in rats. Furthermore, Nano NiO increased the protein expression of TGF-β1, p-Smad2, p-Smad3, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase9 (MMP9), and tissue inhibitors of metalloproteinase1 (TIMP1), while decreased the protein content of E-cadherin and Smad7 in rat liver and HepG2 cells. Most importantly, Nano NiO-triggered the abnormal expression of the abovementioned proteins were all alleviated by co-treatment with SB431542, implying that TGF-β1-mediated Smad pathway, EMT and MMP9/TIMP1 imbalance were involved in overproduction of collagen in HepG2 cells. In conclusion, these findings indicated that Nano NiO induced hepatic fibrosis via TGF-β1-mediated Smad pathway activation, EMT occurrence, and ECM deposition.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yunlan Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Wu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department occupational disease control, Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Li L, Ran J, Li L, Chen G, Zhang S, Wang Y. Gli3 is a novel downstream target of miR‑200a with an anti‑fibrotic role for progression of liver fibrosis in vivo and in vitro. Mol Med Rep 2020; 21:1861-1871. [PMID: 32319630 PMCID: PMC7057771 DOI: 10.3892/mmr.2020.10997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
GLI family zinc finger 3 (Gli3), as the upstream transcriptional activator of hedgehog signaling, has previously been demonstrated to participate in the process of liver fibrosis. The present study aimed to investigate the potential functions of microRNA (miR)‑200a and Gli3 in the progression of liver fibrosis. The expression levels of miR‑200a and Gli3 in cells and tissues were determined by PCR and western blotting; the interaction of Gli3 and miR‑200a was evaluated by bioinformatics analysis and dual‑luciferase reporter assay. miR‑200a was significantly reduced in serum samples from clinical patients, liver tissues of a carbon tetrachloride (CCl4)‑induced rat model and activated LX2 cells. The expression of α‑smooth muscle actin (α‑SMA) and albumin at the mRNA and protein levels was increased and decreased in LX2 cells, respectively. However, the expression levels of α‑SMA and albumin were reversed and Gli3 expression was markedly decreased in LX2 cells when transfected with miR‑200a mimics. In addition, the dual‑-luciferase reporter assay confirmed the target interaction between miR‑200a and Gli3. Finally, following the administration of miR‑200a mimics to CCl4‑induced rats, it was revealed that the alterations of α‑SMA, albumin and Gli3 presented a similar trend to that in LX2 cells with miR‑200a mimics transfection. Taken together, these results indicated that downregulation of miR‑200a might enhance the formation of liver fibrosis, probably by targeting Gli3, and elevated miR‑200a may attenuate the progression of liver fibrosis by suppressing Gli3. These findings suggested that miR‑200a may function as a novel anti‑fibrotic agent in liver fibrosis via inhibition of the expression of Gli3.
Collapse
Affiliation(s)
- Li Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Jianghua Ran
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Lan Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Gang Chen
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Shengning Zhang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Yingjia Wang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| |
Collapse
|
23
|
Choi JH, Kim SM, Lee GH, Jin SW, Lee HS, Chung YC, Jeong HG. Platyconic Acid A, Platycodi Radix-Derived Saponin, Suppresses TGF-1-induced Activation of Hepatic Stellate Cells via Blocking SMAD and Activating the PPAR Signaling Pathway. Cells 2019; 8:cells8121544. [PMID: 31795488 PMCID: PMC6952772 DOI: 10.3390/cells8121544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Platycodi radix is a widely sold health food worldwide, which contains numerous phytochemicals that are beneficial to health. Previously, we reported that saponin from the roots of Platycodi radix-derived saponin inhibited toxicant-induced liver diseases. Nevertheless, the inhibitory effect of platyconic acid A (PA), the active component of Platycodi radix-derived saponin, on the anti-fibrotic activity involving the SMAD pathway remains unclear. We investigated the inhibitory effects of PA on TGF-β1-induced activation of hepatic stellate cells (HSCs). PA inhibited TGF-β1-enhanced cell proliferation, as well as expression of α-SMA and collagen Iα1 in HSC-T6 cells. PA suppressed TGF-β1-induced smad2/3 phosphorylation and smad binding elements 4 (SBE4) luciferase activity. Reversely, PA restored TGF-β1-reduced expression of smad7 and peroxisome proliferator-activated receptor (PPAR)γ. PA also repressed TGF-β1-induced phosphorylation of Akt and MAPKs. In summary, the results suggest that the inhibitory effect of PA on HSCs occurs through the blocking of SMAD-dependent and SMAD-independent pathways, leading to the suppression of α-SMA and collagen Iα1 expression.
Collapse
Affiliation(s)
- Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Seul Mi Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Gi Ho Lee
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Hyun Sun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 28116, Korea;
| | - Young Chul Chung
- Department of Food and Medicine, College of Public Health and Natural Science, International University of Korea, Jinju 52833, Korea;
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
24
|
Xiaokeping Mixture Attenuates Diabetic Kidney Disease by Modulating TGF- β/Smad Pathway in db/db Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9241896. [PMID: 31687039 PMCID: PMC6800893 DOI: 10.1155/2019/9241896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/06/2019] [Indexed: 11/17/2022]
Abstract
Xiaokeping mixture (XKP), a traditional Chinese medicine compound preparation, has achieved widespread use for diabetes mellitus and its kidney damage in clinical practice. The current study was carried out to assess the protective effect of XKP in spontaneous diabetic db/db mice and the underlying mechanism whereby XKP regulates TGF-β/Smad pathway. Male C57BLKS/J db/db mice, 12 weeks old, were randomly divided into 3 groups: the model group, 17.5 mg/kg irbesartan-treated group (IST group), and 8 g/kg XKP-treated group (XKP group), while age-matched db/m mice were selected as a control group. After 8 weeks of administration, serum and urea samples were collected from mice for biochemical tests, while the kidneys were removed for histological analysis. The expression of TGF-β/Smad pathway-related mRNA and protein were measured by RT-PCR and western blot analysis. Treatment with XKP significantly improved renal function and attenuated the pathological change of diabetic kidney disease (DKD) in renal histopathology. Furthermore, the overexpression of TGF-β1, Smad3, and p-Smad3 was inhibited, as well as the reduction of Smad7 and SIP1 was weakened by XKP. In conclusion, these results suggest that XKP could attenuate DKD by modulating TGF-β/Smad pathway.
Collapse
|
25
|
Yu J, Zhang L, Zhang S, Xian G, Zhao Y, Bu X. MiR-29b inhibits hypertrophic scar tissue inflammation after burn through regulating TGF-β1/Smad signaling pathway. Ital J Dermatol Venerol 2019; 156:251-252. [PMID: 31578834 DOI: 10.23736/s2784-8671.19.06444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Yu
- Department of Burns and Plastic Surgery, The People's Hospital of Zhangqiu Area, Jinan, China
| | - Lian Zhang
- Department of Burns and Plastic Surgery, The People's Hospital of Zhangqiu Area, Jinan, China
| | - Shuang Zhang
- Department of Burns and Plastic Surgery, The People's Hospital of Zhangqiu Area, Jinan, China
| | - Guangyan Xian
- Department of Endoscopy Room, The People's Hospital of Zhangqiu Area, Jinan, China
| | - Yuping Zhao
- Department of Burns and Plastic Surgery, The People's Hospital of Zhangqiu Area, Jinan, China
| | - Xianmin Bu
- Department of Pathology, Jining No. 1 People's Hospital, Jining, China -
| |
Collapse
|
26
|
Zhangdi HJ, Su SB, Wang F, Liang ZY, Yan YD, Qin SY, Jiang HX. Crosstalk network among multiple inflammatory mediators in liver fibrosis. World J Gastroenterol 2019; 25:4835-4849. [PMID: 31543677 PMCID: PMC6737310 DOI: 10.3748/wjg.v25.i33.4835] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is the common pathological basis of all chronic liver diseases, and is the necessary stage for the progression of chronic liver disease to cirrhosis. As one of pathogenic factors, inflammation plays a predominant role in liver fibrosis via communication and interaction between inflammatory cells, cytokines, and the related signaling pathways. Damaged hepatocytes induce an increase in pro-inflammatory factors, thereby inducing the development of inflammation. In addition, it has been reported that inflammatory response related signaling pathway is the main signal transduction pathway for the development of liver fibrosis. The crosstalk regulatory network leads to hepatic stellate cell activation and proinflammatory cytokine production, which in turn initiate the fibrotic response. Compared with the past, the research on the pathogenesis of liver fibrosis has been greatly developed. However, the liver fibrosis mechanism is complex and many pathways involved need to be further studied. This review mainly focuses on the crosstalk regulatory network among inflammatory cells, cytokines, and the related signaling pathways in the pathogenesis of chronic inflammatory liver diseases. Moreover, we also summarize the recent studies on the mechanisms underlying liver fibrosis and clinical efforts on the targeted therapies against the fibrotic response.
Collapse
Affiliation(s)
- Han-Jing Zhangdi
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Biao Su
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fei Wang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-Yu Liang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Dong Yan
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shan-Yu Qin
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
27
|
Czekaj P, Król M, Limanówka Ł, Michalik M, Lorek K, Gramignoli R. Assessment of animal experimental models of toxic liver injury in the context of their potential application as preclinical models for cell therapy. Eur J Pharmacol 2019; 861:172597. [PMID: 31408648 DOI: 10.1016/j.ejphar.2019.172597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Preclinical animal models allow to study development and progression of several diseases, including liver disorders. These studies, for ethical reasons and medical limits, are impossible to carry out in human patients. At the same time, such experimental models constitute an important source of knowledge on pathomechanisms for drug- and virus-induced hepatotoxicity, both acute and chronic. Carbon tetrachloride, D-Galactosamine, and retrorsine are xenobiotics that can be used in immunocompetent animal models of hepatotoxicity, where chemical-intoxicated livers present histological features representative of human viruses-related infection. A prolonged derangement into liver architecture and functions commonly lead to cirrhosis, eventually resulting in hepatocellular carcinoma. In human, orthotopic liver transplantation commonly resolve most the problems related to cirrhosis. However, the shortage of donors does not allow all the patients in the waiting list to receive an organ on time. A promising alternative treatment for acute and chronic liver disease has been advised in liver cell transplantation, but the limited availability of hepatocytes for clinical approaches, in addition to the immunosuppressant regiment required to sustain cellular long-term engraftment have been encouraging the use of alternative cell sources. A recent effective source of stem cells have been recently identified in the human amnion membrane. Human amnion epithelial cells (hAEC) have been preclinically tested and proven sufficient to rescue immunocompetent rodents lethally intoxicated with drugs. The adoption of therapeutic procedures based on hAEC transplant in immunocompetent recipients affected by liver diseases, as well as patients with immune-related disorders, may constitute a successful new alternative therapy in regenerative medicine.
Collapse
Affiliation(s)
- Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland.
| | - Mateusz Król
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland.
| | - Łukasz Limanówka
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Marcin Michalik
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Katarzyna Lorek
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Roberto Gramignoli
- Department of Laboratory Medicine (LABMED), H5, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé 8, 14152, Huddinge, Sweden.
| |
Collapse
|
28
|
Isorhamnetin Inhibits Liver Fibrosis by Reducing Autophagy and Inhibiting Extracellular Matrix Formation via the TGF- β1/Smad3 and TGF- β1/p38 MAPK Pathways. Mediators Inflamm 2019; 2019:6175091. [PMID: 31467486 PMCID: PMC6701280 DOI: 10.1155/2019/6175091] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/25/2019] [Accepted: 06/16/2019] [Indexed: 02/07/2023] Open
Abstract
Objective Liver fibrosis is a consequence of wound-healing responses to chronic liver insult and may progress to liver cirrhosis if not controlled. This study investigated the protection against liver fibrosis by isorhamnetin. Methods Mouse models of hepatic fibrosis were established by intraperitoneal injection of carbon tetrachloride (CCl4) or bile duct ligation (BDL). Isorhamnetin 10 or 30 mg/kg was administered by gavage 5 days per week for 8 weeks in the CCl4 model and for 2 weeks in the BDL model. Protein and mRNA expressions were assayed by western blotting, immunohistochemistry, and quantitative real-time polymerase chain reaction. Results Isorhamnetin significantly inhibited liver fibrosis in both models, inhibiting hepatic stellate cell (HSC) activation, extracellular matrix (ECM) deposition, and autophagy. The effects were associated with downregulation of transforming growth factor β1 (TGF-β1) mediation of Smad3 and p38 mitogen-activated protein kinase (MAPK) signaling pathways. Conclusion Isorhamnetin protected against liver fibrosis by reducing ECM formation and autophagy via inhibition of TGF-β1-mediated Smad3 and p38 MAPK signaling pathways.
Collapse
|
29
|
Tong J, Chen F, Du W, Zhu J, Xie Z. TGF-β1 Induces Human Tenon’s Fibroblasts Fibrosis via miR-200b and Its Suppression of PTEN Signaling. Curr Eye Res 2018; 44:360-367. [DOI: 10.1080/02713683.2018.1549261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jun Tong
- Department of Ophthalmology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Fang Chen
- Department of Ophthalmology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Wei Du
- Department of Ophthalmology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jun Zhu
- Department of Ophthalmology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhenggao Xie
- Department of Ophthalmology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
30
|
Liu S, Hou H, Zhang P, Wu Y, He X, Li H, Yan N. Sphingomyelin synthase 1 regulates the epithelial‑to‑mesenchymal transition mediated by the TGF‑β/Smad pathway in MDA‑MB‑231 cells. Mol Med Rep 2018; 19:1159-1167. [PMID: 30535436 PMCID: PMC6323219 DOI: 10.3892/mmr.2018.9722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common cancer in women and a leading cause of cancer‑associated mortalities in the world. Epithelial‑to‑mesenchymal transition (EMT) serves an important role in the process of metastasis and invasive ability in cancer cells, and transforming growth factor β1 (TGF‑β1) have been investigated for promoting EMT. However, in the present study, the role of the sphingomyelin synthase 1 (SMS1) in TGF‑β1‑induced EMT development was investigated. Firstly, bioinformatics analysis demonstrated that the overexpression of SMS1 negatively regulated the TGFβ receptor I (TβRI) level of expression. Subsequently, the expression of SMS1 was decreased, whereas, SMS2 had no significant difference when MDA‑MB‑231 cells were treated by TGF‑β1 for 72 h. Furthermore, the present study constructed an overexpression cells model of SMS1 and these cells were treated by TGF‑β1. These results demonstrated that overexpression of SMS1 inhibited TGF‑β1‑induced EMT and the migration and invasion of MDA‑MB‑231 cells, increasing the expression of E‑cadherin while decreasing the expression of vimentin. Furthermore, the present study further confirmed that SMS1 overexpression could decrease TβRI expression levels and blocked smad family member 2 phosphorylation. Overall, the present results suggested that SMS1 could inhibit EMT and the migration and invasion of MDA‑MB‑231 cells via TGF‑β/Smad signaling pathway.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huan Hou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Panpan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifan Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua Li
- Department of Biochemistry and Molecular Biology, Centre of Experimental Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
31
|
Chen QQ, Zhang C, Qin MQ, Li J, Wang H, Xu DX, Wang JQ. Inositol-Requiring Enzyme 1 Alpha Endoribonuclease Specific Inhibitor STF-083010 Alleviates Carbon Tetrachloride Induced Liver Injury and Liver Fibrosis in Mice. Front Pharmacol 2018; 9:1344. [PMID: 30538632 PMCID: PMC6277551 DOI: 10.3389/fphar.2018.01344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Accumulating data demonstrated that hepatic endoplasmic reticulum (ER) stress was involved in the pathogenesis of liver fibrosis. Long-term chronic hepatocyte death contributed to liver fibrosis initiation and progression. Previous researches reported that ER stress sensor inositol-requiring enzyme 1 alpha (IRE1α) was first activated in the process of liver fibrosis. STF-083010 was an IRE1α RNase specific inhibitor. This study aimed to explore the effects of STF-083010 on carbon tetrachloride (CCl4)-induced liver injury and subsequent liver fibrosis. Mice were intraperitoneally (i.p.) injected with CCl4 (0.15 ml/kg) for 8 weeks. In STF-083010+CCl4 group, mice were injected with STF-083010 (30 mg/kg, i.p.), twice a week, beginning from the 6th week after CCl4 injection. CCl4 treatment markedly enhanced the levels of serum ALT, TBIL, DBIL and TBA, and STF-083010 had obviously extenuated CCl4-induced exaltation of ALT, DBIL, and TBA levels. CCl4-induced hepatic hydroxyproline and collagen I, major indicators of liver fibrosis, were alleviated by STF-083010. Additionally, CCl4-induced α-smooth muscle actin, a marker for hepatic stellate cells activation, was obviously attenuated in STF-083010-treated mice. Moreover, CCl4-induced upregulation of inflammatory cytokines was suppressed by STF-083010. Mechanistic exploration found that hepatic miR-122 was downregulated in CCl4-treated mice. Hepatic MCP1, CTGF, P4HA1, Col1α1, and Mmp9, target genes of miR-122, were upregulated in CCl4-treated mice. Interestingly, STF-083010 reversed CCl4-induced hepatic miR-122 downregulation. Correspondingly, STF-083010 inhibited CCl4-induced upregulation of miR-122 target genes. This study provides partial evidence that STF-083010 alleviated CCl4-induced liver injury and thus protected against liver fibrosis associated with hepatic miR-122.
Collapse
Affiliation(s)
- Qian-Qian Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China.,The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Ming-Qiang Qin
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China.,The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jian Li
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Jian-Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China.,The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Gao Y, Elamin E, Zhou R, Yan H, Liu S, Hu S, Dong J, Wei M, Sun L, Zhao Y. FKBP51 promotes migration and invasion of papillary thyroid carcinoma through NF-κB-dependent epithelial-to-mesenchymal transition. Oncol Lett 2018; 16:7020-7028. [PMID: 30546435 PMCID: PMC6256738 DOI: 10.3892/ol.2018.9517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
FK506-binding protein 51 (FKBP51) is a member of the immunophilin family, with relevant roles in multiple signaling pathways, tumorigenesis and chemoresistance. However, the function of FKBP51 in papillary thyroid carcinoma (PTC) remains largely unknown. In the present study, increased FKBP51 expression was detected in PTC tissues as compared with adjacent normal tissues, and the expression level was associated with clinical tumor, node and metastasis stage. Using FKBP51-overexpressing K1 cells and FKBP51-knockdown TPC-1 cells, both human PTC cell lines, it was identified that FKBP51 promoted the migration and invasion of PTC, without affecting cell proliferation. Further investigation revealed that FKBP51 activated the NF-κB pathway and epithelial-to-mesenchymal transition (EMT) genes, and EMT was suppressed when NF-κB was inhibited. It was also assessed whether FKBP51 promoted the formation of cytoskeleton to promote migration and invasion of PTC using a tubulin tracker; however, no evidence of such an effect was observed. These results suggested that FKBP51 promotes migration and invasion through NF-κB-dependent EMT.
Collapse
Affiliation(s)
- Ying Gao
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China.,Department of Laboratory Medicine, Shandong Qianfoshan Hospital, Shandong University, Shandong, Jinan 250014, P.R. China
| | - Elham Elamin
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Rongfang Zhou
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Huili Yan
- Department of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Shandong, Jinan 250062, P.R. China
| | - Shuang Liu
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Shengnan Hu
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Jing Dong
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Muyun Wei
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Linying Sun
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Yueran Zhao
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| |
Collapse
|
33
|
Li N, Zhou H, Tang Q. miR-133: A Suppressor of Cardiac Remodeling? Front Pharmacol 2018; 9:903. [PMID: 30174600 PMCID: PMC6107689 DOI: 10.3389/fphar.2018.00903] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/23/2018] [Indexed: 01/28/2023] Open
Abstract
Cardiac remodeling, which is characterized by mechanical and electrical remodeling, is a significant pathophysiological process involved in almost all forms of heart diseases. MicroRNAs (miRNAs) are a group of non-coding RNAs of 20–25 nucleotides in length that primarily regulate gene expression by promoting mRNA degradation or post-transcriptional repression in a sequence-specific manner. Three miR-133 genes have been identified in the human genome, miR-133a-1, miR-133a-2, and miR-133b, which are located on chromosomes 18, 20, and 6, respectively. These miRNAs are mainly expressed in muscle tissues and appear to repress the expression of non-muscle genes. Based on accumulating evidence, miR-133 participates in the proliferation, differentiation, survival, hypertrophic growth, and electrical conduction of cardiac cells, which are essential for cardiac fibrosis, cardiac hypertrophy, and arrhythmia. Nevertheless, the roles of miR-133 in cardiac remodeling are ambiguous, and the mechanisms are also sophisticated, involving many target genes and signaling pathways, such as RhoA, MAPK, TGFβ/Smad, and PI3K/Akt. Therefore, in this review, we summarize the critical roles of miR-133 and its potential mechanisms in cardiac remodeling.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
34
|
Antifibrotic Effect of Smad Decoy Oligodeoxynucleotide in a CCl₄-Induced Hepatic Fibrosis Animal Model. Molecules 2018; 23:molecules23081991. [PMID: 30103395 PMCID: PMC6222866 DOI: 10.3390/molecules23081991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/18/2023] Open
Abstract
Hepatic fibrosis is the wound-healing process of chronic hepatic disease that leads to the end-stage of hepatocellular carcinoma and demolition of hepatic structures. Epithelial–mesenchymal transition (EMT) has been identified to phenotypic conversion of the epithelium to mesenchymal phenotype that occurred during fibrosis. Smad decoy oligodeoxynucleotide (ODN) is a synthetic DNA fragment containing a complementary sequence of Smad transcription factor. Thus, this study evaluated the antifibrotic effects of Smad decoy ODN on carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice. As shown in histological results, CCl4 treatment triggered hepatic fibrosis and increased Smad expression. On the contrary, Smad decoy ODN administration suppressed fibrogenesis and EMT process. The expression of Smad signaling and EMT-associated protein was markedly decreased in Smad decoy ODN-treated mice compared with CCl4-injured mice. In conclusion, these data indicate the practicability of Smad decoy ODN administration for preventing hepatic fibrosis and EMT processes.
Collapse
|
35
|
March JT, Golshirazi G, Cernisova V, Carr H, Leong Y, Lu-Nguyen N, Popplewell LJ. Targeting TGFβ Signaling to Address Fibrosis Using Antisense Oligonucleotides. Biomedicines 2018; 6:biomedicines6030074. [PMID: 29941814 PMCID: PMC6164894 DOI: 10.3390/biomedicines6030074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Fibrosis results from the excessive accumulation of extracellular matrix in chronically injured tissue. The fibrotic process is governed by crosstalk between many signaling pathways. The search for an effective treatment is further complicated by the fact that there is a degree of tissue-specificity in the pathways involved, although the process is not completely understood for all tissues. A plethora of drugs have shown promise in pre-clinical models, which is not always borne out translationally in clinical trial. With the recent approvals of two antisense oligonucleotides for the treatment of the genetic diseases Duchenne muscular dystrophy and spinal muscular atrophy, we explore here the potential of antisense oligonucleotides to knockdown the expression of pro-fibrotic proteins. We give an overview of the generalized fibrotic process, concentrating on key players and highlight where antisense oligonucleotides have been used effectively in cellular and animal models of different fibrotic conditions. Consideration is given to the advantages antisense oligonucleotides would have as an anti-fibrotic therapy alongside factors that would need to be addressed to improve efficacy. A prospective outlook for the development of antisense oligonucleotides to target fibrosis is outlined.
Collapse
Affiliation(s)
- James T March
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Golnoush Golshirazi
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Viktorija Cernisova
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Heidi Carr
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Yee Leong
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Ngoc Lu-Nguyen
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Linda J Popplewell
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
36
|
Huang Y, Fan X, Tao R, Song Q, Wang L, Zhang H, Kong H, Huang J. Effect of miR-182 on hepatic fibrosis induced by Schistosomiasis japonica by targeting FOXO1 through PI3K/AKT signaling pathway. J Cell Physiol 2018; 233:6693-6704. [PMID: 29323718 DOI: 10.1002/jcp.26469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
The study aimed to investigate the impact of miR-182 and FOXO1 on S. japonica-induced hepatic fibrosis. Microarray analysis was performed to screen out differential expressed miRNAs and mRNAs. Rat hepatic fibrosis model and human hepatocellular cell line LX-2 were used to study the effect of miR-182 and FOXO1. qRT-PCR and Western blot were used to detect the expression of miR-182, FOXO1 or other fibrosis markers. The targeting relationship between FOXO1 and miR-182 was verified by luciferase reporter assay. Immunohistochemistry or immunofluorescence staining was conducted to detect FOXO1 or α-SMA in rat hepatic tissues. Cell viability and apoptosis were detected by MTT assay and flow cytometry. The expression of PI3K/AKT pathway-related proteins was detected by Western blot. miR-182 was highly expressed in liver fibrosis samples, and FOXO1 expression was negatively correlated with miR-182 expression. After transfection of miR-182, FOXO1 expression was down-regulated, with the results of LX-2 cells proliferation inhibition and apoptosis induction, as well as the aggravation of rat hepatic fibrosis. The expression of p-AKT/AKT and p-S6/S6 was increased, meaning that the PI3K/AKT signal pathway was activated. The results were reversed when treated with Wortmannin (PI3K inhibitor). After transfection of miR-182 inhibitor, FOXO1 expression was up-regulated, LX-2 cell proliferation was inhibited, and apoptosis rate was increased. High-expressed miR-182 and low-expressed FOXO1 promoted proliferation and inhibiting apoptosis on liver fibrosis cells, stimulating the development of S. japonica-induced hepatic fibrosis through feeding back to PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yu Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Nephrology, The First People's Hospital of Yichang, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Xiangxue Fan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department and Institute of Infectious Disease, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Ran Tao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiqin Song
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Likui Wang
- Savaid Medical School, University of Chinese Academy of Sciences Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongyue Zhang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongyan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaquan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
37
|
Maepa MB, Ely A, Arbuthnot P. How successful has targeted RNA interference for hepatic fibrosis been? Expert Opin Biol Ther 2017; 18:381-388. [PMID: 29265946 DOI: 10.1080/14712598.2018.1420775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Exposure to toxins from the portal circulation, viral infection and by-products of metabolic activity make liver tissue prone to injury. When sustained, associated inflammation leads to activation of hepatic stellate cells (HSCs), deposition of extracellular matrix (ECM) proteins and complicating hepatic fibrosis. AREAS COVERED In this article, the authors discuss utility of therapeutic gene silencing to disable key steps of hepatic fibrogenesis. Strategies aimed at inhibiting HSC activation and silencing primary causes of fibrogenesis, such as viruses that cause chronic hepatitis, are reviewed. Both synthetic and expressed artificial intermediates of the RNAi pathway have potential to treat hepatic fibrosis, and each type of gene silencer has advantages for clinical translation. Silencing expression cassettes comprising DNA templates are compatible with efficient hepatotropic viral vectors, which may effect sustained gene silencing. By contrast, synthetic short interfering RNAs are amenable to chemical modification, incorporation into non-viral formulations, more precise dose control and large scale preparation. EXPERT OPINION Clinical translation of RNAi-based technology for treatment of hepatic fibrosis is now a realistic goal. However, achieving this aim will require safe, efficient delivery of artificial RNAi intermediates to target cells, economic large scale production of candidate drugs and specificity of action.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Abdullah Ely
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Patrick Arbuthnot
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|
38
|
Feng ZH, Zhang XH, Zhao JQ, Ma JZ. Involvement of Rho-associated coiled-coil kinase signaling inhibition in TGF-β1/Smad2, 3 signal transduction in vitro. Int J Ophthalmol 2017; 10:1805-1811. [PMID: 29259896 DOI: 10.18240/ijo.2017.12.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
AIM To research the effect of Y-27632, a selective Rho-associated coiled-coil kinase (ROCK) inhibitor, on TGF-β1/Smad2, 3 signal transduction in ocular Tenon's capsule fibroblasts (OTFs). METHODS Primary ocular Tenon's capsule fibroblasts had been cultured in vitro. The effect of Y27632 on proliferation of OTF stimulated by lysophosphatidic acid (LPA) was evaluated by MTT colorimetric assay so as to sift out the proper concentrations range of Y-27632 for the next experiment. Real time-polymerase chain reactor (RT-PCR) was to analyze the changes of Smad2 and Smad3 genes of cells affected by Y-27632, though unaffected by transforming growth factor-beta1 (TGF-β1). Proteins of Smad2, Smad3, phosphorylated Smad2 (Ser245/250/255), and phosphorylated Smad3 (Ser423/425/203) were respectively quantified by Western blot after OTFs were successively incubated by TGF-β1 and Y-27632. Meanwhile, α-smooth muscular actin (α-SMA) protein was also quantified after the small intervening gene fragments of human Smad2 and Smad3 were designed, synthesized, and then transfected to OTFs. RESULTS Y-27632 significantly inhibited OTFs proliferation stimulated by LPA. Also Y-27632 significantly suppressed the expressions of Smad2 mRNA, Smad2, 3 proteins expressions, Smad3 phosphorylation at the carboxylic terminals of Ser423/425/203 which had been radically promoted by TGF-β1. SiRNA-Smad2, 3 suppressed α-SMA expressions, but less effectively than Y-27632. CONCLUSION The inhibition of ROCK signaling may be a potential therapeutic candidate for the treatment of the filtration channel fibrosis.
Collapse
Affiliation(s)
- Zhao-Hui Feng
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University Medical College, Xi'an 710004, Shaanxi Province, China
| | - Xiao-Hui Zhang
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University Medical College, Xi'an 710004, Shaanxi Province, China
| | - Jia-Qi Zhao
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University Medical College, Xi'an 710004, Shaanxi Province, China
| | - Jun-Ze Ma
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University Medical College, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|