1
|
Wang Y, Hu K, Liao C, Han T, Jiang F, Gao Z, Yan J. Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation. Tissue Eng Regen Med 2024:10.1007/s13770-024-00668-8. [PMID: 39363054 DOI: 10.1007/s13770-024-00668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown. METHODS OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1β to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-α and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p. RESULTS The expressions of SNHG7 and FSP1 were both reduced in IL-1β-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCs-derived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCs-Exos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1β-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7. CONCLUSIONS Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1β-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.
Collapse
Affiliation(s)
- Yue Wang
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Kaili Hu
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Changdi Liao
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Ting Han
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Fenglin Jiang
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Zixin Gao
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Jinhua Yan
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China.
| |
Collapse
|
2
|
Jian G, Xie D, Kuang X, Zheng P, Liu H, Dong X. Identification and validation of miR-29b-3p and LIN7A as important diagnostic markers for bone non-union by WGCNA. J Cell Mol Med 2024; 28:e18522. [PMID: 38957040 PMCID: PMC11220363 DOI: 10.1111/jcmm.18522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Bone non-union is a common fracture complication that can severely impact patient outcomes, yet its mechanism is not fully understood. This study used differential analysis and weighted co-expression network analysis (WGCNA) to identify susceptibility modules and hub genes associated with fracture healing. Two datasets, GSE125289 and GSE213891, were downloaded from the GEO website, and differentially expressed miRNAs and genes were analysed and used to construct the WGCNA network. Gene ontology (GO) analysis of the differentially expressed genes showed enrichment in cytokine and inflammatory factor secretion, phagocytosis, and trans-Golgi network regulation pathways. Using bioinformatic site prediction and crossover gene search, miR-29b-3p was identified as a regulator of LIN7A expression that may negatively affect fracture healing. Potential miRNA-mRNA interactions in the bone non-union mechanism were explored, and miRNA-29-3p and LIN7A were identified as biomarkers of skeletal non-union. The expression of miRNA-29b-3p and LIN7A was verified in blood samples from patients with fracture non-union using qRT-PCR and ELISA. Overall, this study identified characteristic modules and key genes associated with fracture non-union and provided insight into its molecular mechanisms. Downregulated miRNA-29b-3p was found to downregulate LIN7A protein expression, which may affect the healing process after fracture in patients with bone non-union. These findings may serve as a prognostic biomarker and potential therapeutic target for bone non-union.
Collapse
Affiliation(s)
- Guojian Jian
- Department of OrthopedicsChenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army)XiamenFujianChina
| | - Desheng Xie
- Department of OrthopedicsChenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army)XiamenFujianChina
| | - Ximu Kuang
- Department of OrthopedicsChenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army)XiamenFujianChina
| | - Peihuang Zheng
- Department of OrthopedicsChenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army)XiamenFujianChina
| | - Haoyuan Liu
- Department of OrthopedicsChenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army)XiamenFujianChina
| | - Xuehong Dong
- Department of OrthopedicsChenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army)XiamenFujianChina
| |
Collapse
|
3
|
Fang Z, Hu Q, Liu W. Vitamin B6 alleviates osteoarthritis by suppressing inflammation and apoptosis. BMC Musculoskelet Disord 2024; 25:447. [PMID: 38844896 PMCID: PMC11155127 DOI: 10.1186/s12891-024-07530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Although various anti-inflammatory medicines are widely recommended for osteoarthritis (OA) treatment, no significantly clinical effect has been observed. This study aims to examine the effects of vitamin B6, a component that has been reported to be capable of alleviating inflammation and cell death in various diseases, on cartilage degeneration in OA. METHODS Collagen-induced arthritis (CIA) mice model were established and the severity of OA in cartilage was determined using the Osteoarthritis Research Society International (OARSI) scoring system. The mRNA and protein levels of indicators associated with extracellular matrix (ECM) metabolism, apoptosis and inflammation were detected. The effect of vitamin B6 (VB6) on the mice were assessed using HE staining and masson staining. The apoptosis rate of cells was assessed using TdT-mediated dUTP nick end labeling. RESULTS Our results showed a trend of improved OARSI score in mice treated with VB6, which remarkably inhibited the hyaline cartilage thickness, chondrocyte disordering, and knees hypertrophy. Moreover, the VB6 supplementation reduced the protein expression of pro-apoptosis indicators, including Bax and cleaved caspase-3 and raised the expression level of anti-apoptosis marker Bcl-2. Importantly, VB6 improved ECM metabolism in both in vivo and in vitro experiments. CONCLUSIONS This study demonstrated that VB6 alleviates OA through regulating ECM metabolism, inflammation and apoptosis in chondrocytes and CIA mice. The findings in this study provide a theoretical basis for targeted therapy of OA, and further lay the theoretical foundation for studies of mechanisms of VB6 in treating OA.
Collapse
Affiliation(s)
- Zhaoyi Fang
- Department of Sports Medicine, National Center for Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Qingxiang Hu
- Department of Sports Medicine, National Center for Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Wenxin Liu
- Department of Sports Medicine, National Center for Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
4
|
Liu D, Tang W, Tang D, Yan H, Jiao F. Ocu-miR-10a-5p promotes the chondrogenic differentiation of rabbit BMSCs by targeting BTRC-mediated Wnt/β-catenin signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:343-353. [PMID: 38504085 DOI: 10.1007/s11626-024-00888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
MicroRNAs (miRNAs) play an important role in articular cartilage damage in osteoarthritis (OA). However, the biological role of miRNAs in the chondrogenic differentiation of bone marrow mesenchymal stem cell (BMSC) remains largely unclear. Rabbit bone marrow mesenchymal stem cells (rBMSCs) were isolated, cultured, and identified. Afterwards, rBMSCs were induced to chondrogenic differentiation, examined by Alcian Blue staining. Differentially expressed miRNAs were identified in rBMSCs between induced and non-induced groups by miRNA sequencing analysis, part of which was validated via PCR assay. Cell viability and apoptosis were assessed by CCK-8 assay and Hoechst staining. Saffron O staining was utilized to assess chondrocyte hyperplasia. The expression of specific chondrogenic markers, including COL2A1, SOX9, Runx2, MMP-13, Aggrecan, and BMP-2, were measured at mRNA and protein levels. The association between beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) and miR-10a-5p in the miRNA family from rabbit (ocu-miR-10a-5p) was determined by luciferase reporter assay. A total of 76 differentially expressed miRNAs, including 52 downregulated and 24 upregulated miRNAs, were identified in rBMSCs from the induced group. Inhibition of ocu-miR-10a-5p suppressed rBMSC viability and chondrogenic differentiation, as well as downregulated the expression of β-catenin, SOX9, COL2A1, MMP-13, and Runx2. BTRC was predicted and confirmed as a target of ocu-miR-10a-5p. Overexpression of BTRC rescued the promoting impacts of overexpressed ocu-miR-10a-5p on chondrogenic differentiation of rBMSCs and β-catenin expression. Taken together, our data suggested that ocu-miR-10a-5p facilitated rabbit BMSC survival and chondrogenic differentiation by activating Wnt/β-catenin signaling through BTRC.
Collapse
Affiliation(s)
- Donghua Liu
- Department of Spine Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Wang Tang
- Department of Spine Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Dongming Tang
- Department of Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou City, Guangdong Province, China
| | - Haixia Yan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Jiao
- Department of Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
5
|
Andersen C, Walters M, Bundgaard L, Berg LC, Vonk LA, Lundgren-Åkerlund E, Henriksen BL, Lindegaard C, Skovgaard K, Jacobsen S. Intraarticular treatment with integrin α10β1-selected mesenchymal stem cells affects microRNA expression in experimental post-traumatic osteoarthritis in horses. Front Vet Sci 2024; 11:1374681. [PMID: 38596460 PMCID: PMC11002141 DOI: 10.3389/fvets.2024.1374681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) remains a major cause of lameness in horses, which leads to lost days of training and early retirement. Still, the underlying pathological processes are poorly understood. MicroRNAs (miRNAs) are small non-coding RNAs that serve as regulators of many biological processes including OA. Analysis of miRNA expression in diseased joint tissues such as cartilage and synovial membrane may help to elucidate OA pathology. Since integrin α10β1-selected mesenchymal stem cell (integrin α10-MSC) have shown mitigating effect on equine OA we here investigated the effect of integrin α10-MSCs on miRNA expression. Cartilage and synovial membrane was harvested from the middle carpal joint of horses with experimentally induced, untreated OA, horses with experimentally induced OA treated with allogeneic adipose-derived MSCs selected for the marker integrin α10-MSCs, and from healthy control joints. miRNA expression in cartilage and synovial membrane was established by quantifying 70 pre-determined miRNAs by qPCR. Differential expression of the miRNAs was evaluated by comparing untreated OA and control, untreated OA and MSC-treated OA, and joints with high and low pathology score. A total of 60 miRNAs were successfully quantified in the cartilage samples and 55 miRNAs were quantified in the synovial membrane samples. In cartilage, miR-146a, miR-150 and miR-409 had significantly higher expression in untreated OA joints than in control joints. Expression of miR-125a-3p, miR-150, miR-200c, and miR-499-5p was significantly reduced in cartilage from MSC-treated OA joints compared to the untreated OA joints. Expression of miR-139-5p, miR-150, miR-182-5p, miR-200a, miR-378, miR-409-3p, and miR-7177b in articular cartilage reflected pathology score. Several of these miRNAs are known from research in human patients with OA and from murine OA models. Our study shows that these miRNAs are also differentially expressed in experimental equine OA, and that expression depends on OA severity. Moreover, MSC treatment, which resulted in less severe OA, also affected miRNA expression in cartilage.
Collapse
Affiliation(s)
- Camilla Andersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Marie Walters
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | | | | | - Casper Lindegaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
6
|
Wang L, Sun H, Cao L, Wang J. Role of HOXA1-4 in the development of genetic and malignant diseases. Biomark Res 2024; 12:18. [PMID: 38311789 PMCID: PMC10840290 DOI: 10.1186/s40364-024-00569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024] Open
Abstract
The HOXA genes, belonging to the HOX family, encompass 11 members (HOXA1-11) and exert critical functions in early embryonic development, as well as various adult processes. Furthermore, dysregulation of HOXA genes is implicated in genetic diseases, heart disease, and various cancers. In this comprehensive overview, we primarily focused on the HOXA1-4 genes and their associated functions and diseases. Emphasis was placed on elucidating the impact of abnormal expression of these genes and highlighting their significance in maintaining optimal health and their involvement in the development of genetic and malignant diseases. Furthermore, we delved into their regulatory mechanisms, functional roles, and underlying biology and explored the therapeutic potential of targeting HOXA1-4 genes for the treatment of malignancies. Additionally, we explored the utility of HOXA1-4 genes as biomarkers for monitoring cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Haifeng Sun
- The Third Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Jinhai Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
7
|
Zhao Z, Liu W, Cheng G, Dong S, Zhao Y, Wu H, Cao Z. Knockdown of DAPK1 inhibits IL-1β-induced inflammation and cartilage degradation in human chondrocytes by modulating the PEDF-mediated NF-κB and NLRP3 inflammasome pathway. Innate Immun 2024; 30:21-30. [PMID: 36412004 PMCID: PMC10720599 DOI: 10.1177/17534259221086837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease that is characterized by inflammation and cartilage degradation. Death-associated protein kinase 1 (DAPK1) is a multi-domain serine/threonine kinase and has been reported to be involved in the progression of OA. However, its role and mechanism in OA remain unclear. Here, we found the expression of DAPK1 in OA cartilage tissues was higher than that in normal cartilage tissues. The expression of DAPK1 in chondrocytes was up-regulated by IL-1β. Knockdown of DAPK1 promoted cell viability and anti-apoptotic protein expression, while it inhibited the apoptosis rate and pro-apoptotic protein expressions in IL-1β-induced chondrocytes. In addition, DAPK1 inhibition reduced the levels of inflammatory cytokines and expressions of matrix metalloproteinases (MMPs), and increased the expressions of collagen II and aggrecan. The data of mechanistic investigation indicated that the expression of pigment epithelium-derived factor (PEDF) was positively regulated by DAPK1. Overexpression of PEDF attenuated the effects of DAPK1 knockdown on IL-1β-induced cell viability, apoptosis, inflammation, and cartilage degradation. Furthermore, PEDF overexpression restored the activity of the NF-κB pathway and NLRP3 inflammasome after DAPK1 knockdown. Collectively, down-regulation of DAPK1 inhibited IL-1β-induced inflammation and cartilage degradation via the PEDF-mediated NF-κB and NLRP3 inflammasome pathways.
Collapse
Affiliation(s)
- Zhongyuan Zhao
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Gong Cheng
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Shengjie Dong
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Yuchi Zhao
- Department of Articulation Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Hao Wu
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Zhilin Cao
- Department of Sports Medicine, Yantaishan Hospital, Yantai, Shandong Province, China
| |
Collapse
|
8
|
Miyahara K, Tatehana M, Kikkawa T, Osumi N. Investigating the impact of paternal aging on murine sperm miRNA profiles and their potential link to autism spectrum disorder. Sci Rep 2023; 13:20608. [PMID: 38062235 PMCID: PMC10703820 DOI: 10.1038/s41598-023-47878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Paternal aging has consistently been linked to an increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Recent evidence has highlighted the involvement of epigenetic factors. In this study, we aimed to investigate age-related alterations in microRNA (miRNA) profiles of mouse sperm and analyze target genes regulated by differentially expressed miRNAs (DEmiRNAs). Microarray analyses were conducted on sperm samples from mice at different ages: 3 months (3 M), over 12 M, and beyond 20 M. We identified 26 miRNAs with differential expression between the 3 and 20 M mice, 34 miRNAs between the 12 and 20 M mice, and 2 miRNAs between the 3 and 12 M mice. The target genes regulated by these miRNAs were significantly associated with apoptosis/ferroptosis pathways and the nervous system. We revealed alterations in sperm miRNA profiles due to aging and suggest that the target genes regulated by these DEmiRNAs are associated with apoptosis and the nervous system, implying a potential link between paternal aging and an increased risk of neurodevelopmental disorders such as ASD. The observed age-related changes in sperm miRNA profiles have the potential to impact sperm quality and subsequently affect offspring development.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Misako Tatehana
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
9
|
Huang F, Su Z, Yang J, Zhao X, Xu Y. Downregulation of lncRNA NEAT1 interacts with miR-374b-5p/PGAP1 axis to aggravate the development of osteoarthritis. J Orthop Surg Res 2023; 18:670. [PMID: 37691099 PMCID: PMC10494329 DOI: 10.1186/s13018-023-04147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), characterized by inflammation and articular cartilage degradation, is a prevalent arthritis among geriatric population. This paper was to scrutinize the novel mechanism of long noncoding RNA (lncRNA) NEAT1 in OA etiology. METHODS A total of 10 OA patients and 10 normal individuals was included in this study. Cell model of OA was built in human normal chondrocytes induced by lipopolysaccharide (LPS). An OA Wistar rat model was established through intra-articular injection of L-cysteine and papain mixtures (proportion at 1:2) into the right knee. Quantitative reverse transcription-polymerase chain reaction was employed to ascertain the expression levels of NEAT1, microRNA (miR)-374b-5p and post-GPI attachment to protein 1 (PGAP1), while dual-luciferase reporter experiments were used for the validation of target relationship among them. Cell cycle and apoptosis were calculated by flow cytometry analysis. CCK-8 assay was done to evaluate the proliferative potentials of chondrocytes. The levels of cell cycle-related proteins (Cyclin A1, Cyclin B1 and Cyclin D2) and pro-apoptotic proteins (Caspase3 and Caspase9) were measured by western blotting. Tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and IL-6 levels were determined via ELISA. Hematoxylin & eosin (HE) Staining was used for pathological examination in OA rats. RESULTS Pronounced downregulation of NEAT1 and PGAP1 and high amounts of miR-374b-5p were identified in OA patients, LPS-induced chondrocytes and OA rats. NEAT1 targeted miR-374b-5p to control PGAP1 expression. Loss of NEAT1 or upregulation of miR-374b-5p dramatically accelerated apoptosis, led to the G1/S arrest and promoted the secretion of inflammatory cytokines in LPS-induced chondrocytes, while ectopic expression of PGAP1 exhibited the opposite influences on chondrocytes. Additionally, we further indicated that upregulation of miR-374b-5p attenuated the effects of PGAP1 overexpression on LPS-induced chondrocytes. CONCLUSIONS Reduced NEAT1 induces the development of OA via miR-374b-5p/PGAP1 pathway. This suggests that the regulatory axis NEAT1/miR-374b-5p/PGAP1 is a novel and prospective target for OA treatment.
Collapse
Affiliation(s)
- Feiri Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu, China
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhongliang Su
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Jie Yang
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Xizhen Zhao
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
10
|
Du XF, Huang K, Chen XY, Huang CH, Cao HY, Wang GJ, Hu Y. Gremlin-1 promotes IL-1β-stimulated chondrocyte inflammation and extracellular matrix degradation via activation of the MAPK signaling pathway. J Biochem Mol Toxicol 2023; 37:e23404. [PMID: 37352019 DOI: 10.1002/jbt.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/18/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The role and mechanism of Gremlin-1 in osteoarthritis (OA) were expected to be probed in this study. Firstly, an in vitro OA model was constructed by stimulating human chondrocyte cell line CHON-001 with IL-1β. Next, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) were utilized for assessing the effect of IL-1β with different concentrations (5, 10, and 20 ng/mL) on the activity and Gremlin-1 messenger RNA of CHON-001 cells, respectively. Besides, the influence of knocking down/over-expressing Gremlin-1 on the inflammatory factors (IL-6, TNF-α, IL-18 and PGE2), oxidative stress-related substances (malondialdehyde [MDA]; superoxide dismutase [SOD]; lactate dehydrogenase [LDH]), extracellular matrix (ECM) degradation-related proteins, and mitogen-activated protein kinase (MAPK) pathway proteins in IL-1β-stimulated CHON-001 cells were tested by enzyme-linked immunosorbent assay, related kits, qRT-PCR, and western blot, respectively. IL-1β inhibited CHON-001 cell proliferation and upregulated Gremlin-1 expression in a concentration-dependent manner. Overexpression of Gremlin-1 increased the IL-6, TNF-α, IL-18, PGE2, and MDA levels, enhanced the LDH activity, and decreased the SOD activity in IL-1β-induced CHON-001 cells; while the effect of Gremlin-1 knockdown on the above factors was in contrast with that of the overexpression. Furthermore, overexpression of Gremlin-1 upregulated protein expression of matrix metalloproteinase (MMP)-3, MMP-13, and ADAMTS4 while downregulated protein expression of collagen III, aggrecan, and SOX-9 in IL-1β-stimulated CHON-001 cells. Besides, overexpression of Gremlin-1 increased the p-p38/p38 value while decreased the p-JNK/JNK value in L-1β-stimulated CHON-001 cells; however, knockdown of Gremlin-1 reversed the above results. Gremlin-1 may promote IL-1β-stimulated CHON-001 cell inflammation and ECM degradation by activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiu-Fan Du
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Kai Huang
- Department of Orthopedics, Zibo Orthopaedic Hospital Shandong Province, Zibo, Shandong, China
| | - Xiao-Yan Chen
- Department of stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chun-Hang Huang
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hui-Yuan Cao
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Guang-Ji Wang
- Department of Sports Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yong Hu
- Department of Orthopedics, Danzhou People's Hospital, Danzhou, Hainan, China
| |
Collapse
|
11
|
Jian S, Luo D, Wang Y, Xu W, Zhang H, Zhang L, Zhou X. MiR-337-3p confers protective effect on facet joint osteoarthritis by targeting SKP2 to inhibit DUSP1 ubiquitination and inactivate MAPK pathway. Cell Biol Toxicol 2023; 39:1099-1118. [PMID: 34697729 DOI: 10.1007/s10565-021-09665-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To probe the performance of miR-337-3p on the facet joint osteoarthritis (FJOA) and its underlying mechanism. METHODS qRT-PCR and Western blot were utilized to analyze the levels of miR-337-3p and DUSP1 in the synovial tissues from 36 FJOA patients and 10 healthy controls. The human synovial fibroblasts of FJOA were isolated and cultured followed by cell transfection. Then, cells were exposed to 10 ng/mL of IL-1β to induce inflammatory response of synovial fibroblasts. The alternation on cell biological function in cell models was determined. The binding of miR-337-3p and SKP2 was predicted by StarBase, TargetScan, DIANA-microT and miRmap, and further verified by RIP assay and dual-luciferase reporter assay. Co-IP experiment and ubiquitination assay were used to display the binding of SKP2 and DUSP1 as well as the ubiquitination and degradation of DUSP1. After that, the FJOA rat model was established and miR-337-3p mimic or negative control was given to rats by tail vein injection. The pathological changes of synovial tissues, synovitis score, and inflammation level in rats were assessed. RESULTS The low expressions of miR-337-3p and DUSP1 were noticed in the synovial tissues of FJOA patients and in IL-1β-induced synovial fibroblasts, and highly expressed p-p38 MAPK was noticed. Upregulation of miR-337-3p/DUSP1 or downregulation of SKP2 inhibited IL-1β-induced proliferation and inflammatory response of synovial fibroblasts. SKP2 was the target gene of miR-337-3p, and SKP2 induced the ubiquitination and degradation of DUSP1. MiR-337-3p exerted a protective effect on FJOA rats by alleviating damage of rat synovial tissues, promoting cell apoptosis and repressing inflammatory response. CONCLUSION MiR-337-3p plays a protective role in FJOA by negatively targeting SKP2 to suppress DUSP1 ubiquitination and inactivate the p38 MAPK pathway.
Collapse
Affiliation(s)
- Shengsheng Jian
- Department of Orthopedics, the Third Affiliated Hospital (the Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, 518001, People's Republic of China
| | - Dixin Luo
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Yeyang Wang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Wangyang Xu
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Hui Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Li Zhang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China
| | - Xiaozhong Zhou
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, No. 466, Mid Xingang Road, Haizhu District, Guangzhou, Guangdong, 510317, People's Republic of China.
| |
Collapse
|
12
|
Zhu Y, Zhang C, Jiang B, Dong Q. MiR-760 targets HBEGF to control cartilage extracellular matrix degradation in osteoarthritis. J Orthop Surg Res 2023; 18:186. [PMID: 36894989 PMCID: PMC9999495 DOI: 10.1186/s13018-023-03664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The present study was developed to explore whether microRNA (miR)-760 targets heparin-binding EGF-like growth factor (HBEGF) to control cartilage extracellular matrix degradation in osteoarthritis. Both miR-760 and HBEGF expression levels were analysed in human degenerative cartilage tissues and in interleukin (IL)-1β/tumour necrosis factor (TNF)-α-treated chondrocytes in vitro. A series of knockdown and overexpression assays were then used to gauge the functional importance of miR-760 and HBEGF in OA, with qPCR and western immunoblotting analyses. Bioinformatics assays were used to identify putative miR-760 target genes, with these predictions then being validated through RNA pulldown and luciferase reporter assays. A murine anterior cruciate ligament transection model of OA was then established to prove the in vivo relevance of these findings. These experiments revealed that human degenerative cartilage tissues exhibited significant increases in miR-760 expression with a concomitant drop in HBEGF levels. IL-1β/TNF-α-treated chondrocytes also exhibited significant increases in miR-760 expression with a concomitant drop in HBEGF expression. When chondrocytes were transfected with either miR-760 inhibitor or HBEGF overexpression constructs, this was sufficient to interfere with degradation of the extracellular matrix (ECM). Moreover, miR-760 was confirmed to control chondrocyte matrix homeostasis by targeting HBEGF, and the overexpression of HBEGF partially reversed the effects of miR-760 mimic treatment on the degradation of the cartilage ECM. When OA model mice were administered an intra-articular knee injection of an adenoviral vector encoding a miR-760 mimic construct, cartilage ECM degradation was aggravated. Conversely, the overexpression of HBEGF in OA model mice partially reversed the effects of miR-760 overexpression, restoring appropriate ECM homeostasis. In summary, these data indicated that the miR-760/HBEGF axis plays a central role in orchestrating the pathogenesis of OA, making it a candidate target for therapeutic efforts in OA.
Collapse
Affiliation(s)
- Yingchun Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Soochow, 215000, China
| | - Chi Zhang
- Department of Orthopedic Surgery, Ningbo First Hospital, No. 59, LiuTing Street, Ningbo, 315010, China
| | - Bo Jiang
- Department of Orthopedic Surgery, Ningbo First Hospital, No. 59, LiuTing Street, Ningbo, 315010, China
| | - Qirong Dong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Soochow, 215000, China.
| |
Collapse
|
13
|
Peeples ES. MicroRNA therapeutic targets in neonatal hypoxic-ischemic brain injury: a narrative review. Pediatr Res 2023; 93:780-788. [PMID: 35854090 DOI: 10.1038/s41390-022-02196-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
Neonatal hypoxic-ischemic brain injury (HIBI) is a devastating injury resulting from impaired blood flow and oxygen delivery to the brain at or around the time of birth. Despite the use of therapeutic hypothermia, more than one in four survivors suffer from major developmental disabilities-an indication of the critical need for more effective therapies. MicroRNAs (miRNA) have the potential to act as biomarkers and/or therapeutic targets in neonatal HIBI as a step toward improving outcomes in this high-risk population. This review summarizes the current literature around the use of cord blood and postnatal circulating blood miRNA expression for diagnosis or prognosis in human infants with hypoxic-ischemic encephalopathy, as well as animal studies assessing endogenous brain miRNA expression and potential for therapeutic targeting of miRNA expression for neuroprotection. Ultimately, the lack of knowledge regarding brain specificity of circulating miRNAs and the temporal variability in expression currently limit the use of miRNAs as biomarkers. However, given their broad effect profile, ease of administration, and small size allowing for effective blood-brain barrier crossing, miRNAs represent promising therapeutic targets for improving brain injury and reducing developmental impairments in neonates after HIBI. IMPACT: The high morbidity and mortality of neonatal hypoxic-ischemic brain injury (HIBI) despite current therapies demonstrates a need for developing more sensitive biomarkers and superior therapeutic options. MicroRNAs have been evaluated both as biomarkers and therapeutic options after neonatal HIBI. The limited knowledge regarding brain specificity of circulating microRNAs and temporal variability in expression currently limit the use of microRNAs as biomarkers. Future studies comparing the neuroprotective effects of modulating microRNA expression must consider temporal changes in the endogenous expression to determine appropriate timing of therapy, while also optimizing techniques for delivery.
Collapse
Affiliation(s)
- Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
- Children's Hospital & Medical Center, Omaha, NE, USA.
- Child Health Research Institute, Omaha, NE, USA.
| |
Collapse
|
14
|
Frerker N, Karlsen TA, Stensland M, Nyman TA, Rayner S, Brinchmann JE. Comparison between articular chondrocytes and mesenchymal stromal cells for the production of articular cartilage implants. Front Bioeng Biotechnol 2023; 11:1116513. [PMID: 36896010 PMCID: PMC9989206 DOI: 10.3389/fbioe.2023.1116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Focal lesions of articular cartilage give rise to pain and reduced joint function and may, if left untreated, lead to osteoarthritis. Implantation of in vitro generated, scaffold-free autologous cartilage discs may represent the best treatment option. Here we compare articular chondrocytes (ACs) and bone marrow-derived mesenchymal stromal cells (MSCs) for their ability to make scaffold-free cartilage discs. Articular chondrocytes produced more extracellular matrix per seeded cell than mesenchymal stromal cells. Quantitative proteomics analysis showed that articular chondrocyte discs contained more articular cartilage proteins, while mesenchymal stromal cell discs had more proteins associated with cartilage hypertrophy and bone formation. Sequencing analysis revealed more microRNAs associated with normal cartilage in articular chondrocyte discs, and large-scale target predictions, performed for the first time for in vitro chondrogenesis, suggested that differential expression of microRNAs in the two disc types were important mechanisms behind differential synthesis of proteins. We conclude that articular chondrocytes should be preferred over mesenchymal stromal cells for tissue engineering of articular cartilage.
Collapse
Affiliation(s)
- Nadine Frerker
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tommy A Karlsen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Maria Stensland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Simon Rayner
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan E Brinchmann
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
The Role of microRNAs in Inflammation. Int J Mol Sci 2022; 23:ijms232415479. [PMID: 36555120 PMCID: PMC9779565 DOI: 10.3390/ijms232415479] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a biological response of the immune system to various insults, such as pathogens, toxic compounds, damaged cells, and radiation. The complex network of pro- and anti-inflammatory factors and their direction towards inflammation often leads to the development and progression of various inflammation-associated diseases. The role of small non-coding RNAs (small ncRNAs) in inflammation has gained much attention in the past two decades for their regulation of inflammatory gene expression at multiple levels and their potential to serve as biomarkers and therapeutic targets in various diseases. One group of small ncRNAs, microRNAs (miRNAs), has become a key regulator in various inflammatory disease conditions. Their fine-tuning of target gene regulation often turns out to be an important factor in controlling aberrant inflammatory reactions in the system. This review summarizes the biogenesis of miRNA and the mechanisms of miRNA-mediated gene regulation. The review also briefly discusses various pro- and anti-inflammatory miRNAs, their targets and functions, and provides a detailed discussion on the role of miR-10a in inflammation.
Collapse
|
16
|
Wang Y, Zheng X, Luo D, Xu W, Zhou X. MiR-99a alleviates apoptosis and extracellular matrix degradation in experimentally induced spine osteoarthritis by targeting FZD8. BMC Musculoskelet Disord 2022; 23:872. [PMID: 36127685 PMCID: PMC9487131 DOI: 10.1186/s12891-022-05822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Our previous study identified miR-99a as a negative regulator of early chondrogenic differentiation. However, the functional role of miR-99a in the pathogenesis of osteoarthritis (OA) remains unclear. Methods We examined the levels of miR-99a and Frizzled 8 (FZD8) expression in tissue specimens. Human SW1353 chondrosarcoma cells were stimulated with IL-6 and TNF-α to construct an in vitro OA environment. A luciferase reporter assay was performed to analyze the relationship between miR-99a and FZD8. CCK-8 assays, flow cytometry, and ELISA assays were used to assess cell viability, apoptosis, and inflammatory molecule expression, respectively. Percutaneous intra-spinal injections of papain mixed solution were performed to create an OA Sprague–Dawley rat model. Alcian Blue staining, Safranin O Fast Green staining, and Toluidine Blue O staining were performed to detect the degrees of cartilage injury. Results MiR-99a expression was downregulated in the severe spine OA patients when compared with the mild spine OA patients, and was also decreased in the experimentally induced in vitro OA environment when compared with the control environment. Functionally, overexpression of miR-99a significantly suppressed cell apoptosis and extracellular matrix degradation stimulated by IL-6 and TNF-α. FZD8 was identified as a target gene of miR-99a. Furthermore, the suppressive effects of miR-99a on cell injury induced by IL-6 and TNF-α were reversed by FZD8 overexpression. Moreover, the levels of miR-99a expression were also reduced in the induced OA model rats, and miR-99a agomir injection relieved the cartilage damage. At the molecular level, miR-99a overexpression downregulated the levels of MMP13, β-catenin, Bax, and caspase-3 protein expression and upregulated the levels of COL2A1 and Bcl-2 protein expression in the in vitro OA-like chondrocyte model and also in the experimental OA model rats. Conclusions Our data showed that miR-99a alleviated apoptosis and extracellular matrix degradation by targeting FZD8, and thereby suppressed the development and progression of experimentally induced spine osteoarthritis. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05822-8.
Collapse
Affiliation(s)
- Yeyang Wang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China.,The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Xiaoyu Zheng
- Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Dixin Luo
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China
| | - Wangyang Xu
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China
| | - Xiaozhong Zhou
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China. .,Guangdong Medical University, Zhanjiang, Guangdong Province, China.
| |
Collapse
|
17
|
Role of exosomes in bone and joint disease metabolism, diagnosis, and therapy. Eur J Pharm Sci 2022; 176:106262. [PMID: 35850174 DOI: 10.1016/j.ejps.2022.106262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
Bone and joint diseases are prevalent and often fatal conditions in elderly individuals. Additionally, bone-derived cells may release exosomes that package and distribute a range of active substances, such as proteins, miRNAs, and numerous active factors, thereby facilitating material and information interchange between cells. Exososmes generated from bone may be utilized to manage bone production and resorption balance or even as biological or gene therapy carriers, depending on their properties and composition. In this review, we will discuss the composition, secretion, and uptake theory of exososmes, the role of exososmes in bone metabolism regulation, the pathogenesis and diagnosis of bone and joint diseases, and the application of exososmes in regenerative medicine. The findings will expand our understanding of the potential research and application space regarding exososmes.
Collapse
|
18
|
Zhang H, Chen C, Song J. microRNA-4701-5p protects against interleukin-1β induced human chondrocyte CHON-001 cells injury via modulating HMGA1. J Orthop Surg Res 2022; 17:246. [PMID: 35459188 PMCID: PMC9034483 DOI: 10.1186/s13018-022-03083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background miRNA-4701-5p has been reported to be a vital regulator in many diseases, including rheumatoid arthritis, and miRNA-4701-5p is evidenced to be participated in synovial invasion and joint destruction. In our report, we investigated the roles of miRNA-4701-5p in osteoarthritis (OA) and analyzed the molecular mechanism. Methods Interleukin-1β (IL-1β) was applied for stimulating human chondrocyte CHON-001 cells to establish an OA injury model. mRNA levels and protein expression were measured using qRT-PCR and western blot assay, respectively. The proliferation ability and cytotoxicity of CHON-001 cells were checked using MTT assay and lactate dehydrogenase activity. The inflammation of chondrocytes was accessed by the secretion levels of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor (TNF)-α. The apoptosis of chondrocytes was determined by flow cytometry assay. Bioinformatics software Starbase v2.0 analyzed the functional binding sites between miRNA-4701-5p and HMGA1 and the interaction was further confirmed using dual luciferase reporter analysis. Results: miRNA-4701-5p was down-regulated in the IL-1β-stimulated chondrocytes and HMGA1 directly targeted miRNA-4701-5p. Up-regulation of miRNA-4701-5p could alleviate IL-1β-treated CHON-001 cells inflammation and apoptosis, and reversed the cell proliferation decrease and cytotoxicity increase after IL-1β treatment. Nevertheless, all the roles of miRNA-4701-5p overexpression in CHON-001 cells could be reversed by HMGA1 up-regulation. Conclusions miRNA-4701-5p could alleviate the inflammatory injury of IL-1β-treated CHON-001 cells via down-regulating HMGA1, indicating that miRNA-4701-5p/HMGA1 is a promising therapeutic target for OA.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopedics, Huangshi Central Hospital, Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, China
| | - Cheng Chen
- Department of Geriatrics, Huangshi Central Hospital, Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435000, China.
| | - Jie Song
- Department of Geriatrics, Huangshi Central Hospital, Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435000, China
| |
Collapse
|
19
|
Qi L, Wang M, He J, Jia B, Ren J, Zheng S. E3 ubiquitin ligase ITCH improves LPS-induced chondrocyte injury by mediating JAG1 ubiquitination in osteoarthritis. Chem Biol Interact 2022; 360:109921. [DOI: 10.1016/j.cbi.2022.109921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022]
|
20
|
Zhang X, Tang X, Pan L, Li Y, Li J, Li C. Elevated lncRNA-UCA1 upregulates EZH2 to promote inflammatory response in sepsis-induced pneumonia via inhibiting HOXA1. Carcinogenesis 2022; 43:371-381. [PMID: 35018436 DOI: 10.1093/carcin/bgac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is characterized by a dysregulated inflammatory response. We aimed to explore the role of the long non-coding RNA urothelial carcinoma associated 1 (lncRNA UCA1)/enhancer of zeste homolog 2 (EZH2)/homeobox A1 (HOXA1) axis in sepsis-induced pneumonia. The sepsis rat models and RLE-6TN cellular sepsis-induced pneumonia models were established using ligation and puncture (CLP) and lipopolysaccharide (LPS). The expression of UCA1, EZH2 and HOXA1 in rat lung tissues and RLE-6TN cells was detected. Then, the CLP rats were respectively treated with UCA1 up-regulation or UCA1 silencing, EZH2 overexpression to measure their roles in the pathology, apoptosis, inflammation and NF-κB mRNA and phosphorylated NF-κB p-65 levels in CLP rat lung tissues. The cells were subjected to same treatment to examine the effects of UCA1, EZH2 and HOXA1 on viability, apoptosis, inflammation and NF-κB mRNA and phosphorylated NF-κB p-65 levels in LPS-induced RLE-6TN cells. The interactions among UCA1, EZH2 and HOXA1 were identified. UCA1 and EZH2 were upregulated while HOXA1 was downregulated in CLP rat lung tissues and LPS-induced RLE-6TN cells. Elevated UCA1 or increased EZH2 aggravated pathology and promoted apoptosis, inflammation and NF-κB mRNA and phosphorylated NF-κB p-65 levels in CLP rat lung tissues, and inhibited viability while facilitated apoptosis, inflammation and NF-κB mRNA and phosphorylated NF-κB p-65 levels in LPS-induced RLE-6TN cells. UCA1 inhibition exerted contrary effects. Silenced EZH2 reversed the effects of UCA1 elevation on sepsis-induced pneumonia. UCA1 targeted EZH2 that interacted with HOXA1. UCA1 overexpression upregulates EZH2 to repress HOXA1 expression, thus aggravating the progression of sepsis-induced pneumonia, which could be alleviated by EZH2 inhibition.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xuemei Tang
- Department of Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lingai Pan
- Department of Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yongheng Li
- Department of neurosurgery, Medical Center Hospital of QiongLai City, Chengdu 611530, China
| | - Junlei Li
- Department of Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunling Li
- Department of Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
21
|
Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol 2022; 9:774370. [PMID: 34977024 PMCID: PMC8714905 DOI: 10.3389/fcell.2021.774370] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease that is pervasive in life, and the incidence and mortality of OA are increasing, causing many adverse effects on people's life. Therefore, it is very vital to identify new biomarkers and therapeutic targets in the clinical diagnosis and treatment of OA. ncRNA is a nonprotein-coding RNA that does not translate into proteins but participates in protein translation. At the RNA level, it can perform biological functions. Many studies have found that miRNA, lncRNA, and circRNA are closely related to the course of OA and play important regulatory roles in transcription, post-transcription, and post-translation, which can be used as biological targets for the prevention, diagnosis, and treatment of OA. In this review, we summarized and described the various roles of different types of miRNA, lncRNA, and circRNA in OA, the roles of different lncRNA/circRNA-miRNA-mRNA axis in OA, and the possible prospects of these ncRNAs in clinical application.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
22
|
Zhi L, Zhao J, Zhao H, Qing Z, Liu H, Ma J. Downregulation of LncRNA OIP5-AS1 Induced by IL-1β Aggravates Osteoarthritis via Regulating miR-29b-3p/PGRN. Cartilage 2021; 13:1345S-1355S. [PMID: 32037864 PMCID: PMC8804817 DOI: 10.1177/1947603519900801] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) OIP5 antisense RNA 1 (OIP5-AS1) is an oncogenic lncRNA; however, its role in osteoarthritis (OA) pathology still remains unknown. MATERIALS AND METHODS qRT-PCR was performed to measure the expressions of OIP5-AS1, miR-29b-3p and progranulin (PGRN) mRNA in OA cartilage tissues and normal cartilage tissues. Chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to induce the inflammatory response. Overexpression plasmids, microRNA mimics, microRNA inhibitors and small interfering RNAs were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 assay was used for determining the cell viability and Transwell assay was used for monitoring cell migration. Western blot was applied to measure the expressions of apoptosis-related proteins. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. StarBase and TargetScan were used to predict the binding sites between OIP5-AS1 and miR-29b-3p, miR-29b-3p and 3'-UTR of PGRN respectively, which were verified by dual luciferase reporter assay. RESULTS OIP5-AS1 and PGRN mRNA were downregulated while miR-29b-3p was upregulated in OA tissues and models. The up-regulated OIP5-AS1 facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while ameliorated the apoptosis and inflammatory response. However, miR-29b-3p had opposite effects. PGRN was identified as a target gene of miR-29b-3p, which could be indirectly suppressed by OIP5-AS1 knockdown. CONCLUSION Downregulation of OIP5-AS1 induced by IL-1β could inhibit the proliferation and migration abilities of CHON-001 and ATDC5 cells and facilitate the apoptosis and inflammation response via regulating miR-29b-3p/PGRN axis.
Collapse
Affiliation(s)
- Liqiang Zhi
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianwu Zhao
- Department of Microsurgery, Yulin First
Hospital, Second Affiliated Hospital of Yan-an University, Yulin, Shaanxi,
China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery,
Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhong Qing
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongliang Liu
- Department of Trauma Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Jianbing Ma, Department of Joint Surgery,
Honghui Hospital, Xi’an Jiaotong University, Youyi East Road No. 555, Xi’an,
Shaanxi 710054, China.
| |
Collapse
|
23
|
Chen HY, Lu J, Wang ZK, Yang J, Ling X, Zhu P, Zheng SY. Hsa-miR-199a-5p Protect Cell Injury in Hypoxia Induces Myocardial Cells Via Targeting HIF1α. Mol Biotechnol 2021; 64:482-492. [PMID: 34843094 DOI: 10.1007/s12033-021-00423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
Myocardial infarction (MI) is one of the most common global diseases. Recently, microRNA 199a-5p (miR-199a-5p) has been recognized as a vital regulator in several human diseases. Nevertheless, the function of miR-199a-5p and the associated downstream molecular mechanisms in myocardial injury remain undescribed. Here, we assessed the relative expression of miR-199a-5p in an oxidative stress injury model of human myocardial cells. The effects of miR-199a-5p on myocardial cell viability were determined by cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL), flow cytometry, and western blot assays. Online bioinformatic analysis was used to predict the aim of miR-199a-5p in cardiomyocyte injury, which was confirmed by dual-luciferase reporter assays. miR-199a-5p increased the growth rate of cardiomyocytes after treatment with a hypoxic environment. miR-199a-5p acted as an inhibitor directly targeted hypoxia-inducible factor-1 (HIF1α) expression, which was higher in the cardiomyocyte injury model than that in healthy myocardial cells. Upregulated HIF1α expression abolished miR-199a-5p-induced cell proliferation in the cardiomyocyte hypoxia model. Our results suggest that miR-199a-5p is a potential prognostic biomarker in myocardial damage.
Collapse
Affiliation(s)
- Hui-Yong Chen
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China.,Department of Thoracic Surgery, Yuebei People's Hospital, Shantou University, Shaoguan, People's Republic of China
| | - Jun Lu
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Zheng-Kang Wang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Jie Yang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xiao Ling
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Peng Zhu
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China. .,Department of Cardiothoracic Surgery, Nanfang hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun, Guangzhou, Guangdong, 510280, People's Republic of China.
| | - Shao-Yi Zheng
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China. .,Department of Cardiothoracic Surgery, Nanfang hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun, Guangzhou, Guangdong, 510280, People's Republic of China.
| |
Collapse
|
24
|
Li X, Huang Y, Han Y, Yang Q, Zheng Y, Li W. LncPVT1 regulates osteogenic differentiation of human periodontal ligament cells via miR-10a-5p/brain-derived neurotrophic factor. J Periodontol 2021; 93:1093-1106. [PMID: 34793611 DOI: 10.1002/jper.21-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Identifying the factors affecting osteoblast differentiation ofperiodontal ligamentcells (PDLCs) can help enhance the regeneration of periodontal tissue.LncRNAplasmacytoma variant translocation 1 (lncPVT1) is an important regulatory factor involved in many biological processes, but its role in osteogenesisremains unclear. METHODS Expressionsof osteogenic markers were detected by quantitative reverse transcription polymerase chain reaction and Western blot analysis. Alkaline phosphatase staining was conducted for early osteoblast differentiation and alizarin red S staining was used for mineral deposition. RNA sequencing was used to identify the miRNAs regulated by lncPVT1 during osteogenesis. Cell transfection was used to overexpress or knockdown lncPVT1 and miR-10a-5p. Dual luciferase reporter assayswere conducted to analyze the binding of miR-10a-5p to brain-derived neurotrophic factor (BDNF). RESULTS LncPVT1 was significantly increased during osteogenic induction of PDLCs. Overexpression of lncPVT1 promoted osteogenesis, whereas lncPVT1 knockdown inhibited this process. RNA sequencing showed that miR-10a-5p expression was significantly increased after lncPVT1 knockdown.RNA immunoprecipitation assay further demonstrated the binding potential of lncPVT1 and miR-10a-5p. MiR-10a-5p inhibited the osteogenesis of PDLCs, and partially reversed the stimulatory effects of lncPVT1.Subsequently, we identified a predicted binding site for miR-10a-5p on BDNF and confirmed it using dual luciferase reporter assays. Moreover, lncPVT1 upregulated the expression of BDNF, while miR-10a-5p downregulated BDNF expression. BDNF promoted osteogenesis and partially rescued the si-lncPVT1-mediated inhibition of PDLCs osteogenic differentiation. CONCLUSION LncPVT1 positively regulated the osteogenic differentiation of PDLCs via miR-10a-5p and BDNF.Our resultsprovide a promising target for enhancing the osteogenic potential of PDLCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, P.R. China
| |
Collapse
|
25
|
Gao J, Xia S. Reduced miR-519d-3p levels in the synovium and synovial fluid facilitate the progression of post-traumatic osteoarthritis by targeting VEGF. Exp Ther Med 2021; 22:1478. [PMID: 34765019 DOI: 10.3892/etm.2021.10913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to investigate the expression and clinical significance of miR-519d-3p in patients with post-traumatic osteoarthritis (PTOA). The levels of miR-519d-3p in the synovium and synovial fluid (SF) of all subjects were detected by reverse transcription-quantitative polymerase chain reaction. The results of the present study demonstrated that the levels of miR-519d-3p in the synovium and SF of patients with PTOA were significantly lower, but that the VEGF content was significantly higher, compared with that of control group. Dual-luciferase reporter and Western blot assays demonstrated that VEGF was a target gene of miR-519d-3p. Furthermore, miR-519d-3p inhibitor-induced cell apoptosis, and cell cycle arrest could be partially reversed by silencing VEGF. Additionally, the level of miR-519d-3p in the synovium and SF of patients with PTOA was negatively correlated with the level of VEGF. ROC analysis demonstrated that miR-519d-3p levels in the synovium and SF could effectively differentiate patients with PTOA from healthy controls, with areas under the ROC curve of 0.928 and 0.896, respectively. In conclusion, reduction of miR-519d-3p in the synovium and SF resulted in the upregulation of VEGF in patients with PTOA, and miR-519d-3p may be a potential therapeutic target of PTOA.
Collapse
Affiliation(s)
- Jianlong Gao
- Department of Orthopedics, The Affiliated Jianhu Hospital of Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Silong Xia
- Department of Orthopedics, The Affiliated Jianhu Hospital of Nantong University, Yancheng, Jiangsu 224700, P.R. China
| |
Collapse
|
26
|
Jiang H, Pang H, Wu P, Cao Z, Li Z, Yang X. LncRNA SNHG5 promotes chondrocyte proliferation and inhibits apoptosis in osteoarthritis by regulating miR-10a-5p/H3F3B axis. Connect Tissue Res 2021; 62:605-614. [PMID: 32967481 DOI: 10.1080/03008207.2020.1825701] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative joint disease in the elderly. Increasing evidence suggested that long non-coding RNAs (lncRNAs) played vital roles in OA progression. This study aimed to explore the role and mechanism of lncRNA small nucleolar RNA host gene 5 (SNHG5) in OA development. METHODS Chondrocytes were stimulated with interleukin-1β (IL-1β) in vitro. The levels of SNHG5, miR-10a-5p, and H3 histone family 3B (H3F3B) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell proliferation was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and colony formation assay. Cell apoptosis was tested by flow cytometry. The levels of apoptosis-related and cartilage-related markers were detected by western blot. The interaction among SNHG5, miR-10a-5p, and H3F3B was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS SNHG5 and H3F3B were downregulated, while miR-10a-5p was upregulated in OA cartilage tissues. Knockdown of SNHG5 enhanced IL-1β-induced apoptosis in chondrocytes. Rescue experiments verified that SNHG5 hindered apoptosis in IL-1β-stimulated chondrocytes by sponging miR-10a-5p. Moreover, H3F3B was a target of miR-10a-5p, and miR-10a-5p promoted IL-1β-induced chondrocyte apoptosis by regulating H3F3B. In addition, SNHG5 regulated H3F3B expression via sponging miR-10a-5p in IL-1β-treated chondrocytes. CONCLUSION SNHG5 suppressed chondrocytes apoptosis in OA by regulating the miR-10a-5p/H3F3B axis, which provided a promising biomarker for OA treatment.
Collapse
Affiliation(s)
- Housen Jiang
- Department of Hand and Foot Bone Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Hui Pang
- Department of Hand and Foot Bone Surgery, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Peigang Wu
- Weifang Medical University, Weifang, Shandong, China
| | - Zhenhao Cao
- Department of Hand and Foot Bone Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Zhong Li
- Department of Hand and Foot Bone Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Xuedong Yang
- Department of Hand and Foot Bone Surgery, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
27
|
Marr N, Meeson R, Kelly EF, Fang Y, Peffers MJ, Pitsillides AA, Dudhia J, Thorpe CT. CD146 Delineates an Interfascicular Cell Sub-Population in Tendon That Is Recruited during Injury through Its Ligand Laminin-α4. Int J Mol Sci 2021; 22:9729. [PMID: 34575887 PMCID: PMC8472220 DOI: 10.3390/ijms22189729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/18/2022] Open
Abstract
The interfascicular matrix (IFM) binds tendon fascicles and contains a population of morphologically distinct cells. However, the role of IFM-localised cell populations in tendon repair remains to be determined. The basement membrane protein laminin-α4 also localises to the IFM. Laminin-α4 is a ligand for several cell surface receptors, including CD146, a marker of pericyte and progenitor cells. We used a needle injury model in the rat Achilles tendon to test the hypothesis that the IFM is a niche for CD146+ cells that are mobilised in response to tendon damage. We also aimed to establish how expression patterns of circulating non-coding RNAs alter with tendon injury and identify potential RNA-based markers of tendon disease. The results demonstrate the formation of a focal lesion at the injury site, which increased in size and cellularity for up to 21 days post injury. In healthy tendon, CD146+ cells localised to the IFM, compared with injury, where CD146+ cells migrated towards the lesion at days 4 and 7, and populated the lesion 21 days post injury. This was accompanied by increased laminin-α4, suggesting that laminin-α4 facilitates CD146+ cell recruitment at injury sites. We also identified a panel of circulating microRNAs that are dysregulated with tendon injury. We propose that the IFM cell niche mediates the intrinsic response to injury, whereby an injury stimulus induces CD146+ cell migration. Further work is required to fully characterise CD146+ subpopulations within the IFM and establish their precise roles during tendon healing.
Collapse
Affiliation(s)
- Neil Marr
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK; (N.M.); (A.A.P.)
| | - Richard Meeson
- Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK; (R.M.); (E.F.K.); (J.D.)
| | - Elizabeth F. Kelly
- Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK; (R.M.); (E.F.K.); (J.D.)
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Mandy J. Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool L7 9TX, UK;
| | - Andrew A. Pitsillides
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK; (N.M.); (A.A.P.)
| | - Jayesh Dudhia
- Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK; (R.M.); (E.F.K.); (J.D.)
| | - Chavaunne T. Thorpe
- Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK; (N.M.); (A.A.P.)
| |
Collapse
|
28
|
Li X, Zhang L, Shi X, Liao T, Zhang N, Gao Y, Xing R, Wang P. MicroRNA-10a-3p Improves Cartilage Degeneration by Regulating CH25H-CYP7B1-RORα Mediated Cholesterol Metabolism in Knee Osteoarthritis Rats. Front Pharmacol 2021; 12:690181. [PMID: 34149433 PMCID: PMC8209416 DOI: 10.3389/fphar.2021.690181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis (OA) is a worldwide degenerative joint disease that seriously impaired the quality of life of patients. OA has been established as a disease with metabolic disorder. Cholesterol 25-hydroxylase (CH25H) was proved to play a key role in cartilage cholesterol metabolism. However, the biological function and mechanism of CH25H in OA remains further investigation. Growing researches have proved the vital roles of miRNAs in OA progression. In this study, we screened out miR-10a-3p through high-throughput miRNA sequencing which may bind to CH25H. Molecular mechanism investigation indicated that miR-10a-3p is an upstream target of CH25H. Functional exploration revealed miR-10a-3p suppressed the inflammatory responses, cholesterol metabolism and extracellular matrix (ECM) degradation in primary chondrocytes. Moreover, rescue assays implied that miR-10a-3p reversed CH25H plasmids induced inflammatory cytokine production and ECM degradation. Furthermore, the OA rat model was established to explore the function of miR-10a-3p in vivo. The results showed that miR-10a-3p can recover the OA features through targeting CH25H/CYP7B1/RORα axis. In conclusion, these findings implied a crucial role of miR-10a-3p/CH25H/CYP7B1/RORα axis in OA, which may provide a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Xiaochen Li
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaoqing Shi
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Taiyang Liao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Nongshan Zhang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Gao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Runlin Xing
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Li M, Gai F, Chen H. MiR-30b-5p Influences Chronic Exercise Arthritic Injury by Targeting Hoxa1. Int J Sports Med 2021; 42:1199-1208. [PMID: 33930933 DOI: 10.1055/a-1342-7872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We identified the role of miR-30b-5p in chronic exercise arthritic injury. Rats with chronic exercise arthritic injury received treatment with miR-30b-5p antagomiR. H&E and Safranin O-fast green staining were performed. The levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected. The binding relationship between homeobox A1 (Hoxa1) and miR-30b-5p was revealed. After manipulating the expressions of miR-30b-5p and/or Hoxa1 in chondrocytes, the viability, apoptosis and migration of chondrocytes were assessed. The levels of molecules were determined by qRT-PCR or Western blot. MiR-30b-5p antagomiR ameliorated articular cartilage lesion and destruction, reduced Mankin's score and the levels of TNF-α, IL-1β, miR-30b-5p, matrix metallopeptidase 13 (MMP-13), and cleaved caspase-3, and increased relative thickness and the levels of Hoxa1, Aggrecan and type II collagen (COLII) in model rats. MiR-30b-5p up-regulation decreased Hoxa1 level, viability, migration and induced apoptosis, whereas miR-30b-5p down-regulation produced the opposite effects. MiR-30b-5p up-regulation increased the levels of MMP-13 and cleaved caspase-3, but decreased those of Aggrecan and COLII in chondrocytes. However, the action of miR-30b-5p up-regulation on chondrocytes was reversed by Hoxa1 overexpression. In conclusion, miR-30b-5p is involved in cartilage degradation in rats with chronic exercise arthritic injury and regulates chondrocyte apoptosis and migration by targeting Hoxa1.
Collapse
Affiliation(s)
- Maoxun Li
- Department of Orthopaedics, The People's Hospital of Jimo.Qingdao, Qingdao, China
| | - Fei Gai
- Department of Radiotherapy, The People's Hospital of Jimo.Qingdao, Qingdao, China
| | - Hongyu Chen
- Department of Emergency, Qingdao West Coast New Area Central Hospital, Qingdao, China
| |
Collapse
|
30
|
Wei C, Xu X, Zhu H, Zhang X, Gao Z. Promotive role of microRNA‑150 in hippocampal neurons apoptosis in vascular dementia model rats. Mol Med Rep 2021; 23:257. [PMID: 33576461 PMCID: PMC7893740 DOI: 10.3892/mmr.2021.11896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/21/2020] [Indexed: 01/22/2023] Open
Abstract
Cognitive impairment is one of the primary features of vascular dementia (VD). However, the specific mechanism underlying the regulation of cognition function in VD is not completely understood. The present study aimed to explore the effects of microRNA (miR)‑150 on VD. To determine the effects of miR‑150 on cognitive function and hippocampal neurons in VD model rats, rats were subjected to intracerebroventricular injections of miR‑150 antagomiR. The Morris water maze test results demonstrated that spatial learning ability was impaired in VD model rats compared with control rats. Moreover, compared with antagomiR negative control (NC), miR‑150 antagomiR alleviated cognitive impairment and enhanced memory ability in VD model rats. The triphenyltetrazolium chloride, Nissl staining and immunohistochemistry results further demonstrated that miR‑150 knockdown improved the activity of hippocampal neurons in VD model rats compared with the antagomiR NC group. To validate the role of miR‑150 in neurons in vitro, the PC12 cell line was used. The flow cytometry and Hoechst 33342/PI double staining results indicated that miR‑150 overexpression significantly increased cell apoptosis compared with the mimic NC group. Moreover, the dual‑luciferase reporter gene assay results indicated that miR‑150 targeted HOXA1 and negatively regulated HOXA1 expression. Therefore, the present study indicated that miR‑150 knockdown ameliorated VD symptoms by upregulating HOXA1 expression in vivo and in vitro.
Collapse
Affiliation(s)
- Chengqun Wei
- Department of General Practice, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Xiuzhi Xu
- Department of General Practice, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Hongyan Zhu
- Department of General Practice, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Xiuyan Zhang
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Zhan Gao
- Department of General Practice, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
31
|
Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021; 10:cells10010131. [PMID: 33445441 PMCID: PMC7827519 DOI: 10.3390/cells10010131] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Extraosseous calcification is a pathologic mineralization process occurring in soft connective tissues (e.g., skin, vessels, tendons, and cartilage). It can take place on a genetic basis or as a consequence of acquired chronic diseases. In this last case, the etiology is multifactorial, including both extra- and intracellular mechanisms, such as the formation of membrane vesicles (e.g., matrix vesicles and apoptotic bodies), mitochondrial alterations, and oxidative stress. This review is an overview of extraosseous calcification mechanisms focusing on the relationships between apoptosis and mineralization in cartilage and vascular tissues, as these are the two tissues mostly affected by a number of age-related diseases having a progressively increased impact in Western Countries.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Correspondence:
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Interuniversity Consortium for Biotechnologies (CIB), Italy
| |
Collapse
|
32
|
Xiao J, Wang R, Zhou W, Cai X, Ye Z. Circular RNA CSNK1G1 promotes the progression of osteoarthritis by targeting the miR‑4428/FUT2 axis. Int J Mol Med 2021; 47:232-242. [PMID: 33416120 PMCID: PMC7723508 DOI: 10.3892/ijmm.2020.4772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disease that results in chronic arthralgia and functional disability of the affected joint. To date, there is no effective treatment available for this disease. Circular RNAs (circRNAs) are a type of intracellular stable RNA that can regulate the development and progression of OA. However, the function of circCSNK1G1 in OA has not yet been investigated. In the present study, it was found that circCSNK1G1 was upregulated in OA cartilage tissues. The upregulation of circCSNK1G1 was associated with extracellular matrix (ECM) degradation and chondrocyte apoptosis. Moreover, the expression of miR‑4428 was downregulated and that of fucosyltransferase 2 (FUT2) was upregulated in OA‑affected cartilage tissues. Dual‑luciferase reporter assay and RNA immunoprecipitation confirmed that miR‑4428 targeted FUT2 mRNA to inhibit FUT2 expression. circCSNK1G1 and FUT2 induced ECM degradation and chondrocyte apoptosis. The negative effects of circCSNK1G1 and FUT2 were reversed by miR‑4428. On the whole, the present study demonstrates that circCSNK1G1 promotes the development of OA by targeting the miR‑4428/FUT2 axis. Thus, the circCSNK1G1/miR‑4428/FUT2 axis may present a novel target for the treatment of OA in the clinical setting.
Collapse
Affiliation(s)
- Jianwei Xiao
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518000
| | - Rongsheng Wang
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000
| | - Weijian Zhou
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, Yunnan 650000, P.R. China
| | - Xu Cai
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518000
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518000
| |
Collapse
|
33
|
Esmaeili A, Hosseini S, Baghaban Eslaminejad M. Engineered-extracellular vesicles as an optimistic tool for microRNA delivery for osteoarthritis treatment. Cell Mol Life Sci 2021; 78:79-91. [PMID: 32601714 PMCID: PMC11072722 DOI: 10.1007/s00018-020-03585-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Worldwide, osteoarthritis (OA) is one of the most common chronic diseases. In OA, profiling gene expression changes occur and cartilage tissue homeostasis is lost. Suggestions for OA treatment include regulation of gene expressions via the use of microRNAs (miRNAs). However, problems exist with the use of miRNAs, the most important of which is the delivery of sufficient amounts of effective miRNAs to save cartilage tissue. The engineering of extracellular vesicles (EVs) with the use of advanced techniques would be an efficient OA treatment. Therefore, we discuss the importance of miRNAs in terms of cartilage tissue regeneration and review recent advances in production of enriched EVs and miRNA delivery by EVs for future clinical applications.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
34
|
Acacetin Suppresses IL-1 β-Induced Expression of Matrix Metalloproteinases in Chondrocytes and Protects against Osteoarthritis in a Mouse Model by Inhibiting NF- κB Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2328401. [PMID: 33195691 PMCID: PMC7641688 DOI: 10.1155/2020/2328401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a very common chronic joint dysfunction, and there is currently a poor understanding of its etiology and pathogenesis. Therefore, there are no active disease-modifying drugs currently available for clinical treatment. Several natural compounds have been shown to play a role in inhibiting OA progression. The present study is aimed at investigating the curative effects of acacetin, a natural flavonoid compound, against OA. Our results demonstrated that MMP-1, MMP-3, and MMP-13 were highly expressed in OA specimens. Acacetin inhibited the interleukin-1β- (IL-1β-) induced expression of MMP-1, MMP-3, and MMP-13in chondrocytes by blocking nuclear factor-κB (NF-κB) signaling pathways. Furthermore, we found that acacetin suppressed OA progression and inhibited the expression of MMP-1, MMP-3, and MMP-13 in ACLT-induced OA mice. Taken together, our study revealed that acacetin may serve as a potential drug for treating OA.
Collapse
|
35
|
Wu Y, Lu X, Shen B, Zeng Y. The Therapeutic Potential and Role of miRNA, lncRNA, and circRNA in Osteoarthritis. Curr Gene Ther 2020; 19:255-263. [PMID: 31333128 DOI: 10.2174/1566523219666190716092203] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. OBJECTIVE The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. METHODS The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. RESULTS AND DISCUSSION With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. CONCLUSION In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.
Collapse
Affiliation(s)
- Yuangang Wu
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiaoxi Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Shen
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yi Zeng
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
36
|
Chen S, Luo Z, Chen X. Andrographolide mitigates cartilage damage via miR-27-3p-modulated matrix metalloproteinase13 repression. J Gene Med 2020; 22:e3187. [PMID: 32196852 DOI: 10.1002/jgm.3187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a potential anti-arthritic agent, Andrographolide (And) is capable of promoting chondrocyte proliferation and preventing apoptosis in pathologic condition. The present study aimed to explore the roles of And in in vivo and in vitro models of osteoarthritis (OA), as well as its underlying molecular mechanisms. METHODS An OA mouse model was established using anterior cruciate ligament transection operation on the left knee joint. The pathological changes of articular cartilage were assessed using safranin O staining. Chondrocyte proliferation and apoptosis were measured using cell a counting kit-8 assay and flow cytometry. Bioinformatics algorithms and a luciferase reporter assay were used to evaluate matrix metalloproteinase13 (MMP13) as a direct target of miR-27-3p. RESULTS And had the ability to prevent catabolism and facilitate anabolism of articular cartilage in an experimental OA model in mice. In addition, And alleviated chondrocyte apoptosis in in vitro and in vivo models of OA. We also found that both up-regulation of MMP13 and down-regulation of miR-27-3p in the proximal tibia of OA mice and interleukin (IL)-1β-stimulated chondrocytes were reversed by And administration simultaneously. MMP13 was validated as direct target of miR-27-3p and could be suppressed by overexpression of miR-27-3p in mouse chondrocyte. Furthermore, overexpression of miR-27-3p or MMP13 loss-of-function in chondrocytes could alleviate IL-1β-induced apoptosis. CONCLUSIONS These results indicated that miR-27-3p/MMP13 signaling axis might be a potential therapeutic target of And for preventing the progression of OA.
Collapse
Affiliation(s)
- Shaojian Chen
- Department of Sports Medical, Ganzhou People's Hospital & the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi Province, China
| | - Zhihuan Luo
- Department of Sports Medical, Ganzhou People's Hospital & the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi Province, China
| | - Xiaguang Chen
- Department of Sports Medical, Ganzhou People's Hospital & the Affiliated Ganzhou Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|
37
|
Zhu S, Deng Y, Gao H, Huang K, Nie Z. miR‐877‐5p alleviates chondrocyte dysfunction in osteoarthritis models via repressing FOXM1. J Gene Med 2020; 22:e3246. [PMID: 32584470 DOI: 10.1002/jgm.3246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shaobo Zhu
- Department of Orthopaedic Trauma and Microsurgery Zhongnan Hospital of Wuhan University Wuhan Hubei Province China
| | - Yu Deng
- Department of Orthopaedic Trauma and Microsurgery Zhongnan Hospital of Wuhan University Wuhan Hubei Province China
| | - Hui Gao
- Department of Orthopaedic Trauma and Microsurgery Zhongnan Hospital of Wuhan University Wuhan Hubei Province China
| | - Kaiyuan Huang
- Department of Orthopaedic Huangshi No. 4 Hospital Huangshi Hubei Province China
| | - Zhongjie Nie
- Department of Orthopaedic Huangshi No. 4 Hospital Huangshi Hubei Province China
| |
Collapse
|
38
|
Shen XF, Cheng Y, Dong QR, Zheng MQ. MicroRNA-675-3p regulates IL-1β-stimulated human chondrocyte apoptosis and cartilage degradation by targeting GNG5. Biochem Biophys Res Commun 2020; 527:458-465. [PMID: 32336544 DOI: 10.1016/j.bbrc.2020.04.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/12/2020] [Indexed: 12/18/2022]
Abstract
Growing evidence has indicated that microRNAs (miRNAs) are modulators of osteoarthritis (OA) development and progression. In this study, we first evaluated the anti-apoptosis and chondroprotective effects of microRNA-675-3p (miR-675-3p) on interleukin-1β (IL-1β)-stimulated human chondrocytes. The overexpression of miR-675-3p inhibited apoptosis and cartilage matrix degradation and promoted cell proliferation in human chondrocytes. Target gene prediction and luciferase reporter assays suggested that G-protein subunit γ 5 (GNG5) may be the target gene of miR-675-3p. The overexpression of miR-675-3p inhibited IL-1β-stimulated chondrocyte apoptosis, and this effect was reversed by the overexpression of GNG5. Finally, we used bioinformatic tools and biological methods to show that the long noncoding RNA X-inactive specific transcript (lncRNA XIST) could bind to miR-675-3p, which affects the expression of GNG5 mRNA. Our findings may substantiate miR-675-3p as a new treatment for OA.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Yi Cheng
- Department of Orthopedics, Yan Cheng City No.1 People's Hospital, Yan Cheng, 224005, PR China
| | - Qi-Rong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China.
| | - Min-Qian Zheng
- Department of Orthopedics, Yan Cheng City No.1 People's Hospital, Yan Cheng, 224005, PR China
| |
Collapse
|
39
|
Shao J, Ding Z, Peng J, Zhou R, Li L, Qian Q, Chen Y. MiR-146a-5p promotes IL-1β-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway. Inflamm Res 2020; 69:619-630. [PMID: 32328683 DOI: 10.1007/s00011-020-01346-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aimed to explore the role of the miR-146a-5p/TRAF6/NF-KB axis in chondrocyte apoptosis. METHODS Transcriptome sequencing for microRNA expression in control and osteoarthritic cartilage was performed. Bioinformatic analysis was performed to identify the target genes of miR-146a-5p, and subsequently, Gene Ontology (GO) terms and KEGG pathways were identified. Furthermore, protein-protein interactions were analyzed to identify the hub regulatory gene of miR-146a-5p. MiR-146a-5p mimic, inhibitor and the corresponding negative control were constructed, and the apoptosis rates were measured in the transfected groups by flow cytometry, TUNEL staining and Western blot. Potential miRNA-target interactions were identified by dual-luciferase reporter assay. RESULTS The microRNA array demonstrated that miR-146a-5p was significantly upregulated in osteoarthritic tissues, which was further confirmed by PCR analysis. Compared with the control group, IL-1β significantly decreased the viability of chondrocytes, while coculture with miR-146a-5p inhibitor rescued the IL-1β-induced inhibition of chondrocyte viability. Western blot results also identified the proapoptotic effects of miR-146a-5p. Bioinformatic analysis results revealed that miR-146a-5p targeted 159 potential genes, and TRAF6 was the hub gene among the 159 genes. The relative expression of TRAF6 was significantly decreased in the IL-1β-induced group. When siTRAF6 was added, apoptosis was significantly increased. Luciferase reporter assays showed that luciferase activity of the TRAF6 3'-UTR reporter was decreased in chondrocytes after transfection with the miR-146a-5p mimic. CONCLUSIONS This work showed that miR-146 induces chondrocyte apoptosis by targeting the TRAF6-mediated NF-KB signaling pathway, and miR-146 may be a potential target for OA treatment.
Collapse
Affiliation(s)
- Jiahua Shao
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 FengYang Road, Shanghai, 200003, China
| | - Zheru Ding
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 FengYang Road, Shanghai, 200003, China
| | - Jinhui Peng
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 FengYang Road, Shanghai, 200003, China
| | - Rong Zhou
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 FengYang Road, Shanghai, 200003, China
| | - Lexiang Li
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 FengYang Road, Shanghai, 200003, China
| | - Qirong Qian
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 FengYang Road, Shanghai, 200003, China.
| | - Yi Chen
- Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 FengYang Road, Shanghai, 200003, China.
| |
Collapse
|
40
|
Li HZ, Xu XH, Lin N, Wang DW, Lin YM, Su ZZ, Lu HD. Overexpression of miR-10a-5p facilitates the progression of osteoarthritis. Aging (Albany NY) 2020; 12:5948-5976. [PMID: 32283545 PMCID: PMC7185093 DOI: 10.18632/aging.102989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
The current study was aimed at exploring the potential roles and possible mechanisms of miR-10a-5p in osteoarthritis (OA). We performed RT-qPCR, Western blot, CCK8, EdU Assay, and flow cytometry assay to clarify the roles of miR-10a-5p in OA. Furthermore, the whole transcriptome sequencing together with integrated bioinformatics analyses were conducted to elucidate the underlying mechanisms of miR-10a-5p involving in OA. Our results demonstrated that miR-10a-5p was upregulated in OA and acted as a significant contributing factor for OA. A large number of circRNAs, lncRNAs, miRNAs, and mRNAs were identified by overexpressing miR-10a-5p. Functional enrichment analyses indicated that these differentially-expressed genes were enriched in some important terms including PPAR signaling pathway, PI3K-Akt signaling pathway, and p53 signaling pathway. A total of 42 hub genes were identified in the protein-protein interaction network including SERPINA1, TTR, APOA1, and A2M. Also, we constructed the network regulatory interactions across coding and noncoding RNAs triggered by miR-10a-5p, which revealed the powerful regulating effects of miR-10a-5p. Moreover, we found that HOXA3 acted as the targeted genes of miR-10a-5p and miR-10a-5p contributed to the progression of OA by suppressing HOXA3 expression. Our findings shed insight on regulatory mechanisms of miR-10a-5p, which might provide novel therapeutic targets for OA.
Collapse
Affiliation(s)
- Hui-Zi Li
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Xiang-He Xu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Nan Lin
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Da-Wei Wang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Yi-Ming Lin
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Zhong-Zhen Su
- Department of Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China.,Department of Medical Ultrasonics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hua-Ding Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, Guangdong, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
41
|
Zhu Y, Xiao Y, Kong D, Liu H, Chen X, Chen Y, Zhu T, Peng Y, Zhai W, Hu C, Chen H, Suo Lang SZ, Guo A, Niu J. Down-Regulation of miR-378d Increased Rab10 Expression to Help Clearance of Mycobacterium tuberculosis in Macrophages. Front Cell Infect Microbiol 2020; 10:108. [PMID: 32257967 PMCID: PMC7094154 DOI: 10.3389/fcimb.2020.00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/27/2020] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) can survive in the hostile microenvironment of cells by escaping host surveillance, but the molecular mechanisms are far from being fully understood. MicroRNAs might be involved in regulation of this intracellular process. By RNAseq of M. tb-infected PMA-differentiated THP-1 macrophages, we previously discovered down-regulation of miR-378d during M. tb infection. This study aimed to investigate the roles of miR-378d in M. tb infection of THP-1 cells by using a miR-378d mimic and inhibitor. First, M. tb infection was confirmed to decrease miR-378d expression in THP-1 and Raw 264.7 macrophages. Then, it was demonstrated that miR-378d mimic promoted, while its inhibitor decreased, M. tb survival in THP-1 cells. Further, the miR-378d mimic suppressed, while its inhibitor enhanced the protein production of IL-1β, TNF-α, IL-6, and Rab10 expression. By using siRNA of Rab10 (siRab10) to knock-down the Rab10 gene in THP-1 with or without miR-378d inhibitor transfection, Rab10 was determined to be a miR-378d target during M. tb infection. In addition, a dual luciferase reporter assay with the Rab10 wild-type sequence and mutant for miR-378d binding sites confirmed Rab10 as the target of miR-378d associated with M. tb infection. The involvement of four signal pathways NF-κB, P38, JNK, and ERK in miR-378d regulation was determined by detecting the effect of their respective inhibitors on miR-378d expression, and miR-378d inhibitor on activation of these four signal pathways. As a result, activation of the NF-κB signaling pathway was associated with the down-regulation of miR-378d. In conclusion, during M. tb infection of macrophages, miR-378d was down-regulated and functioned on decreasing M. tb intracellular survival by targeting Rab10 and the process was regulated by activation of the NF-κB and induction of pro-inflammatory cytokines IL-1β, TNF-α, IL-6. These findings shed light on further understanding the defense mechanisms in macrophages against M. tb infection.
Collapse
Affiliation(s)
- Yifan Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Delai Kong
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongchong Peng
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenjun Zhai
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Si Zhu Suo Lang
- Department of Animal Sciences, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqiang Niu
- Department of Animal Sciences, Tibet Agricultural and Animal Husbandry College, Linzhi, China
| |
Collapse
|
42
|
Wu X, Wang Y, Xiao Y, Crawford R, Mao X, Prasadam I. Extracellular vesicles: Potential role in osteoarthritis regenerative medicine. J Orthop Translat 2020; 21:73-80. [PMID: 32099807 PMCID: PMC7029343 DOI: 10.1016/j.jot.2019.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent whole joint disease characterised by cartilage degradation, subchondral bone sclerosis and bone remodelling, and synovium inflammation, leading to pain, deformity, and cartilage dysfunction. Currently, there is no appropriate therapy for OA, and available treatments simply aim to reduce pain and swelling. Exosomes are membrane-bound extracellular vesicles secreted by almost all cells, receiving increasing interest because of their effect in cell-to-cell communication. Increasing evidence suggests that exosomes play an important role in cartilage physiological and pathological effects. This article reviews the potential role of exosomes in OA regenerative medicine. Special attention is given to mesenchymal stem cells-derived exosomes due to the extensive research on their cartilage repair property and their function as miRNA cargo. More investigations are needed for the effects of exosomes from synovial fluid and chondrocytes in joints. A better understanding of the mechanisms will contribute to a novel and promising therapy for OA patients. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE A better understanding of the role of extracellular vesicles in regenerative medicine will contribute to a novel and promising therapy for OA patients.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
- Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane, QLD 4059 Australia
| | - Yuewen Wang
- Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane, QLD 4059 Australia
- Australia–China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane, QLD 4059 Australia
- The Prince Charles Hospital, Orthopaedic Department, Brisbane, Queensland, Australia
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane, QLD 4059 Australia
| |
Collapse
|
43
|
Yang F, Huang R, Ma H, Zhao X, Wang G. miRNA-411 Regulates Chondrocyte Autophagy in Osteoarthritis by Targeting Hypoxia-Inducible Factor 1 alpha (HIF-1α). Med Sci Monit 2020; 26:e921155. [PMID: 32072994 PMCID: PMC7043337 DOI: 10.12659/msm.921155] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Osteoarthritis (OA) is the most common joint disease and is characterized by the progressive degeneration of articular cartilage. The molecular basis of OA involves various factors and has not been fully clarified. Autophagy is a conserved catabolic process that involves cellular degradation through the lysosomal machinery. Material/Methods We found that miRNA-411 regulates chondrocyte autophagy in OA by targeting hypoxia-inducible factor 1 alpha (HIF-1α) and identified the related molecular mechanism. OA condition in chondrocyte C28/I2 cells was induced by treatment with interleukin 1 beta (IL-1β). The protein expressions of LC3, p62, HIF-1α, ULK-1, and Beclin-1 were assessed by Western blot analysis, and LC3 expression was assessed by immunofluorescence. Results TargetScan analysis showed that HIF-1α mRNA is directly targeted by miR-411, which was confirmed by luciferase reporter assay. miR-411 mimic decreased HIF-1α levels in chondrocytes while miR-411 inhibitor increased HIF-1α levels in chondrocytes. Furthermore, expression of LC3, ULK-1, P62, and Beclin-1 in chondrocytes was induced by miR-411 inhibitor and was downregulated by miR-411 mimics. In addition, miR-411 mimics reduced the expression level of LC3, as determined by immunofluorescence analysis. Conclusions Our results demonstrate that miR-411 promotes chondrocyte autophagy by targeting HIF-1α, suggesting that regulating HIF-1α by miR-411 might be a therapeutic strategy for OA.
Collapse
Affiliation(s)
- Fei Yang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Rong Huang
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China (mainland)
| | - Hui Ma
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Xiaowei Zhao
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Guodong Wang
- Department of Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| |
Collapse
|
44
|
Li Y, Nie J, Jiang P. Oleanolic acid mitigates interleukin-1β-induced chondrocyte dysfunction by regulating miR-148-3p-modulated FGF2 expression. J Gene Med 2020; 22:e3169. [PMID: 32028542 DOI: 10.1002/jgm.3169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND microRNA (miR)-mediated post-transcriptional repression has been reported in the process of chondrocyte dysfunction. The present study aimed to investigate the molecular mechanisms underlying in oleanolic acid (OLA)-prevented interleukin (IL)-1β-induced chondrocyte dysfunction via the miR-148-3p/fibroblast growth factor-2 (FGF-2) signaling pathway. METHODS Candidate miRs were filtrated using miR microarray assays in chondrocytes with or without IL-1β stimulation. Gene expression of candidate miRs and protein expression of FGF2 were analyzed using a quantitative reverse transcriptase-polymerase chain reaction and western blotting, respectively. Cell growth was evaluated using cell counting kit-8 assays. Cell apoptosis was detected using Annexin V-fluorescein isothiocyanate double staining. RESULTS Treatment with OLA counteracted IL-1β-evoked chondrocyte growth inhibition, apoptosis, caspase3 production, and release of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine. Additionally, FGF2 protein expression levels elevated by IL-1β were down-regulated by OLA and transfection with miR-148-3p mimics. IL-1β-induced down-regulation of miR-148-3p in chondrocytes was evaluated by OLA administration. Bioinformatics algorithms and experimental measurements indicated that FGF2 might be a direct target of miR-148-3p. miR-148-3p mimics exhibited equal authenticity of OLA to protect against IL-1β-induced chondrocyte dysfunction. CONCLUSIONS Our present findings highlight a protective effect of OLA on IL-1β-induced chondrocyte dysfunction, and a novel signal cascade comprising the miR-148-3p/FGF2 signaling pathway might be a potential therapeutic target of OLA with respect to preventing the progression of osteoarthritis.
Collapse
Affiliation(s)
- Yuanli Li
- Department of Orthopedics, Affiliated Hospital of North Sichuang Medical College, Nanchong, Sichuan Province, China
| | - Junlan Nie
- Department of Orthopedics, Affiliated Hospital of North Sichuang Medical College, Nanchong, Sichuan Province, China
| | - Ping Jiang
- Department of Orthopedics, Affiliated Hospital of North Sichuang Medical College, Nanchong, Sichuan Province, China
| |
Collapse
|
45
|
Zhang M, Wang Z, Li B, Sun F, Chen A, Gong M. Identification of microRNA‑363‑3p as an essential regulator of chondrocyte apoptosis in osteoarthritis by targeting NRF1 through the p53‑signaling pathway. Mol Med Rep 2020; 21:1077-1088. [PMID: 32016449 PMCID: PMC7003040 DOI: 10.3892/mmr.2020.10940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects the physical, and mental health of middle-aged and elderly people. The aims of the present study were to determine the biological function and molecular mechanisms of miR-363-3p in chondrocyte apoptosis. Exploration of the molecular mechanisms of OA may be helpful in the understand of the causes, and facilitating the prevention and treatment of OA. In the present study, the expression of nuclear respiratory factor1 (NRF1) was downregulated in the articular cartilage of OA rats in vivo and lipopolysaccharide (LPS)-treated chondrocytes in vitro. MicroRNAs (miRNA) are regulators of gene expression in the progression of OA. TargetScan software was used to predict that NRF1 was a potential target for miRNA (miR)-363, and this was confirmed in subsequent experiments. The expression of miR-363-3p was negatively correlated with the expression of NRF1, and its expression was significantly upregulated in OA model rats and in LPS-induced chondrocytes compared with the expression in the respective controls. In addition, the overexpression of miR-363-3p increased the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α in vivo, and was demonstrated to promote chondrocyte injury and apoptosis by Safranin O staining and TUNEL. Moreover, the inhibition of miR-363-3p expression increased the expression of NRF1 and protected chondrocytes from apoptosis in vitro and in vivo, whereas the overexpression of miR-363-3p downregulated NRF1 expression and promoted LPS-induced chondrocyte apoptosis through the p53 pathway in vitro. The results of this study suggested that miR-363-3p-mediated inhibition of NRF1may be associated with chondrocyte apoptosis in OA.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhiqiang Wang
- Department of Traumatic Orthopedics, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Baojie Li
- Department of Traumatic Orthopedics, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Fengyi Sun
- Department of Gynaecology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Anzhong Chen
- Department of Rehabilitation, The Second People's Hospital of Liaocheng, Linqing, Shandong 252600, P.R. China
| | - Mingzhi Gong
- Department of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
46
|
Yan X, Chen YR, Song YF, Yang M, Ye J, Zhou G, Yu JK. Scaffold-Based Gene Therapeutics for Osteochondral Tissue Engineering. Front Pharmacol 2020; 10:1534. [PMID: 31992984 PMCID: PMC6970981 DOI: 10.3389/fphar.2019.01534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022] Open
Abstract
Significant progress in osteochondral tissue engineering has been made for biomaterials designed to deliver growth factors that promote tissue regeneration. However, due to diffusion characteristics of hydrogels, the accurate delivery of signaling molecules remains a challenge. In comparison to the direct delivery of growth factors, gene therapy can overcome these challenges by allowing the simultaneous delivery of growth factors and transcription factors, thereby enhancing the multifactorial processes of tissue formation. Scaffold-based gene therapy provides a promising approach for tissue engineering through transfecting cells to enhance the sustained expression of the protein of interest or through silencing target genes associated with bone and joint disease. Reports of the efficacy of gene therapy to regenerate bone/cartilage tissue regeneration are widespread, but reviews on osteochondral tissue engineering using scaffold-based gene therapy are sparse. Herein, we review the recent advances in gene therapy with a focus on tissue engineering scaffolds for osteochondral regeneration.
Collapse
Affiliation(s)
- Xin Yan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Fan Song
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Meng Yang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
47
|
Jiang S, Liu Y, Xu B, Zhang Y, Yang M. Noncoding RNAs: New regulatory code in chondrocyte apoptosis and autophagy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1584. [PMID: 31925936 DOI: 10.1002/wrna.1584] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a bone and joint disease characterized by progressive cartilage degradation. In the face of global trends of population aging, OA is expected to become the fourth most common disabling disease by 2020. Nevertheless, the detailed pathogenesis of OA has not yet been elucidated. Noncoding RNAs (ncRNAs), including long noncoding RNAs, microRNAs, and circular RNAs, do not encode proteins but have recently emerged as important regulators of apoptosis and autophagy of chondrocytes, thereby highlighting a potential role in chondrocyte injury leading to OA onset and progression. We here review recent findings on these regulatory roles of ncRNAs to provide new directions for research on the pathogenesis of OA and offer new therapeutic targets for prevention and treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Siyu Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yan Zhang
- Operating Room, Tianjin Binhai New Area Tanggu Obstetrics and Gynecology Hospital, Tianjin, China
| | - Min Yang
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, China
| |
Collapse
|
48
|
Wang X, Fan J, Ding X, Sun Y, Cui Z, Liu W. Tanshinone I Inhibits IL-1β-Induced Apoptosis, Inflammation And Extracellular Matrix Degradation In Chondrocytes CHON-001 Cells And Attenuates Murine Osteoarthritis. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3559-3568. [PMID: 31686786 PMCID: PMC6800556 DOI: 10.2147/dddt.s216596] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
Background Osteoarthritis (OA) is a prevalent degenerative joint disease, which was characterized by inflammation and cartilage degradation. Accumulating evidence has demonstrated that Tanshinone I has an anti-inflammatory effect in various diseases. However, the efficacy of Tanshinone I as an anti-inflammatory agent in OA remains unclear. This study aimed to explore the role of Tanshinone I on OA both in vitro and in vivo. Methods CHON-001 cells were treated with IL-1β (10 ng/mL) for 72 hrs to induce OA model in vitro. Meanwhile, CHON-001 cells were pre-treated with 20 μM Tanshinone I for 24 hrs and then stimulated with IL-1β (10 ng/mL) for 72 hrs. CCK-8, immunofluorescence and flow cytometry assays were used to detect the viability, proliferation and apoptosis in CHON-001 cells, respectively. Western blotting assay was used to detect the levels of collagen II, aggrecan, MMP-13, cleaved caspase 1, Gasdermin D, SOX11 and p-NF-κB in CHON-001 cells. In addition, the mouse model of OA was built by anterior cruciate ligament transection (ACLT) in the right knee. Meanwhile, the mice were administrated with 10 or 30 mg/kg Tanshinone I for 8 weeks. Safranin-O/Fast Green staining was used to assess cartilage destruction in a mouse model of OA. Results In this study, IL-1β significantly induced apoptosis, extracellular matrix degradation and inflammatory response in CHON-001 cells. Tanshinone I significantly inhibited IL-1β-induced apoptosis in CHON-001 cells. In addition, the IL-1β-induced collagen II, aggrecan degradation, SOX11 downregulation, and MMP-13 and p-NF-κB upregulation in CHON-001 cells were notably reversed by Tanshinone I treatment. Moreover, Tanshinone I alleviated cartilage destruction and synovitis and reduced OARSI scores and subchondral bone thickness in a mouse model of OA. Conclusion Our findings showed that Tanshinone I could alleviate the progression of OA in vitro and in vivo. These results demonstrated that Tanshinone I might be regarded as a promising therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Xipeng Wang
- Department of Orthopaedic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, People's Republic of China
| | - Jianbo Fan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xiaomin Ding
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yuyu Sun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Zhiming Cui
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Wei Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
49
|
Liu Q, Wang J, Sun Y, Han S. Chondroitin sulfate from sturgeon bone protects chondrocytes via inhibiting apoptosis in osteoarthritis. Int J Biol Macromol 2019; 134:1113-1119. [DOI: 10.1016/j.ijbiomac.2019.05.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/12/2019] [Accepted: 05/18/2019] [Indexed: 01/07/2023]
|