1
|
Guo B, Gu J, Zhuang T, Zhang J, Fan C, Li Y, Zhao M, Chen R, Wang R, Kong Y, Xu S, Gao W, Liang L, Yu H, Han T. MicroRNA-126: From biology to therapeutics. Biomed Pharmacother 2025; 185:117953. [PMID: 40036996 DOI: 10.1016/j.biopha.2025.117953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
MicroRNA-126 (miR-126) has emerged as one of the most extensively studied microRNAs in the context of human diseases, particularly in vascular disorders and cancer. Its high degree of conservation across vertebrates underscores its evolutionary significance and essential functional roles. Extensive research has been devoted to elucidating the molecular mechanisms through which miR-126 modulates key physiological and pathological processes, including angiogenesis, immune response, inflammation, tumor growth, and metastasis. Furthermore, miR-126 plays a causal role in the pathogenesis of various diseases, serving as potential biomarkers for disease prediction, diagnosis, prognosis and drug response, as well as a promising therapeutic target. In this review, we synthesize findings from 283 articles, focusing on the roles of miR-126 in critical biological processes such as cell development, survival, cycle regulation, proliferation, migration, invasion, communication, and metabolism. Additionally, miR-126 represents a promising candidate for miRNA-based therapeutic strategies. A comprehensive understanding and evaluation of miR-126 are crucial for advancing its clinical applications and therapeutic potential.
Collapse
Affiliation(s)
- Bei Guo
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tongtian Zhuang
- Department of Dermatology, Air Force Hospital of Northern Theater Command, Shenyang, China
| | - Jingbin Zhang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunyang Fan
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yiyao Li
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Mengdi Zhao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ruoran Chen
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Rui Wang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuan Kong
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuang Xu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei Gao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Linlang Liang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Yu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Laumann M, Palombo P, Fieres J, Thomas M, Saretzki G, Bürkle A, Moreno-Villanueva M. Senescence-like Phenotype After Chronic Exposure to Isoproterenol in Primary Quiescent Immune Cells. Biomolecules 2024; 14:1528. [PMID: 39766235 PMCID: PMC11673961 DOI: 10.3390/biom14121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic stress is associated with a higher risk for carcinogenesis as well as age-related diseases and immune dysfunction. There is evidence showing that psychological stress can contribute to premature immunosenescence. Therefore, the question arose whether chronic exposure to catecholamine could drive immune cells into senescence. Peripheral blood mononuclear cells were isolated from whole blood. After repeated ex vivo treatment with isoproterenol, an epinephrine analog, well-established senescence biomarkers were assessed. We found (i) DNA double-strand break induction, (ii) telomere shortening, (iii) failure to proliferate, (iv) higher senescence-associated β-galactosidase activity, (v) decreases in caspases 3 and 7 activity, and (vi) strong upregulation of the proteoglycan versican accompanied by increased cellular adhesion suggesting the induction of a senescence-like phenotype. These results emphasize the complexity of the effect of isoproterenol on multiple cellular processes and provide insights into the molecular mechanisms of stress leading to immunosenescence.
Collapse
Affiliation(s)
- Michael Laumann
- Electron Microscopy Center, University of Konstanz, 78457 Konstanz, Germany;
| | - Philipp Palombo
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Judy Fieres
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Mara Thomas
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
3
|
Deschênes M, Durand M, Olivier M, Pellerin‐Viger A, Rodier F, Chabot B. A defective splicing machinery promotes senescence through MDM4 alternative splicing. Aging Cell 2024; 23:e14301. [PMID: 39118304 PMCID: PMC11561654 DOI: 10.1111/acel.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Defects in the splicing machinery are implicated in various diseases, including cancer. We observed a general reduction in the expression of spliceosome components and splicing regulators in human cell lines undergoing replicative, stress-induced, and telomere uncapping-induced senescence. Supporting the view that defective splicing contributes to senescence, splicing inhibitors herboxidiene, and pladienolide B induced senescence in normal and cancer cell lines. Furthermore, depleting individual spliceosome components also promoted senescence. All senescence types were associated with an alternative splicing transition from the MDM4-FL variant to MDM4-S. The MDM4 splicing shift was reproduced when splicing was inhibited, and spliceosome components were depleted. While decreasing the level of endogenous MDM4 promoted senescence and cell survival independently of the MDM4-S expression status, cell survival was also improved by increasing MDM4-S. Overall, our work establishes that splicing defects modulate the alternative splicing of MDM4 to promote senescence and cell survival.
Collapse
Affiliation(s)
- Mathieu Deschênes
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| | - Mathieu Durand
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| | - Marc‐Alexandre Olivier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
| | - Alicia Pellerin‐Viger
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
- Department of Radiology, Radio‐Oncology and Nuclear MedicineUniversité de MontréalMontréalQuebecCanada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| |
Collapse
|
4
|
Zhang ZH, Wu TY, Ju C, Zuo XS, Wang XK, Ma YG, Luo L, Zhu ZJ, Song ZW, Yao Z, Zhou J, Wang Z, Hu XY. Photobiomodulation Increases M2-Type Polarization of Macrophages by Inhibiting Versican Production After Spinal Cord Injury. Mol Neurobiol 2024; 61:6950-6967. [PMID: 38363534 DOI: 10.1007/s12035-024-03980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
Spinal cord injury (SCI) is a catastrophic accidence with little effective treatment, and inflammation played an important role in that. Previous studies showed photobiomodulation (PBM) could effectively downregulate the process of inflammation with modification of macrophage polarization after SCI; however, the potential mechanism behind that is still unclear. In the presented study, we aimed to investigate the effect of PBM on the expression level of versican, a matrix molecular believed to be associated with inflammation, and tried to find the mechanism on how that could regulate the inflammation process. Using immunofluorescence technique and western blot, we found the expression level of versican is increased after injury and markedly downregulated by irradiation treatment. Using virus intrathecal injection, we found the knock-down of versican could produce the effect similar to that of PBM and might have an effect on inflammation and macrophage polarization after SCI. To further verify the deduction, we peptide the supernatant of astrocytes to induce M0, M1, and M2 macrophages. We found that the versican produced by astrocytes might have a role on the promotion of M2 macrophages to inflammatory polarization. Finally, we investigated the potential pathway in the regulation of M2 polarization with the induction of versican. This study tried to give an interpretation on the mechanism of inflammation inhibition for PBM in the perspective of matrix regulation. Our results might provide light on the inflammation regulation after SCI.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- General Hospital of Northern Theater Command, Shenyang, 110000, Liaoning Province, China
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ting-Yu Wu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xiao-Shuang Zuo
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xuan-Kang Wang
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yang-Guang Ma
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Liang Luo
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhi-Jie Zhu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhi-Wen Song
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Xue-Yu Hu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
5
|
Butler T, Davey MG, Kerin MJ. Molecular Morbidity Score-Can MicroRNAs Assess the Burden of Disease? Int J Mol Sci 2024; 25:8042. [PMID: 39125612 PMCID: PMC11312210 DOI: 10.3390/ijms25158042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Multimorbidity refers to the presence of two or more chronic diseases and is associated with adverse outcomes for patients. Factors such as an ageing population have contributed to a rise in prevalence of multimorbidity globally; however, multimorbidity is often neglected in clinical guidelines. This is largely because patients with multimorbidity are systematically excluded from clinical trials. Accordingly, there is an urgent need to develop novel biomarkers and methods of prognostication for this cohort of patients. The hallmarks of ageing are now thought to potentiate the pathogenesis of multimorbidity. MicroRNAs are small, regulatory, noncoding RNAs which have been implicated in the pathogenesis and prognostication of numerous chronic diseases; there is a substantial body of evidence now implicating microRNA dysregulation with the different hallmarks of ageing in the aetiology of chronic diseases. This article proposes using the hallmarks of ageing as a framework to develop a panel of microRNAs to assess the prognostic burden of multimorbidity. This putative molecular morbidity score would have many potential applications, including assessing the efficacy of clinical interventions, informing clinical decision making and facilitating wider inclusion of patients with multimorbidity in clinical trials.
Collapse
Affiliation(s)
- Thomas Butler
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Matthew G. Davey
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Michael J. Kerin
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
- Department of Surgery, University Hospital Galway, Newcastle Road, H91 YR71 Galway, Ireland
| |
Collapse
|
6
|
Ijee S, Chambayil K, Chaudhury AD, Bagchi A, Modak K, Das S, Benjamin ESB, Rani S, Paul DZ, Nath A, Roy D, Palani D, Priyanka S, Ravichandran R, Kumary BK, Sivamani Y, S. V, Babu D, Nakamura Y, Thamodaran V, Balasubramanian P, Velayudhan SR. Efficient deletion of microRNAs using CRISPR/Cas9 with dual guide RNAs. Front Mol Biosci 2024; 10:1295507. [PMID: 38628442 PMCID: PMC11020096 DOI: 10.3389/fmolb.2023.1295507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 04/19/2024] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play crucial roles in gene regulation, exerting post-transcriptional silencing, thereby influencing cellular function, development, and disease. Traditional loss-of-function methods for studying miRNA functions, such as miRNA inhibitors and sponges, present limitations in terms of specificity, transient effects, and off-target effects. Similarly, CRISPR/Cas9-based editing of miRNAs using single guide RNAs (sgRNAs) also has limitations in terms of design space for generating effective gRNAs. In this study, we introduce a novel approach that utilizes CRISPR/Cas9 with dual guide RNAs (dgRNAs) for the rapid and efficient generation of short deletions within miRNA genomic regions. Through the expression of dgRNAs through single-copy lentiviral integration, this approach achieves over a 90% downregulation of targeted miRNAs within a week. We conducted a comprehensive analysis of various parameters influencing efficient deletion formation. In addition, we employed doxycycline (Dox)-inducible expression of Cas9 from the AAVS1 locus, enabling homogeneous, temporal, and stage-specific editing during cellular differentiation. Compared to miRNA inhibitory methods, the dgRNA-based approach offers higher specificity, allowing for the deletion of individual miRNAs with similar seed sequences, without affecting other miRNAs. Due to the increased design space, the dgRNA-based approach provides greater flexibility in gRNA design compared to the sgRNA-based approach. We successfully applied this approach in two human cell lines, demonstrating its applicability for studying the mechanisms of human erythropoiesis and pluripotent stem cell (iPSC) biology and differentiation. Efficient deletion of miR-451 and miR-144 resulted in blockage of erythroid differentiation, and the deletion of miR-23a and miR-27a significantly affected iPSC survival. We have validated the highly efficient deletion of genomic regions by editing protein-coding genes, resulting in a significant impact on protein expression. This protocol has the potential to be extended to delete multiple miRNAs within miRNA clusters, allowing for future investigations into the cooperative effects of the cluster members on cellular functions. The protocol utilizing dgRNAs for miRNA deletion can be employed to generate efficient pooled libraries for high-throughput comprehensive analysis of miRNAs involved in different biological processes.
Collapse
Affiliation(s)
- Smitha Ijee
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Karthik Chambayil
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
- Sree Chitra Tirunal Institute of Science and Medical Technology, Thiruvananthapuram, India
| | - Anurag Dutta Chaudhury
- Department of Haematology, Christian Medical College Campus, Vellore, India
- Regional Centre for Biotechnology, New Delhi, India
| | - Abhirup Bagchi
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Kirti Modak
- Department of Haematology, Christian Medical College Campus, Vellore, India
- Regional Centre for Biotechnology, New Delhi, India
| | - Saswati Das
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
- Department of Haematology, Christian Medical College Campus, Vellore, India
| | - Esther Sathya Bama Benjamin
- Sree Chitra Tirunal Institute of Science and Medical Technology, Thiruvananthapuram, India
- Department of Haematology, Christian Medical College Campus, Vellore, India
| | - Sonam Rani
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Daniel Zechariah Paul
- Department of Haematology, Christian Medical College Campus, Vellore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Aneesha Nath
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Debanjan Roy
- Department of Haematology, Christian Medical College Campus, Vellore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Dhavapriya Palani
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Sweety Priyanka
- Department of Haematology, Christian Medical College Campus, Vellore, India
| | | | - Betty K. Kumary
- Department of Haematology, Christian Medical College Campus, Vellore, India
| | - Yazhini Sivamani
- Department of Haematology, Christian Medical College Campus, Vellore, India
| | - Vijayanand S.
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Dinesh Babu
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vasanth Thamodaran
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
- Tata Institute of Genetics and Society, Bengaluru, India
| | | | - Shaji R. Velayudhan
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
- Department of Haematology, Christian Medical College Campus, Vellore, India
| |
Collapse
|
7
|
Zeng M, Wang X, Chen T, Ruan G, Li J, Xue S, Zhao Y, Hu Z, Xie Y, Fan T, Chen S, Li Y, Wang Q, Zhang Y, Zhang R, Lin L, Ding C, Zhu Z. Comprehensive analysis on subchondral bone marrow lesions of human osteoarthritis by integrating bulk and single-cell transcriptomes. BMC Musculoskelet Disord 2023; 24:677. [PMID: 37626330 PMCID: PMC10463447 DOI: 10.1186/s12891-023-06676-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE This study aims to demonstrate the cellular composition and underlying mechanisms in subchondral bone marrow lesions (BMLs) of knee osteoarthritis (OA). METHODS BMLs were assessed by MRI Osteoarthritis Knee Score (MOAKS)≥2. Bulk RNA-sequencing (bulk-seq) and BML-specific differentially expressed genes (DEGs) analysis were performed among subchondral bone samples (including OA-BML=3, paired OA-NBML=3; non-OA=3). The hub genes of BMLs were identified by verifying in independent datasets and multiple bioinformatic analyses. To further estimate cell-type composition of subchondral bone, we utilized two newly developed deconvolution algorithms (MuSiC, MCP-counter) in transcriptomic datasets, based on signatures from open-accessed single-cell RNA sequencing (scRNA-seq). Finally, competing endogenous RNA (ceRNA) and transcription factor (TF) networks were constructed through multiple predictive databases, and validated by public non-coding RNA profiles. RESULTS A total of 86 BML-specific DEGs (up 79, down 7) were identified. IL11 and VCAN were identified as core hub genes. The "has-miR-424-5p/lncRNA PVT1" was determined as crucial network, targeting IL11 and VCAN, respectively. More importantly, two deconvolution algorithms produced approximate estimations of cell-type composition, and the cluster of heterotopic-chondrocyte was discovered abundant in BMLs, and positively correlated with the expression of hub genes. CONCLUSION IL11 and VCAN were identified as the core hub genes of BMLs, and their molecular networks were determined as well. We profiled the characteristics of subchondral bone at single-cell level and determined that the heterotopic-chondrocyte was abundant in BMLs and was closely linked to IL11 and VCAN. Our study may provide new insights into the microenvironment and pathological molecular mechanism of BMLs, and could lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Muhui Zeng
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianyu Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guangfeng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jia Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Song Xue
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Zhao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zhiyang Hu
- Sun Yat-sen University School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ye Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shibo Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yang Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Qianyi Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yue Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongkai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
9
|
Li L, Hu G, Xie R, Yang J, Shi X, Jia Z, Qu X, Wang M, Wu Y. Salubrinal-mediated activation of eIF2α signaling improves oxidative stress-induced BMSCs senescence and senile osteoporosis. Biochem Biophys Res Commun 2022; 610:70-76. [DOI: 10.1016/j.bbrc.2022.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 11/26/2022]
|
10
|
Jusic A, Thomas PB, Wettinger SB, Dogan S, Farrugia R, Gaetano C, Tuna BG, Pinet F, Robinson EL, Tual-Chalot S, Stellos K, Devaux Y. Noncoding RNAs in age-related cardiovascular diseases. Ageing Res Rev 2022; 77:101610. [PMID: 35338919 DOI: 10.1016/j.arr.2022.101610] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 11/01/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in the adult population worldwide and represent a severe economic burden and public health concern. The majority of human genes do not code for proteins. However, noncoding transcripts play important roles in ageing that significantly increases the risk for CVDs. Noncoding RNAs (ncRNAs) are critical regulators of multiple biological processes related to ageing such as oxidative stress, mitochondrial dysfunction and chronic inflammation. NcRNAs are also involved in pathophysiological developments within the cardiovascular system including arrhythmias, cardiac hypertrophy, fibrosis, myocardial infarction and heart failure. In this review article, we cover the roles of ncRNAs in cardiovascular ageing and disease as well as their potential therapeutic applications in CVDs.
Collapse
|
11
|
Huang L, Luo J, Song N, Gao W, Zhu L, Yao W. CRISPR/Cas9-Mediated Knockout of miR-130b Affects Mono- and Polyunsaturated Fatty Acid Content via PPARG-PGC1α Axis in Goat Mammary Epithelial Cells. Int J Mol Sci 2022; 23:3640. [PMID: 35409000 PMCID: PMC8998713 DOI: 10.3390/ijms23073640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNA (miRNA)-130b, as a regulator of lipid metabolism in adipose and mammary gland tissues, is actively involved in lipogenesis, but its endogenous role in fatty acid synthesis remains unclear. Here, we aimed to explore the function and underlying mechanism of miR-130b in fatty acid synthesis using the CRISPR/Cas9 system in primary goat mammary epithelial cells (GMEC). A single clone with deletion of 43 nucleotides showed a significant decrease in miR-130b-5p and miR-130b-3p abundances and an increase of target genes PGC1α and PPARG. In addition, knockout of miR-130b promoted triacylglycerol (TAG) and cholesterol accumulation, and decreased the proportion of monounsaturated fatty acids (MUFA) C16:1, C18:1 and polyunsaturated fatty acids (PUFA) C18:2, C20:3, C20:4, C20:5, C22:6. Similarly, the abundance of fatty acid synthesis genes ACACA and FASN and transcription regulators SREBP1c and SREBP2 was elevated. Subsequently, interference with PPARG instead of PGC1α in knockout cells restored the effect of miR-130b knockout, suggesting that PPARG is responsible for miR-130b regulating fatty acid synthesis. Moreover, disrupting PPARG inhibits PGC1α transcription and translation. These results reveal that miR-130b directly targets the PPARG-PGC1α axis, to inhibit fatty acid synthesis in GMEC. In conclusion, miR-130b could be a potential molecular regulator for improving the beneficial fatty acids content in goat milk.
Collapse
Affiliation(s)
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (N.S.); (W.G.); (L.Z.); (W.Y.)
| | | | | | | | | |
Collapse
|
12
|
Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M, Akbari Dilmaghani N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 2021; 143:112132. [PMID: 34481379 DOI: 10.1016/j.biopha.2021.112132] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is the endpoint of pathological remodeling. This process contributes to the pathogenesis of several chronic disorders and aging-associated organ damage. Different molecular cascades contribute to this process. TGF-β, WNT, and YAP/TAZ signaling pathways have prominent roles in this process. A number of long non-coding RNAs and microRNAs have been found to regulate organ fibrosis through modulation of the activity of related signaling pathways. miR-144-3p, miR-451, miR-200b, and miR-328 are among microRNAs that participate in the pathology of cardiac fibrosis. Meanwhile, miR-34a, miR-17-5p, miR-122, miR-146a, and miR-350 contribute to liver fibrosis in different situations. PVT1, MALAT1, GAS5, NRON, PFL, MIAT, HULC, ANRIL, and H19 are among long non-coding RNAs that participate in organ fibrosis. We review the impact of long non-coding RNAs and microRNAs in organ fibrosis and aging-related pathologies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Interaction of NEP with G Protein Pathway Suppressor 2 Facilitates Influenza A Virus Replication by Weakening the Inhibition of GPS2 to RNA Synthesis and Ribonucleoprotein Assembly. J Virol 2021; 95:JVI.00008-21. [PMID: 33658351 PMCID: PMC8139649 DOI: 10.1128/jvi.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nuclear export protein (NEP) serves multiple functions in the life cycle of influenza A virus (IAV). Identifying novel host proteins that interact with NEP and understanding their functions in IAV replication are of great interest. In this study, we screened and confirmed the direct interaction of G protein pathway suppressor 2 (GPS2) with NEP through a yeast two-hybrid screening assay and glutathione S-transferase-pulldown and co-immunoprecipitation assays. Knockdown or knockout of GPS2 enhanced IAV titers, whereas overexpression of GPS2 impaired IAV replication, demonstrating that GPS2 acted as a negative host factor in IAV replication. Meanwhile, GPS2 inhibited viral RNA synthesis by reducing the assembly of IAV polymerase. Interestingly, IAV NEP interacted with GPS2 and mediated its nuclear export, thereby activated the degradation of GPS2. Thus, NEP-GPS2 interaction weakened the inhibition of GPS2 to viral polymerase activity and benefited virus replication. Overall, this study identified the novel NEP-binding host partner GPS2 as a critical host factor to participate in IAV replication. These findings provided novel insights into the interactions between IAV and host cells, revealing a new function for GPS2 during IAV replication.Importance: NEP is proposed to play multiple biologically important roles in the life cycle of IAV, which largely relies on host factors by interaction. Our study demonstrated that GPS2 could reduce the interaction between PB1 and PB2 and interfere with vRNP assembly. Thus, GPS2 inhibited the RNA synthesis of IAV and negatively regulated its replication. Importantly, IAV NEP interacted with GPS2 and mediated the nuclear export of GPS2, thereby activated the degradation of GPS2. Thus, NEP-GPS2 interaction weakened the inhibition of GPS2 to viral polymerase activity and benefited virus replication.
Collapse
|
14
|
Lo Curto A, Taverna S, Costa MA, Passantino R, Augello G, Adamo G, Aiello A, Colomba P, Zizzo C, Zora M, Accardi G, Candore G, Francofonte D, Di Chiara T, Alessandro R, Caruso C, Duro G, Cammarata G. Can Be miR-126-3p a Biomarker of Premature Aging? An Ex Vivo and In Vitro Study in Fabry Disease. Cells 2021; 10:356. [PMID: 33572275 PMCID: PMC7915347 DOI: 10.3390/cells10020356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by lysosomal accumulation of glycosphingolipids in a wide variety of cytotypes, including endothelial cells (ECs). FD patients experience a significantly reduced life expectancy compared to the general population; therefore, the association with a premature aging process would be plausible. To assess this hypothesis, miR-126-3p, a senescence-associated microRNA (SA-miRNAs), was considered as an aging biomarker. The levels of miR-126-3p contained in small extracellular vesicles (sEVs), with about 130 nm of diameter, were measured in FD patients and healthy subjects divided into age classes, in vitro, in human umbilical vein endothelial cells (HUVECs) "young" and undergoing replicative senescence, through a quantitative polymerase chain reaction (qPCR) approach. We confirmed that, in vivo, circulating miR-126 levels physiologically increase with age. In vitro, miR-126 augments in HUVECs underwent replicative senescence. We observed that FD patients are characterized by higher miR-126-3p levels in sEVs, compared to age-matched healthy subjects. We also explored, in vitro, the effect on ECs of glycosphingolipids that are typically accumulated in FD patients. We observed that FD storage substances induced in HUVECs premature senescence and increased of miR-126-3p levels. This study reinforces the hypothesis that FD may aggravate the normal aging process.
Collapse
Affiliation(s)
- Alessia Lo Curto
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Simona Taverna
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Maria Assunta Costa
- Institute of Byophysics, National Research Council (CNR), 90146 Palermo, Italy; (M.A.C.); (R.P.)
| | - Rosa Passantino
- Institute of Byophysics, National Research Council (CNR), 90146 Palermo, Italy; (M.A.C.); (R.P.)
| | - Giuseppa Augello
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Paolo Colomba
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Carmela Zizzo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Marco Zora
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Daniele Francofonte
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Tiziana Di Chiara
- Department PROMISE, School of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Riccardo Alessandro
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
- Department of Biomedicine, Neuroscience and Advanced Diagnostics-Section of Biology and Genetics, University of Palermo, 90127 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giovanni Duro
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giuseppe Cammarata
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| |
Collapse
|
15
|
Tan Y, Zhou F, Yang D, Zhang X, Zeng M, Wan L. MicroRNA-126a-5p Exerts Neuroprotective Effects on Ischemic Stroke via Targeting NADPH Oxidase 2. Neuropsychiatr Dis Treat 2021; 17:2089-2103. [PMID: 34234438 PMCID: PMC8242150 DOI: 10.2147/ndt.s293611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ischemic stroke is a destructive cerebrovascular disorder related to oxidative stress; NOX2 is a major source for ROS production; and miR-126a-5p is involved in several diseases, such as abdominal aortic aneurysm. We investigated the role of miR-126a-5p in regulating NOX2 in ischemic stroke. METHODS MiR-126a-5p and NOX2 were examined in the brains of rats subjected to cerebral ischemia/reperfusion (I/R) by RT-PCR and Western blot. MiR-126a-5p agomir was delivered to examine the effects of miR-126a-5p on I/R injury. The neurological deficit, infarct volume, and brain water content were evaluated. NOX activity, ROS production, and MDA and SOD levels were detected to assess oxidative stress. H&E staining was used to examine cell state. Apoptosis was evaluated by TUNEL, caspase-3 activity, and cleaved-caspase-3 protein level. The relationship between miR-126a-5p and NOX2 was analyzed by bioinformatics and luciferase reporter assay. MiR-126a-5p mimic, miR-126a-5p inhibitor, or pcDNA-NOX2 were transfected in SH-SY5Y cells to further assess the effects of miR-126a-5p on OGD/R-induced cells injury. RESULTS NOX2 was upregulated and miR-126a-5p was down-regulated in the brains of I/R rats. MiR-126a-5p agomir obviously reduced the neurological deficit, infarct volume, brain water content, oxidative stress, and apoptosis in I/R rats. MiR-126a-5p targeted NOX2 directly and regulated NOX2 negatively. Moreover, miR-126a-5p mimic elevated cell viability and inhibited oxidative stress and apoptosis in OGD/R-treated SH-SY5Y cells, while miR-126a-5p inhibitor had the opposite effects. NOX2 overexpression antagonized the protective effects of miR-126a-5p mimic on OGD/R-induced cell injury. CONCLUSION MiR-126a-5p is a novel potential target for ischemic stroke therapy due to its protection against cerebral I/R injury via directly targeting NOX2.
Collapse
Affiliation(s)
- Yu Tan
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Feng Zhou
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai City, Guangdong Province, 519000, People's Republic of China
| | - Dejiang Yang
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Xiaowei Zhang
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Meihong Zeng
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| | - Lei Wan
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, 330008, People's Republic of China
| |
Collapse
|
16
|
Islam S, Watanabe H. Versican: A Dynamic Regulator of the Extracellular Matrix. J Histochem Cytochem 2020; 68:763-775. [PMID: 33131383 DOI: 10.1369/0022155420953922] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan belonging to the aggrecan/lectican family. In adults, this proteoglycan serves as a structural macromolecule of the extracellular matrix in the brain and large blood vessels. In contrast, versican is transiently expressed at high levels during development and under pathological conditions when the extracellular matrix dramatically changes, including in the inflammation and repair process. There are many reports showing the upregulation of versican in cancer, which correlates with cancer aggressiveness. Versican has four classical splice variants, and all the variants contain G1 and G3 domains at N- and C-termini, respectively. There are two glycosaminoglycan attachment domains CSα and CSβ. The largest V0 variant contains both CSα and CSβ, V1 contains CSβ, V2 contains CSα, and the shortest G3 variant has neither of them. Versican degradation is initiated by cleavage at a site in the CSβ domain by ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases. The N-terminal fragment containing the G1 domain has been reported to exert various biological functions, although its mechanisms of action have not yet been elucidated. In this review, we describe the role of versican in inflammation and cancer and also address the biological function of versikine.
Collapse
Affiliation(s)
- Shamima Islam
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
17
|
MiR-126 Regulates Properties of SOX9 + Liver Progenitor Cells during Liver Repair by Targeting Hoxb6. Stem Cell Reports 2020; 15:706-720. [PMID: 32763157 PMCID: PMC7486193 DOI: 10.1016/j.stemcr.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Liver progenitor cells (LPCs) have a remarkable contribution to the hepatocytes and ductal cells when normal hepatocyte proliferation is severely impaired. As a biomarker for LPCs, Sry-box 9 (Sox9) plays critical roles in liver homeostasis and repair in response to injury. However, the regulation mechanism of Sox9 in liver physiological and pathological state remains unknown. In this study, we found that miR-126 positively regulated the expression of Sox9, the proliferation and differentiation of SOX9+ LPCs by suppressing the translation of homeobox b6 (Hoxb6). As a transcription factor, HOXB6 directly binds to the promoter of Sox9 to inhibit Sox9 expression, resulting in the destruction of the properties of SOX9+ LPCs in CCl4-induced liver injury. These findings revealed the role of miR-126 in regulating SOX9+ LPCs fate by targeting Hoxb6 in liver injury repair. Our findings suggest the potential role of miR-126 as a nucleic acid therapy drug target for liver failure. miR-126 promotes Sox9 expression and maintains SOX9+ LPCs in adult mouse livers HOXB6 suppresses properties of SOX9+ LPCs in chronic liver injury model HOXB6 negatively regulates Sox9 trans-activity miR-126 regulates properties of SOX9+ LPCs by targeting Hoxb6
Collapse
|
18
|
Wang H, Zhou Y, Yin Z, Chen L, Jin L, Cui Q, Xue L. Transcriptome analysis of common and diverged circulating miRNAs between arterial and venous during aging. Aging (Albany NY) 2020; 12:12987-13004. [PMID: 32609094 PMCID: PMC7377886 DOI: 10.18632/aging.103385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/25/2020] [Indexed: 12/30/2022]
Abstract
Circulating miRNAs have received extensive attention as non-invasive biomarkers for prediction and diagnosis of disease. However, most samples have been obtained from peripheral venous blood. To evaluate whether peripheral venous miRNAs represent circulating miRNAs from all blood vessels under a given condition, such as aging, we compared the miRNA profiles of venous and arterial plasma between young and aged rats by Illumina next-generation sequencing. The DEseq2 tool was used to obtain differentially-expressed miRNAs. We observed 105 aging-related deregulated miRNAs in vein and 62 in artery, which were highly associated with cell survival and inflammation, respectively. On the other hand, the young and aged groups exhibited a unique arterial-venous bias. There were 54 differentially-expressed miRNAs in the young group and 42 in the aged group; only 8 miRNAs were shared. Further transcriptional factors enrichment analysis found that the shared miRNAs could be partially upregulated by NF-κB and SIRT1. These transcriptional factors could be organ-specific and/or regulated in physiological and aging states as possible causal factors. This study suggested the potential application of circulating miRNAs, which reflect the systematic response to certain conditions, such as aging, and the importance of origin selection for candidate circulating miRNAs.
Collapse
Affiliation(s)
- Hao Wang
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zhongnan Yin
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Li Chen
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Ling Jin
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China.,Biobank, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
19
|
Ma X, Zheng Q, Zhao G, Yuan W, Liu W. Regulation of cellular senescence by microRNAs. Mech Ageing Dev 2020; 189:111264. [PMID: 32450085 DOI: 10.1016/j.mad.2020.111264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/26/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022]
Abstract
Cellular senescence is mainly characterized as a stable proliferation arrest and a senescence associated secretory phenotype (SASP). Senescence is triggered by diverse stimuli such as telomere shortening, oxidative stress, oncogene activation and DNA damage, and consequently contributes to multiple physiology and pathology outcomes, including embryonic development, wound healing and tumor suppression as well as aging or age-associated diseases. Interestingly, therapeutic clearance of senescent cells in tissues has recently been demonstrated to be beneficial for extending a healthy lifespan and for improving numerous age-related disorders. However the molecular mechanisms of senescence regulation remain partially understood. Theoretically, senescence is tightly regulated by a vast number of molecules, among which the p16 and p53 pathways are the most classical. In addition, intracellular cellular calcium signaling has emerged as a key regulator of senescence. In the last few decades, a growing number of studies have demonstrated that microRNAs (miRNAs, small non-coding RNAs) are strongly implicated in controlling senescence, especially at the transcriptional and post-transcriptional levels. In this review we will discuss the involvement of miRNAs in modulating senescence through the major p16, p53, SASP and calcium signaling pathways, thus aiming to reveal the mechanisms of how miRNAs regulate cellular senescence.
Collapse
Affiliation(s)
- Xingjie Ma
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Qingbin Zheng
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guangming Zhao
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenjie Yuan
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weili Liu
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|
20
|
Yan Y, Wang S, Wang R, Jiang P, Chen Y, Zhang L, Hou C, Zhang L. Transcriptional regulation of microRNA-126a by farnesoid X receptor in vitro and in vivo. Biotechnol Lett 2020; 42:1327-1336. [PMID: 32221722 DOI: 10.1007/s10529-020-02864-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Recent research has indicated the microRNA-126a (miR-126a) is an endothelial cell-specific and highly conserved endogenous small non-coding RNA molecule. It contributes to the vascular integrity and angiogenesis, but the molecular regulation mechanism of miR-126a remains unknown. RESULTS Herein, quantitative real-time polymerase chain reaction (qRT-PCR) results showed that Farnesoid X Receptor (FXR) activation promoted miR-126a expression in HepG2, LO2, and Hep1-6 cells. Furthermore, FXR was found to transcriptionally regulate the miR-126a by binding to its DR8 site. The binding site of FXR was confirmed on intron 6 or 7 of miR-126a host gene epidermal growth factor-like domain 7 (EGFL7) by luciferase reporter assays, electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP) assays. CONCLUSIONS All these data collectively suggest that FXR regulates transcripts of miR-126a by binding to DR8 in miR-126a gene promoter. This study may provide a molecular therapeutic target for angiogenic disorders, aging, and liver failure.
Collapse
Affiliation(s)
- Yi Yan
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shichao Wang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rui Wang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Puxuan Jiang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaqing Chen
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liang Zhang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chenjiao Hou
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lisheng Zhang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
21
|
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, Allen CE, Frevert CW. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol 2020; 11:512. [PMID: 32265939 PMCID: PMC7105702 DOI: 10.3389/fimmu.2020.00512] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process. Versican interacts with inflammatory cells either indirectly via hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1 (PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and non-immune cells. These interactions activate signaling pathways that promote the synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB. Versican also influences inflammation by interacting with a variety of growth factors and cytokines involved in regulating inflammation thereby influencing their bioavailability and bioactivity. Versican is produced by multiple cell types involved in the inflammatory process. Conditional total knockout of versican in a mouse model of lung inflammation demonstrated significant reduction in leukocyte invasion into the lung and reduced inflammatory cytokine expression. While versican produced by stromal cells tends to be pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and immunosuppressive microenvironments. Inflammation in the tumor microenvironment often contains elevated levels of versican. Perturbing the accumulation of versican in tumors can inhibit inflammation and tumor progression in some cancers. Thus versican, as a component of the ECM impacts immunity and inflammation through regulating immune cell trafficking and activation. Versican is emerging as a potential target in the control of inflammation in a number of different diseases.
Collapse
Affiliation(s)
- Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephen P. Evanko
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Mary Y. Chang
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| | - Oliver M. T. Pearce
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E. Allen
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Charles W. Frevert
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
22
|
Rossi M, Gorospe M. Noncoding RNAs Controlling Telomere Homeostasis in Senescence and Aging. Trends Mol Med 2020; 26:422-433. [PMID: 32277935 DOI: 10.1016/j.molmed.2020.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Aging is a universal and time-dependent biological decline associated with progressive deterioration of cells, tissues, and organs. Age-related decay can eventually lead to pathology such as cardiovascular and neurodegenerative diseases, cancer, and diabetes. A prominent molecular process underlying aging is the progressive shortening of telomeres, the structures that protect the ends of chromosomes, eventually triggering cellular senescence. Noncoding (nc)RNAs are emerging as major regulators of telomere length homeostasis. In this review, we describe the impact of ncRNAs on telomere function and discuss their implications in senescence and age-related diseases. We discuss emerging therapeutic strategies targeting telomere-regulatory ncRNAs in aging pathology.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| |
Collapse
|
23
|
Wang W, Liu B, Sun S, Lan L, Chen Y, Han S, Li X, Li Z. Downregulation of miR-486-5p Enhances the Anti-Tumor Effect of 5-Fluorouracil on Pancreatic Cancer Cells. Onco Targets Ther 2020; 13:1649-1659. [PMID: 32158231 PMCID: PMC7047986 DOI: 10.2147/ott.s231153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/24/2019] [Indexed: 01/03/2023] Open
Abstract
Background 5-Fluorouracil (5-Fu) has been applied to treat pancreatic cancer, which is one of the most common types of digestive system tumors. Evidence has shown that miR-486-5p could promote the proliferation of pancreatic cancer cells. Therefore, this study aimed to investigate whether downregulation of miR-486-5p could enhance the anti-tumor effect of 5-Fu on pancreatic cancer cells. Methods Cell Counting Kit 8 assay, flow cytometry and wound healing assays were used to detect proliferation, apoptosis and migration in PANC-1 cells. The expressions of Bcl-2, Bax, cleaved caspase 3, PTEN, p-Akt and p-ERK in PANC-1 cells were detected with Western blot assay. Results In this study, the inhibitory effects of 5-Fu on the proliferation, migration and invasion of PANC-1 cells were significantly enhanced following transfection with miR-486-5p antagonist. In addition, downregulation of miR-486-5p markedly enhanced the pro-apoptosis effect of 5-Fu on PANC-1 cells. Moreover, bioinformatics analysis and luciferase reporter assay identified that PTEN was the directly binding target of miR-486-5p. Meanwhile, downregulation of miR-486-5p markedly enhanced the anti-tumor effect of 5-Fu in PANC-1 cells via upregulation of the level of PTEN, and downregulation of the expressions of p-ERK and p-Akt. In vivo experiments confirmed that knockdown of miR-486-5p could enhance the anti-tumor effect of 5-Fu in PANC-1 xenograft model. Conclusion We found that the downregulation of miR-486-5p could enhance the anti-tumor effect of 5-Fu on pancreatic cancer cells. Therefore, miR-486-5p antagonist plus 5-Fu might be considered as a potential therapeutic strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, People's Republic of China
| | - Bowei Liu
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Suofeng Sun
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Ling Lan
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Yu Chen
- Department of Gastroenterology, Nanhai Hospital, Southern Medical University, Foshan, Guangdong 528200, People's Republic of China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|