1
|
Chen Y, Chen S, Zhang J, Hu X, Li N, Liu Z, Huang L, Yu J, Zhang Y, Lin X, Xu Z, Fang Y, Chen Z, Guo Y, Chen B. Electroacupuncture pre-treatment exerts a protective effect on LPS-induced cardiomyopathy in mice through the delivery of miR-381 via exosomes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167208. [PMID: 38701956 DOI: 10.1016/j.bbadis.2024.167208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE This study aims to investigate the cardiac protective effects and molecular mechanisms of electroacupuncture (EA) pre-treatment in lipopolysaccharide (LPS)-Induced Cardiomyopathy. METHODS AND RESULTS Pre-treatment with EA was performed 30 min before intraperitoneal injection of LPS. Cardiac function changes in mice of the EA + LPS group were observed using electrocardiography, echocardiography, and enzyme linked immunosorbent assay (ELISA) and compared with the LPS group. The results demonstrated that EA pre-treatment significantly improved the survival rate of septic mice, alleviated the severity of endotoxemia, and exhibited notable cardiac protective effects. These effects were characterized by a reduction in ST-segment elevation on electrocardiography, an increase in ejection fraction (EF) and fraction shortening (FS) on echocardiography and a decrease in the expression of serum cardiac troponin I (cTn-I) levels. Serum exosomes obtained after EA pre-treatment were extracted and administered to septic mice, revealing significant cardiac protective effects of EA-derived exosomes. Furthermore, the antagonism of circulating exosomes in mice markedly suppressed the cardiac protective effects conferred by EA pre-treatment. Analysis of serum exosomes using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant upregulation of miR-381 expression after EA pre-treatment. Inhibition or overexpression of miR-381 through serotype 9 adeno-associated virus (AAV9)-mediated gene delivery demonstrated that overexpression of miR-381 exerted a cardiac protective effect, while inhibition of miR-381 significantly attenuated the cardiac protective effects conferred by EA pre-treatment. CONCLUSIONS Our research findings have revealed a novel endogenous cardiac protection mechanism, wherein circulating exosomes derived from EA pre-treatment mitigate LPS-induced cardiac dysfunction via miR-381.
Collapse
Affiliation(s)
- Yong Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ningcen Li
- Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 500515, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
2
|
Goodarzi V, Nouri S, Nassaj ZS, Bighash M, Abbasian S, Hagh RA. Long non coding RNAs reveal important pathways in childhood asthma: a future perspective. J Mol Histol 2023; 54:257-269. [PMID: 37537509 DOI: 10.1007/s10735-023-10131-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Asthma is a long-term inflammatory disease of the airways of the lungs refers changes that occur in conjunction with, or as a result of, chronic airway inflammation. Airway remodeling the subsequent of inflammation constitutes cellular and extracellular matrix changes in the wall airways, epithelial-to-mesenchymal-transition and airway smooth muscle cell proliferation. Diseases often begin in childhood and despite extensive research, causative pathogenic mechanisms still remain unclear. Transcriptome analysis of childhood asthma reveals distinct gene expression profiles of Long noncoding RNAs which have been reported to play a central regulatory role in various aspects of pathogenesis, clinical course and treatment of asthma. We briefly review current understanding of lnc-RNA dysregulation in children with asthma, focusing on their complex role in the inflammation, cell proliferation and remodeling of airway to guide future researches. We found that the lnc-RNAs increases activity of several oncogenes such c-Myc, Akt, and ERK and various signaling pathways such as MAPK (PI3K, Ras, JNK and p38), NF-κB and Wnt and crosstalk between these pathways by TGFβ, β-catenin, ERK and SKP2. Moreover, two different signal transduction pathways, Wnt and Notch1, can be activated by two lnc-RNAs through sponging the same miRNA for exacerbation cell proliferation.
Collapse
Affiliation(s)
- Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shadi Nouri
- Arak University of Medical Sciences, Arak, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mansoureh Bighash
- Bachelor of Nursing, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvn, Iran
| | - Sadegh Abbasian
- Department of Laboratory Science, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | | |
Collapse
|
3
|
Pan J, Zhan C, Yuan T, Gu W, Wang W, Sun Y, Chen L. Long noncoding RNA signatures in intrauterine infection/inflammation-induced lung injury: an integrative bioinformatics study. BMC Pulm Med 2023; 23:194. [PMID: 37280583 DOI: 10.1186/s12890-023-02505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Intrauterine infection/inflammation can result in fetal and neonatal lung injury. However, the biological mechanisms of intrauterine infection/inflammation on fetal and neonatal lung injury and development are poorly known. To date, there are no reliable biomarkers for improving intrauterine infection/inflammation-induced lung injury. METHODS An animal model of intrauterine infection/inflammation-induced lung injury was established with pregnant Sprague-Dawley rats inoculated with Escherichia coli suspension. The intrauterine inflammatory status was assessed through the histological examination of the placenta and uterus. A serial of histological examinations of the fetal and neonatal rats lung tissues were performed. The fetal and neonatal rat lung tissues were harvested for next generation sequencing at embryonic day 17 and postnatal day 3, respectively. Differentially expressed mRNAs and lncRNAs were identified by conducting high-throughput sequencing technique. The target genes of identified differentially expressed lncRNAs were analyzed. Homology analyses for important differentially expressed lncRNAs were performed. RESULTS The histopathological results showed inflammatory infiltration, impaired alveolar vesicular structure, less alveolar numbers, and thickened alveolar septa in fetal and neonatal rat lung tissues. Transmission electron micrographs revealed inflammatory cellular swelling associated with diffuse alveolar damage and less surfactant-storing lamellar bodies in alveolar epithelial type II cells. As compared with the control group, there were 432 differentially expressed lncRNAs at embryonic day 17 and 125 differentially expressed lncRNAs at postnatal day 3 in the intrauterine infection group. The distribution, expression level, and function of these lncRNAs were shown in the rat genome. LncRNA TCONS_00009865, lncRNA TCONS_00030049, lncRNA TCONS_00081686, lncRNA TCONS_00091647, lncRNA TCONS_00175309, lncRNA TCONS_00255085, lncRNA TCONS_00277162, and lncRNA TCONS_00157962 may play an important role in intrauterine infection/inflammation-induced lung injury. Fifty homologous sequences in Homo sapiens were also identified. CONCLUSIONS This study provides genome-wide identification of novel lncRNAs which may serve as potential diagnostic biomarkers and therapeutic targets for intrauterine infection/inflammation-induced lung injury.
Collapse
Affiliation(s)
- Jiarong Pan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Canyang Zhan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Tianming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China.
| | - Weizhong Gu
- Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Weiyan Wang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Yi Sun
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Lihua Chen
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| |
Collapse
|
4
|
RNA editing enzyme ADAR1 controls miR-381-3p-mediated expression of multidrug resistance protein MRP4 via regulation of circRNA in human renal cells. J Biol Chem 2022; 298:102184. [PMID: 35753353 PMCID: PMC9293778 DOI: 10.1016/j.jbc.2022.102184] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/28/2022] Open
Abstract
Multidrug resistance–associated protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is highly expressed in the kidneys of mammals and is responsible for renal elimination of numerous drugs. Adenosine deaminase acting on RNA 1 (ADAR1) has been reported to regulate gene expression by catalyzing adenosine-to-inosine RNA editing reactions; however, potential roles of ADAR1 in the regulation of MRP4 expression have not been investigated. In this study, we found that downregulation of ADAR1 increased the expression of MRP4 in human renal cells at the posttranscriptional level. Luciferase reporter assays and microarray analysis revealed that downregulation of ADAR1 reduced the levels of microRNA miR-381-3p, which led to the corresponding upregulation of MPR4 expression. Circular RNAs (circRNAs) are a type of closed-loop endogenous noncoding RNAs that play an essential role in gene expression by acting as miRNA sponges. We demonstrate that ADAR1 repressed the biogenesis of circRNA circHIPK3 through its adenosine-to-inosine RNA editing activity, which altered the secondary structure of the precursor of circHIPK3. Furthermore, in silico analysis suggested that circHIPK3 acts as a sponge of miR-381-3p. Indeed, we found overexpression of circHIPK3 induced the expression of MRP4 through its interference with miR-381-3p. Taken together, our study provides novel insights into regulation of the expression of xenobiotic transporters through circRNA expression by the RNA editing enzyme ADAR1.
Collapse
|
5
|
Qiao L, Li RX, Hu SG, Liu Y, Liu HQ, Wu HJ. microRNA-145-5p attenuates acute lung injury via targeting ETS2. Kaohsiung J Med Sci 2022; 38:565-573. [PMID: 35579106 DOI: 10.1002/kjm2.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 11/11/2022] Open
Abstract
The protective effect of microRNA (miR)-145-5p in acute lung injury (ALI) has been discovered previously. Thus, in this study, we attempted to further investigate the mechanism of miR-145-5p in ALI through the downstream E26 transformation-specific proto-oncogene 2 (ETS2)/transforming growth factor β1 (TGF-β1)/Smad pathway. A lipopolysaccharide (LPS)-induced ALI rat model was established. The expression of miR-145-5p in ALI rat lung tissues was up-regulated. Afterward, pathological damage in the lung tissue, the wet/dry (W/D) ratio, apoptosis, and serum inflammatory factor contents were observed. miR-145-5p, ETS2, TGF-β1, Smad2/3, and phosphorylated Smad2/3 levels were measured in rats. miR-145-5p expression was down-regulated, ETS2 expression was up-regulated, and the TGF-β1/Smad pathway was activated in LPS-exposed rats. Overexpression of miR-145-5p inactivated the TGF-β1/Smad pathway and attenuated ALI, as reflected by relieved pathological damage, a decreased W/D ratio, reduced apoptosis, and suppressed inflammatory response. In contrast, loss of miR-145-5p or elevated ETS2 levels worsened ALI and activated the TGF-β1/Smad pathway. Moreover, elevation of ETS2 diminished miR-145-5p-mediated protection against ALI. Evidently, miR-145-5p negatively regulates ETS2 expression and inactivates the TGF-β1/Smad pathway to ameliorate ALI in rats.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Emergency, Henan Province Hospital of TCM (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Rong-Xia Li
- Emergency Center, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Shan-Gang Hu
- Department of Emergency, Henan Province Hospital of TCM (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yu Liu
- Department of Emergency, Henan Province Hospital of TCM (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Hong-Qiang Liu
- Department of Emergency, Henan Province Hospital of TCM (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Hong-Jun Wu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Sun L, Liu J, Sun X, Zhang Y, Cui X. CircTRHDE knockdown protects WI-38 cells against LPS-induced inflammatory injury. Autoimmunity 2022; 55:233-242. [PMID: 35481453 DOI: 10.1080/08916934.2022.2062595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to be involved in the progression of infantile pneumonia. Here, we investigated the function of circTRHDE in lipopolysaccharide (LPS)-induced cell inflammatory injury to evaluate its role in infantile pneumonia progression. METHODS The circTRHDE, microRNA (miR)-381-3p and TNF-receptor associated factor 3 (TRAF3) expression were detected by quantitative real-time PCR. LPS-induced WI-38 cells were used to construct an inflammatory injury model. Cell viability, inflammation and apoptosis were measured by cell counting kit assay, ELISA assay and flow cytometry. Caspase3 activity, MDA level and SOD activity were analysed to assess cell apoptosis and oxidative stress. Protein levels were determined using western blot analysis. The interaction between miR-381-3p and circTRHDE or TRAF3 was confirmed by dual-luciferase activity assay and RNA pull-down assay. RESULTS CircTRHDE had increased expression in infantile pneumonia patients and LPS-induced WI-38 cells. LPS treatment inhibited WI-38 cell viability while promoting inflammation, apoptosis and oxidative stress. However, knockdown of circTRHDE remitted LPS-triggered WI-38 cell injury. CircTRHDE could sponge miR-381-3p to positively regulate TRAF3 expression. MiR-381-3p suppressed LPS-induced WI-38 cell inflammatory injury, and this effect was revoked by TRAF3 overexpression. Also, LPS-induced WI-38 cell inflammatory injury restrained by circTRHDE knockdown also were reversed by miR-318-3p inhibitor or TRAF3 overexpression. CONCLUSION Our findings demonstrated that circTRHDE might be a target for infantile pneumonia treatment, which relieved LPS-induced cell inflammatory injury by the regulation of the miR-318-3p/TRAF3 axis.
Collapse
Affiliation(s)
- Lifang Sun
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingyan Liu
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Sun
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanhua Zhang
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfang Cui
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Yang S, Liu F, Wang D. Long noncoding RNA Kcnq1ot1 prompts lipopolysaccharide-induced acute lung injury by microRNA-7a-5p/Rtn3 axis. Eur J Med Res 2022; 27:46. [PMID: 35317842 PMCID: PMC8939215 DOI: 10.1186/s40001-022-00653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
Background Long noncoding RNA (lncRNA)-regulated mechanism in acute lung injury (ALI) has attracted special interests in study researches. We planned to disclose whether KCNQ1 overlapping transcript 1 (Kcnq1ot1) is involved in ALI and its mechanism. Methods The lipopolysaccharide (LPS)-induced ALI model was established in mice. Kcnq1ot1, microRNA (miR)-7a-5p and Reticulon 3 (Rtn3) levels were measured in lung tissues of mice. The vector that changed Kcnq1ot1, miR-7a-5p and Rtn3 expression was injected into LPS-treated mice, and pathological damage, fibrosis, apoptosis and inflammatory response were subsequently examined in lung tissues. The relation between Kcnq1ot1 and miR-7a-5p, and that between miR-7a-5p and Rtn3 were identified. Results Kcnq1ot1 and Rtn3 expression increased while miR-7a-5p expression decreased in LPS-treated mice. Reduced Kcnq1ot1 or elevated miR-7a-5p alleviated pathological damage, fibrosis, apoptosis and inflammatory response in ALI mice, while overexpressed Rtn3 worsened ALI in mice. Downregulation of Rtn3 reversed the exacerbation of miR-7a-5p downregulation in ALI mice. Kcnq1ot1 competitively bound to miR-7a-5p and miR-7a-5p negatively mediated Rtn3 expression. Conclusion Our experiments evidence that silencing Kcnq1ot1 upregulates miR-7a-5p to suppress Rtn3 expression, thereby diminishing LPS-induced ALI. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00653-8.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Geriatrics, Daqing Qilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Fang Liu
- Department of Geriatrics, Daqing Qilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Di Wang
- Department of Prosthodontics, Daqing Qilfield General Hospital, Zhongkang Street No. 9, Sartu District, Daqing, 163000, Heilongjiang, China.
| |
Collapse
|
8
|
Che Y, He J, Li X, Wu D, Zhang Y, Yuan G. Overexpression of microRNA-381-3p ameliorates hypoxia/ischemia-induced neuronal damage and microglial inflammation via regulating the C-C chemokine receptor type 2 /nuclear transcription factor-kappa B axis. Bioengineered 2022; 13:6839-6855. [PMID: 35246016 PMCID: PMC8973660 DOI: 10.1080/21655979.2022.2038448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
microRNAs, as small endogenous RNAs, influence umpteen sophisticated cellular biological functions regarding neurodegenerative and cerebrovascular diseases. Here, we interrogated miR-381-3p’s influence on BV2 activation and neurotoxicity in ischemic and hypoxic environment. Oxygen-glucose deprivation (OGD) was adopted to induce microglial activation and HT-22 neuron damage. Quantitative polymerase chain reaction (qRT-PCR) was taken to check miR-381-3p expression in OGD-elicited BV2 cells and HT-22 neurons. It transpired that miR-381-3p expression was lowered in BV2 cells and HT-22 cells elicited by OGD. miR-381-3p up-regulation remarkably hampered inflammatory mediator expression in BV2 cells induced by OGD and weakened HT22 neuron apoptosis. In vivo, miR-381-3p expression was abated in HI rats’ ischemic lesions, and miR-381-3p up-regulation could ameliorate inflammation and neuron apoptosis in their brain. C-C chemokine receptor type 2 (CCR2) was identified as the downstream target of miR-381-3p, and miR-381-3p suppressed the CCR2/NF-κB pathway to mitigate microglial activation and neurotoxicity. Therefore, we believed that miR-381-3p overexpression exerts anti-inflammation and anti-apoptosis in ischemic brain injury by targeting CCR2
Collapse
Affiliation(s)
- Yuanmei Che
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianglong He
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaopeng Li
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daxian Wu
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Zhang
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guicai Yuan
- Department of Infection, The Second Affiliated Hospital of Yichun University, Yichun, China
| |
Collapse
|
9
|
Wang Y, Liu L, Li J. LncRNA KCNQ1OT1 depletion inhibits the malignant development of atherosclerosis by miR-145-5p. Microvasc Res 2022; 139:104236. [PMID: 34464666 DOI: 10.1016/j.mvr.2021.104236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atherosclerosis (AS) is a lipid-driven inflammatory disease of the arterial intima. Evidence is growing that dysregulation of lncRNAs is implicated in the pathogenesis of AS. In this research, the role of lncRNA KCNQ1OT1 in AS was investigated. METHODS ApoE-/- mice were fed on a high fat diet to establish mouse models of AS. Macrophages (THP-1) were treated with oxidized low-density lipoprotein (ox-LDL) to establish cell models of AS. Atherosclerotic lesions of AS mice were determined by performing Oil red O staining. Lipid metabolic disorders and inflammatory were detected using specific assay kits. KCNQ1OT1 and miR-145-5p expression was measured using RT-qPCR. Levels of PPARα and CPT1 were measured using western blot. RESULTS KCNQ1OT1 expression was upregulated and miR-145-5p was downregulated in atherosclerotic plaques of AS mice and ox-LDL-treated THP-1 cells. Lipid metabolic disorders and inflammation in vivo and in vitro were attenuated by either KCNQ1OT1 knockdown or miR-145-5p overexpression. Additionally, KCNQ1OT1 acted as a molecular sponge of miR-145-5p and downregulated miR-145-5p expression. Furthermore, silencing miR-145-5p abolished the effect of KCNQ1OT1 knockdown. CONCLUSION Silencing KCNQ1OT1 attenuates AS progression by sponging miR-145-5p.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Disease Models, Animal
- Disease Progression
- Gene Expression Regulation
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/prevention & control
- Lipoproteins, LDL/toxicity
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Plaque, Atherosclerotic
- Potassium Channels, Voltage-Gated/genetics
- Potassium Channels, Voltage-Gated/metabolism
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- THP-1 Cells
- Mice
Collapse
Affiliation(s)
- Yebao Wang
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China
| | - Ling Liu
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China
| | - Jianmin Li
- Department of Cardiology, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
10
|
Wang J, Jiao P, Wei X, Zhou Y. Silencing Long Non-coding RNA Kcnq1ot1 Limits Acute Kidney Injury by Promoting miR-204-5p and Blocking the Activation of NLRP3 Inflammasome. Front Physiol 2021; 12:721524. [PMID: 34858199 PMCID: PMC8632456 DOI: 10.3389/fphys.2021.721524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is a critical clinical disease characterized by an acute decrease in renal function. Long non-coding RNAs (LncRNAs) are important in AKI. This study aimed to explore the mechanism of lncRNA Kcnq1ot1 in AKI by sponging microRNA (miR)-204-5p as a competitive endogenous RNA (ceRNA). AKI mouse model and hypoxia/reoxygenation (H/R) model of human kidney (HK) cells were established. Kcnq1ot1 expression, cell proliferation, and apoptosis were measured. Binding relations among Kcnq1ot1, miR-204-5p, and NLRP3 were verified. Pathological changes and cell apoptosis were detected. The results showed that Kcnq1ot1 was highly expressed in the AKI model in vivo and in vitro. Kcnq1ot1 knockdown promoted cell proliferation and prevented apoptosis and inflammation. Furthermore, Kcnq1ot1 inhibited miR-204-5p expression by competitively binding to miR-204-5p in HK-2 cells. miR-204-5p targeted NLRP3 and NLRP3 overexpression averted the inhibiting effect of miR-204-5p on apoptosis and inflammation in HK-2 cells in vitro. Kcnq1ot1 knockdown in vivo promoted miR-204-5p expression, inhibited NLRP3 inflammasome activation, reduced levels of SCr, BUN, and KIM-1, and thus alleviated AKI and reduced apoptosis. In summary, silencing lncRNA Kcnq1ot1 inhibited AKI by promoting miR-204-5p and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- JunTao Wang
- Department of Nephrology, The First People's Hospital of Shangqiu, Shangqiu, China
| | - Peng Jiao
- Department of Emergency, The First People's Hospital of Shangqiu, Shangqiu, China
| | - XiaoYing Wei
- Department of Nephrology, The First People's Hospital of Shangqiu, Shangqiu, China
| | - Yun Zhou
- Institute of Nephrology Eastern Theater General Hospital, Nanjing, China
| |
Collapse
|
11
|
Wang H, Mou H, Xu X, Liu C, Zhou G, Gao B. LncRNA KCNQ1OT1 (potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1) aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 (mitogen-activated protein kinase 1) axis in sepsis. Bioengineered 2021; 12:11353-11368. [PMID: 34783627 PMCID: PMC8810185 DOI: 10.1080/21655979.2021.2005987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI), a common complication of sepsis, is characterized by a rapid loss of renal excretory function. A variety of etiologies and pathophysiological processes may contribute to AKI. Previously, mitogen-activated protein kinase 1 (MAPK1) was reported to regulate cellular processes in various sepsis-associated diseases. The current study aimed to further explore the biological function and regulatory mechanism of MAPK1 in sepsis-induced AKI. In our study, MAPK1 exhibited high expression in the serum of AKI patients. Functionally, knockdown of MAPK1 suppressed inflammatory response, cell apoptosis in response of lipopolysaccharide (LPS) induction in HK-2 cells. Moreover, MAPK1 deficiency alleviated renal inflammation, renal dysfunction, and renal injury in vivo. Mechanistically, MAPK1 could activate the downstream p38/NF-κB pathway. Moreover, long noncoding RNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) was identified to serve as a competing endogenous RNA for miR-212-3p to regulate MAPK1. Finally, rescue assays indicated that the inhibitory effect of KCNQ1OT1 knockdown on inflammatory response, cell apoptosis, and p38/NF-κB pathway was reversed by MAPK1 overexpression in HK-2 cells. In conclusion, KCNQ1OT1 aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 axis in sepsis. Therefore, KCNQ1OT may serve as a potential biomarker for the prognosis and diagnosis of AKI patients.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Hongbin Mou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Xiaolan Xu
- Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Changhua Liu
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Gang Zhou
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Bo Gao
- Department of Nephrology, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| |
Collapse
|
12
|
Jiao W, Zhou X, Wu J, Zhang X, Ding J. Potential of long non-coding RNA KCNQ1OT1 as a biomarker reflecting systemic inflammation, multiple organ dysfunction, and mortality risk in sepsis patients. J Clin Lab Anal 2021; 35:e24047. [PMID: 34761437 PMCID: PMC8649371 DOI: 10.1002/jcla.24047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background Long non‐coding RNA potassium voltage‐gated channel subfamily Q member 1 opposite strand 1 (lnc‐KCNQ1OT1) represses inflammation and multiple organ dysfunction, whereas its clinical value in sepsis is unclear. Thus, this study aimed to explore this issue. Methods Lnc‐KCNQ1OT1 from peripheral blood mononuclear cells were detected by RT‐qPCR in 116 sepsis patients and 60 healthy controls (HCs). Moreover, sepsis patients were followed‐up until death or up to 28 days. Results Lnc‐KCNQ1OT1 decreased in patients with sepsis than in HCs (p < 0.001). In sepsis patients, lnc‐KCNQ1OT1 was negatively correlated with sequential organ failure assessment (SOFA) scores (r = −0.344, p < 0.001) and several SOFA subscale scores (including respiratory system, coagulation, liver, and renal systems) (all r < 0, p < 0.05). Furthermore, lnc‐KCNQ1OT1 was negatively correlated with CRP (r = −0.386, p < 0.001), TNF‐α (r = −0.332, p < 0.001), IL‐1β (r = −0.319, p < 0.001), and IL‐6 (r = −0.255, p = 0.006). Additionally, lnc‐KCNQ1OT1 levels were lower in sepsis deaths than in sepsis survivors (p < 0.001), and the receiver operating characteristic curve showed that lnc‐KCNQ1OT1 had an acceptable ability to predict 28‐day mortality (area under the curve: 0.780, 95% confidence interval: 0.678–0.882). Meanwhile, its ability to predict 28‐day mortality risk was higher than that of CRP, TNF‐α, IL‐1β, and IL‐6, but slightly lower than the SOFA score and acute physiology and chronic health evaluation II score. Conclusion Lnc‐KCNQ1OT1 serves as a potential biomarker for monitoring disease severity and prognosis in patients with sepsis.
Collapse
Affiliation(s)
- Wei Jiao
- Department of Nursing, No. 904th Hospital of The Joint Logistics Support Force of the PLA, Wuxi, China
| | - Xin Zhou
- Department of Clinical Laboratory, No. 904th Hospital of The Joint Logistics Support Force of the PLA, Wuxi, China
| | - Jian Wu
- Department of Information, No. 904th Hospital of The Joint Logistics Support Force of the PLA, Wuxi, China
| | - Xuesong Zhang
- Department of Anesthesiology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jun Ding
- Department of Urology, No. 904th Hospital of The Joint Logistics Support Force of the PLA, Wuxi, China
| |
Collapse
|
13
|
Wang H, Song S, Mu X. Long non-coding RNA HOTAIR knockdown alleviates lipopolysaccharide-induced acute respiratory distress syndrome and the associated inflammatory response by modulating the microRNA-30a-5p/PDE7A axis. Exp Ther Med 2021; 22:1160. [PMID: 34504605 PMCID: PMC8393846 DOI: 10.3892/etm.2021.10594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe pulmonary disease, which can be modulated by certain long non-coding (lnc)RNAs. The present study aimed to investigate the regulatory mechanism of lncRNA HOTAIR in ARDS and the inflammatory response induced by lipopolysaccharide (LPS). The mRNA expression levels of HOTAIR, microRNA (miR)-30a-5p and PDE7A were determined using reverse transcription-quantitative PCR, while a MTT assay was used to assess the viability of the MLE-12 cells and ELISA was used to determine the concentration of different inflammatory factors [tumor necrosis factor (TNF)-α, IL-1β and IL-6]. The interactions between miR-30a-5p and HOTAIR/PDE7A were predicted using TargetScan and StarBase databases and verified using a dual-luciferase reporter assay. The protein expression levels of PDE7A were determined using western blot analysis. Mouse models of LPS-induced ARDS were established to investigate the suppressive effect of HOTAIR knockdown on ARDS in vivo. lncRNA HOTAIR was increased in LPS-treated MLE-12 cells and in a ARDS mouse model. HOTAIR knockdown decreased the concentration of TNF-α, IL-1β and IL-6, and increased cell viability in vitro. miR-30a-5p upregulation decreased TNF-α, IL-1β and IL-6 concentrations, and increased cell viability in vitro. HOTAIR targeted miR-30a-5p and miR-30a-5p targeted PDE7A. miR-30a-5p downregulation and PDE7A upregulation reversed the suppressive effect of HOTAIR knockdown on the concentrations of TNF-α, IL-1β and IL-6, and the positive effect of HOTAIR knockdown on cell viability in vitro. HOTAIR knockdown also attenuated ARDS and the inflammatory response induced by LPS in vivo. The suppression of HOTAIR alleviated ARDS and the inflammatory response induced by LPS by modulating the miR-30a-5p/PDE7A axis. These results provide a potential therapeutic strategy for ARDS.
Collapse
Affiliation(s)
- Hongrong Wang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Shasha Song
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xianyu Mu
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
14
|
Yin J, Han B, Shen Y. RETRACTED: LncRNA NEAT1 inhibition upregulates miR-16-5p to restrain the progression of sepsis-induced lung injury via suppressing BRD4 in a mouse model. Int Immunopharmacol 2021; 97:107691. [PMID: 33962228 DOI: 10.1016/j.intimp.2021.107691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 5B and 6B, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0 [docs.google.com]). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jianhong Yin
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China
| | - Bin Han
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China
| | - Yuan Shen
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China.
| |
Collapse
|
15
|
Wang P, Zhang H, Zhao W, Dai N. Silencing of long non-coding RNA KCNQ1OT1 alleviates LPS-induced lung injury by regulating the miR-370-3p/FOXM1 axis in childhood pneumonia. BMC Pulm Med 2021; 21:247. [PMID: 34301223 PMCID: PMC8299180 DOI: 10.1186/s12890-021-01609-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Long non-coding RNAs (lncRNAs) play important roles in the development of pneumonia. We aimed to explore the role of the lncRNA KCNQ1OT1 in pneumonia and its underlying mechanisms. Methods The expression of KCNQ1OT1, FOXM1, and miR-370-3p was detected in the serum of 24 children with pneumonia and in 24 healthy controls. Normal human embryonic lung-derived diploid fibroblasts (WI-38 cells) were stimulated with LPS (10 μg/mL) to simulate the cellular model of pneumonia, and cell viability, apoptosis, and inflammation were analysed. Dual luciferase reporter and/or RNA binding protein immunoprecipitation assays were performed to test the relationship between miR-370-3p and KCNQ1OT1/FOXM1. Mice were intratracheally administered LPS (5 mg/kg) to induce an in vivo model of pneumonia, and pathological injury and inflammation were analysed. Results The expression of KCNQ1OT1 and FOXM1 was up-regulated, and miR-370-3p was down-regulated in the serum of children with pneumonia, LPS-treated WI-38 cells, and in lung tissues of LPS-treated mice. Silencing of KCNQ1OT1 or overexpression of miR-370-3p suppressed cell apoptosis and inflammation and facilitated cell viability in LPS-treated WI-38 cells. KCNQ1OT1 directly targets miR-370-3p and negatively regulates its expression. FOXM1 was targeted by miR-370-3p and negatively modulated by miR-370-3p. In addition, silencing of KCNQ1OT1 mitigated LPS-induced lung injury and inflammation in mice. The protective effects of KCNQ1OT1 silencing in LPS-treated WI-38 cells and mice were reversed by silencing of miR-370-3p or overexpression of FOXM1. Conclusion Silencing of KCNQ1OT1 alleviates LPS-induced lung injury by regulating the miR-370-3p/FOXM1 axis in pneumonia. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01609-0.
Collapse
Affiliation(s)
- Ping Wang
- Department of Pediatrics I, The People's Hospital of Shouguang, No. 43, Jiankang Street, Shouguang City, 262700, Shandong Province, China
| | - Haitao Zhang
- Department of Pediatrics I, The People's Hospital of Shouguang, No. 43, Jiankang Street, Shouguang City, 262700, Shandong Province, China
| | - Weiqing Zhao
- Department of Digestive Internal Medicine, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), No. 4, Renmin Road, Shibei District, Qingdao City, 266033, Shandong Province, China
| | - Nini Dai
- Department of Pediatrics I, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), No. 4, Renmin Road, Shibei District, Qingdao City, 266033, Shandong Province, China.
| |
Collapse
|
16
|
Li J, Xue L, Wu Y, Yang Q, Liu D, Yu C, Peng J. STAT3-activated lncRNA XIST accelerates the inflammatory response and apoptosis of LPS-induced acute lung injury. J Cell Mol Med 2021; 25:6550-6557. [PMID: 34114724 PMCID: PMC8278113 DOI: 10.1111/jcmm.16653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acute lung injury (ALI) is a severe lung respiratory failure characterized by high morbidity and mortality. Novel findings demonstrated the critical roles of long non-coding RNA (lncRNA) in ALI. Here, we tried to investigate the roles and potential mechanism of lncRNA X-inactive specific transcript (XIST) in ALI. Results illustrated that lncRNA XIST was up-regulated in the lipopolysaccharide (LPS)-induced ALI mice models and pulmonary endothelial cells. Biofunctional assays unveiled that knockdown of XIST repressed the inflammatory response and apoptosis in LPS-induced endothelial cells. Mechanistically, XIST acted as the miR-146a-5p sponge to positively regulate STAT3. Moreover, STAT3 combined the promoter region of XIST to accelerate the transcription, constituting the positive feedback loop of XIST/miR-146a-5p/STAT3 in ALI. Collectively, these findings suggested that XIST knockdown attenuates the LPS-induced ALI, providing a potential therapeutic target.
Collapse
Affiliation(s)
- Jun Li
- Department of Thoracic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Lei Xue
- Department of Thoracic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Yunfei Wu
- Department of Thoracic SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Qiang Yang
- Department of Thoracic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Degang Liu
- Department of Thoracic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Changhui Yu
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases LaboratoryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiangzhou Peng
- Department of Thoracic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| |
Collapse
|
17
|
Martínez-Rivera V, Cárdenas-Monroy CA, Millan-Catalan O, González-Corona J, Huerta-Pacheco NS, Martínez-Gutiérrez A, Villavicencio-Queijeiro A, Pedraza-Lara C, Hidalgo-Miranda A, Bravo-Gómez ME, Pérez-Plasencia C, Guardado-Estrada M. Dysregulation of miR-381-3p and miR-23b-3p in skeletal muscle could be a possible estimator of early post-mortem interval in rats. PeerJ 2021; 9:e11102. [PMID: 33986977 PMCID: PMC8086579 DOI: 10.7717/peerj.11102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
Background The post-mortem interval (PMI) is the time elapsed since the dead of an individual until the body is found, which is relevant for forensic purposes. The miRNAs regulate the expression of some genes; and due to their small size, they can better support degradation, which makes them suitable for forensic analysis. In the present work, we evaluated the gene expression of miR-381-3p, miR-23b-3p, and miR-144-3p in skeletal muscle in a murine model at the early PMI. Methods We designed a rat model to evaluate the early PMI under controlled conditions. This model consisted in 25 rats divided into five groups of rats, that correspond to the 0, 3, 6, 12 and 24 hours of PMI. The 0 h-PMI was considered as the control group. Muscle samples were taken from each rat to analyze the expression of miR-381-3p, miR-23b-3p, and miR-144-3p by quantitative RT-PCR. The gene expression of each miRNA was expressed as Fold Change (FC) and compared among groups. To find the targets of these miRNAs and the pathways where they participate, we performed an in-silico analysis. From the gene targets of miR-381-3p identified in the silico analysis, the EPC1 gene was selected for gene expression analysis by quantitative RT-PCR in these samples. Also, to evaluate if miR-381-3p could predict the early PMI, a mixed effects model was calculated using its gene expression. Results An upregulation of miR-381-3p was found at 24 h-PMI compared with the control group of 0 h-PMI and (FC = 1.02 vs. FC = 1.96; p = 0.0079). This was the opposite for miR-23b-3p, which had a down-regulation at 24 h-PMI compared to 0 h-PMI (FC = 1.22 vs. FC = 0.13; p = 0.0079). Moreover, the gene expression of miR-381-3p increased throughout the first 24 h of PMI, contrary to miR-23b-3p. The targets of these two miRNAs, participate in biological pathways related to hypoxia, apoptosis, and RNA metabolism. The gene expression of EPC1 was found downregulated at 3 and 12 h of PMI, whereas it remained unchanged at 6 h and 24 h of PMI. Using a multivariate analysis, it was possible to predict the FC of miR-381-3p of all but 6 h-PMI analyzed PMIs. Discussion The present results suggest that miR-23b-3p and miR-381-3p participate at the early PMI, probably regulating the expression of some genes related to the autolysis process as EPC1 gene. Although the miR-381-3p gene expression is a potential estimator of PMI, further studies will be required to obtain better estimates.
Collapse
Affiliation(s)
- Vanessa Martínez-Rivera
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Christian A Cárdenas-Monroy
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Oliver Millan-Catalan
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituo Nacional de Cancerologia, Ciudad de México, México.,Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jessica González-Corona
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - N Sofia Huerta-Pacheco
- Cátedras CONACYT-Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Martínez-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituo Nacional de Cancerologia, Ciudad de México, México
| | - Alexa Villavicencio-Queijeiro
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carlos Pedraza-Lara
- Laboratorio de Entomología, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Nacional de Medicina Genomica, Ciudad de México, México
| | - María Elena Bravo-Gómez
- Laboratorio de Toxicología, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carlos Pérez-Plasencia
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituo Nacional de Cancerologia, Ciudad de México, México.,Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mariano Guardado-Estrada
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
18
|
Chen G, Ge D, Zhu B, Shi H, Ma Q. Upregulation of matrix metalloproteinase 9 (MMP9)/tissue inhibitor of metalloproteinase 1 (TIMP1) and MMP2/TIMP2 ratios may be involved in lipopolysaccharide-induced acute lung injury. J Int Med Res 2021; 48:300060520919592. [PMID: 32339071 PMCID: PMC7219017 DOI: 10.1177/0300060520919592] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective This study aimed to examine the changes and significance of matrix metalloproteinase 9 (MMP9), MMP2, tissue inhibitor of metalloproteinase 1 (TIMP1), and TIMP2 in rats with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Wistar rats were randomly divided into a control group (injected with saline) and an ALI group (injected with LPS), then subdivided into four time points (2, 6, 12, and 24 hours). Serum tumor necrosis factor alpha and interleukin-6 levels were detected by ELISA to investigate the inflammatory reaction after LPS injection. The degree of ALI was determined by hematoxylin–eosin staining of lung tissue, the lung wet/dry weight ratio, and pulmonary permeability index. Changes in lung MMP and TIMP protein and mRNA levels were detected by western blotting and quantitative real-time polymerase chain reaction. Results Changes in the ratios of MMP9/TIMP1 and MMP2/TIMP2 were consistent with and strongly positively associated with the lung wet/dry weight ratio, the pulmonary permeability index, and serum tumor necrosis factor alpha and interleukin-6 levels in the ALI group. Conclusion ALI induced by LPS may be related to upregulation of MMP9/TIMP1 and MMP2/TIMP2 ratios.
Collapse
Affiliation(s)
- Guobing Chen
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dandan Ge
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Pediatric Key Laboratory of Xiamen, Xiamen, Fujian, China
| | - Bizhen Zhu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Huixuan Shi
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qilin Ma
- School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
19
|
Liu N, Sun H, Li X, Cao W, Peng A, Dong S, Yu Z. Downregulation of lncRNA KCNQ1OT1 relieves traumatic brain injury induced neurological deficits via promoting "M2" microglia polarization. Brain Res Bull 2021; 171:91-102. [PMID: 33713751 DOI: 10.1016/j.brainresbull.2021.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Microglia-induced neuroinflammation is one of the main characteristics of traumatic brain injury (TBI). Presently, we aim to investigate the role of long non-coding RNA (lncRNA) KCNQ1 overlapping transcript 1 (KCNQ1OT1) in TBI-induced neurological deficits and the related mechanism. METHODS An in-vivo TBI model was established in mice, and in-vitro experiments were carried out on BV2 microglia. Then the neurological functions, microglial activation, inflammatory cytokines, and proteins were detected. RESULTS Our data indicated that KCNQ1OT1 was markedly overexpressed in the cerebral tissues of TBI mice, accompanied by a higher level of the cytokines (including IL-1β, IL-6, and TNFα). However, knocking down KCNQ1OT1 relieved neurological deficits, neuron loss, and blood-brain barrier damage. Besides, overexpressing miR-873-5p enhanced the "M2″ polarization of microglia by repressing the TRAF6-mediated p38 and NF-κB pathways. In contrast, downregulating KCNQ1OT1 repressed microglial neuroinflammation by attenuating the "M1″ polarization of microglia and promoting "M2″ polarization of microglia, and inactivating the p38 and NF-κB pathway. CONCLUSIONS Mechanistically, KCNQ1OT1 functioned as a competitive endogenous RNA (ceRNA) by sponging miR-873-5p, which targeted the 3' untranslated region (UTR) of TRAF6. Overall, our data confirmed that downregulating lncRNA KCNQ1OT1 exerted neuroprotective effects on TBI mice by modulating the miR-873-5p-TRAF6-p38/NF-κB axis.
Collapse
Affiliation(s)
- Na Liu
- Department of Neurology, The First People's Hospital of Zhenjiang, Zhenjiang, 212000, Jiangsu, China.
| | - Haiyan Sun
- Department of Neurology, Jilin Provincial FAW General Hospital, Changchun, 130000, Jilin, China
| | - Xuezhong Li
- Department of Neurology, The First People's Hospital of Zhenjiang, Zhenjiang, 212000, Jiangsu, China
| | - Wei Cao
- Department of Neurology, The First People's Hospital of Zhenjiang, Zhenjiang, 212000, Jiangsu, China
| | - Aini Peng
- Department of Neurology, The First People's Hospital of Zhenjiang, Zhenjiang, 212000, Jiangsu, China
| | - Suyan Dong
- Department of Neurology, The First People's Hospital of Zhenjiang, Zhenjiang, 212000, Jiangsu, China
| | - Zhixin Yu
- ICU, The First People's Hospital of Zhenjiang, Zhenjiang, 212000, Jiangsu, China
| |
Collapse
|
20
|
Zhang Q, Zhou L, Xie H, Zhang H, Gao X. HAGLR aggravates neuropathic pain and promotes inflammatory response and apoptosis of lipopolysaccharide-treated SH-SY5Y cells by sequestering miR-182-5p from ATAT1 and activating NLRP3 inflammasome. Neurochem Int 2021; 145:105001. [PMID: 33626373 DOI: 10.1016/j.neuint.2021.105001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chronic neuropathic pain is characterized by neuroinflammation. Previously, long noncoding RNA (lncRNA) HAGLR was reported to regulate the inflammatory response of SH-SY5Y cells. However, neither the specific function nor the potential mechanism of HAGLR in neuropathic pain has been explored. AIM OF THE STUDY Our study is aimed to figure out the role of HAGLR in neuropathic pain. METHODS SH-SY5Y cells were treated with lipopolysaccharide (LPS) to mimic neuron injury in vitro. The chronic constriction injury (CCI) rat models were established by ligation of sciatic nerve to mimic neuropathic pain in vivo. Behavioral assessment assays were performed to determine the effects of HAGLR on hypersensitivity in neuropathic pain. Enzyme-linked immunosorbent assay kits were used for detection of inflammatory cytokines. Flow cytometry analysis and Western blot were applied to detect apoptosis. RESULTS HAGLR displayed high levels in spinal cords of CCI rats and in LPS treated SH-SY5Y cells. Knockdown of HAGLR inhibited inflammation and neuron apoptosis of LPS treated SH-SY5Y cells. Mechanistically, HAGLR bound with miR-182-5p in SH-SY5Y cells. ATAT1 served as a target of miR-182-5p. HAGLR activated the NLRP3 inflammasome by ATAT1. Rescue assays demonstrated that overexpression of ATAT1 or NLRP3 reversed the suppressive effects of HAGLR silencing on apoptosis and inflammatory response in SH-SY5Y cells and in spinal cords of CCI rats. The inhibitory effects of silenced HAGLR on hypersensitivity in neuropathic pain were also rescued by ATAT1 or NLRP3. CONCLUSIONS HAGLR aggravates neuropathic pain by sequestering miR-182-5p from ATAT1 and activating NLRP3 inflammasome, which may provide a potential therapeutic target for neuropathic pain treatment.
Collapse
Affiliation(s)
- QuanYun Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China; Department of Pain Medical Center, Lianyungang Second People's Hospital, Lianyungang, 222000, Jiangsu, China
| | - Li Zhou
- Department of Anaesthesia, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Hong Xie
- Department of Anesthesiology, Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - HongJin Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - XuZhu Gao
- Department of Anesthesiology, Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| |
Collapse
|
21
|
SNHG15 knockdown inhibits diabetic nephropathy progression in pediatric patients by regulating the miR-141/ICAM-1 axis in vitro. Biosci Rep 2021; 41:227697. [PMID: 33506255 PMCID: PMC7871034 DOI: 10.1042/bsr20204099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are confirmed to be involved in modulating diabetic nephropathy (DN). The present study is aimed to explore the regulatory mechanism of lncRNA small nucleolar RNA host gene 15 (SNHG15) on pediatric DN. Human glomerular mesangial cells (HGMCs) were exposed to high glucose (HG) to produce an in vitro model. The results showed that SNHG15 was remarkably up-regulated in pediatric DN tissues and HG-induced HGMCs. Functional experiments indicated that both silencing of SNHG15 and overexpression of miR-141 elevated the cell viability, and suppressed the inflammation in HG-induced HGMCs. SNHG15 was identified to be a lncRNA that could bind to miR-141, and ICAM-1 was a downstream target gene of miR-141. Both the low expression of miR-141 and high expression of ICAM-1 reversed the inhibiting effect of SNHG15 knockdown on inflammatory response, and the promoting effect on cell viability. To conclude, our study revealed that silencing of SNHG15 ameliorated the malignant behaviors of pediatric DN via modulating the miR-141/ICAM-1 axis in vitro.
Collapse
|
22
|
Shang J, Wang L, Tan L, Pan R, Wu D, Xia Y, Xu P. MiR-27a-3p overexpression mitigates inflammation and apoptosis of lipopolysaccharides-induced alveolar epithelial cells by targeting FOXO3 and suppressing the activation of NAPDH/ROS. Biochem Biophys Res Commun 2020; 533:723-731. [PMID: 32993961 DOI: 10.1016/j.bbrc.2020.07.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is multiple inflammatory injury lung disease. MiR-27a-3p alleviates lung injury, whether miR-27a-3p could affect the lung inflammation is not clear. Therefore, we established the lipopolysaccharides (LPS)-induced alveolar epithelial cell model to simulate ARDS inflammation in vitro to investigate the effect of miR-27a-3p in ARDS. METHODS After LPS-induced alveolar epithelial cell model was established and FOXO3 was proved to be targeted by miR-27a-3p, the miR-27a-3p mimic, inhibitor, or FOXO3-overexpression plasmids were transfected into the cells. The effects of miR-27a-3p and FOXO3 on cell viability and apoptosis were then evaluated. The levels of apoptosis-/inflammation-related factors, miR-27a-3p, and FOXO3 were further analyzed. Also, the activities of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NAPDH) in cells were examined. RESULTS MiR-27a-3p was down-regulated in LPS-induced alveolar epithelial cells. The decreased-cell viability of the LPS-induced cells was increased by miR-27a-3p mimic while inhibited by FOXO3. The enhanced-apoptosis, and up-regulated Bax and C caspase-3 were reduced by miR-27a-3p mimic while inhibited by FOXO3; the down-regulated Bcl-2 of the LPS-induced cells was increased by miR-27a-3p mimic while inhibited by FOXO3. The up-regulated IL-6, IL-8, ROS, and NAPDH in the LPS-induced cells were reduced by miR-27a-3p mimic while inhibited by FOXO3. Besides, FOXO3 reversed the effect of miR-27a-3p mimic on the LPS-induced cells. CONCLUSION MiR-27a-3p targeted FOXO3 to mitigated inflammation and apoptosis of LPS-induced alveolar epithelial cells via suppressing NAPDH/ROS activation.
Collapse
Affiliation(s)
- Jian Shang
- Department of Anathesiology, People's Hospital of Anji, China
| | - Lei Wang
- Department of Anathesiology,Gansu Provincial Maternity and Child Care Hospital, China
| | - Lili Tan
- Department of Anathesiology,Gansu Provincial Maternity and Child Care Hospital, China
| | - Ren Pan
- Department of Anesthesiology, Zhejiang Hospital, China
| | - Dan Wu
- Department of Anesthesiology, Zhejiang Hospital, China
| | - Yanfei Xia
- Department of Anesthesiology, Zhejiang Hospital, China.
| | - Peng Xu
- Department of Anesthesiology, Zhejiang Hospital, China.
| |
Collapse
|
23
|
Gu F, Zhang J, Yan L, Li D. CircHIPK3/miR-381-3p axis modulates proliferation, migration, and glycolysis of lung cancer cells by regulating the AKT/mTOR signaling pathway. Open Life Sci 2020; 15:683-695. [PMID: 33817257 PMCID: PMC7747506 DOI: 10.1515/biol-2020-0070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is a lethal malignancy. Plenty of circular RNAs (circRNAs) have been identified to be the vital regulators in lung cancer development. Here, we intended to clarify the functional role of circRNA HIPK3 (circHIPK3, also called hsa_circ_0021593) and its underlying mechanism of action. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was employed to evaluate the levels of circHIPK3 and miR-381-3p. Cell viability and apoptosis rate were monitored by Cell Counting Kit-8 assay and flow cytometry, respectively. Cell migration was estimated through the Transwell assay. To assess glycolysis, commercial kits were utilized to measure the levels of glucose and lactate and the enzyme activity of hexokinase-2 (HK2). Expression of related proteins was detected via western blot analysis. The target connection between circHIPK3 and miR-381-3p was validated by dual-luciferase reporter, RIP, and pull-down assays. The role of circHIPK3 in vivo was determined via the xenograft assay. CircHIPK3 was upregulated, while miR-381-3p was downregulated in lung cancer tissues and cells. And circHIPK3 deficiency inhibited lung cancer progression by lowering cell proliferation, migration, glycolysis, and promoting apoptosis of lung cancer cells in vitro. MiR-381-3p was a target of circHIPK3, and miR-381-3p interference alleviated circHIPK3 knockdown-induced lung cancer progression inhibition. CircHIPK3 could activate the protein kinase B/mammalian target of rapamycin (AKT/mTOR) signaling pathway. Moreover, circHIPK3 knockdown suppressed tumor growth in vivo by inactivating the AKT/mTOR signaling pathway. In conclusion, the silencing of circHIPK3 inhibited lung cancer progression, at least in part, by sponging miR-381-3p and inactivating the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Feng Gu
- Department of Aspiration Oncology, Gansu Provincial Tumor Hospital, Lanzhou, Gansu, China
| | - Junhan Zhang
- Department of Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lin Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Dong Li
- Department of Thoracic Surgery, Gansu Provincial Tumor Hospital, No. 2 Xiaoxihu East Street, Qilihe District, Lanzhou, Gansu, China
| |
Collapse
|
24
|
Salvia miltiorrhiza Injection Alleviates LPS-Induced Acute Lung Injury by Adjusting the Balance of MMPs/TIMPs Ratio. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9617081. [PMID: 32765635 PMCID: PMC7387992 DOI: 10.1155/2020/9617081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
Abstract
Salvia miltiorrhiza injection (SMI) is a classical traditional Chinese medicine, which plays an active role in the treatment of many diseases such as promoting blood circulation, removing blood stasis, reducing inflammatory reaction, and improving acute lung injury (ALI). Previous studies have shown that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are involved in the pathophysiological process of ALI. However, the relationship between SMI and MMPs/TIMPs remains unclear. In this study, Wistar rats were randomly divided into control group (NC), Salvia miltiorrhiza group (SM), lipopolysaccharide group (LPS), and Salvia miltiorrhiza treatment group (Tsm). The four groups were subdivided into four time points (2, 6, 12, and 24 hours), and specimens were collected after animal sacrifice at each time point. Serum TNF-α and IL-6 levels were detected by ELISA. The degree of lung injury was determined by lung tissue hematoxylin-eosin staining, lung wet/dry weight (W/D) ratio, and lung permeability index. The changes in lung MMPs/TIMPs protein and mRNA were detected by Western blot and real-time quantitative PCR. The results showed that rats injected with LPS experience acute lung injury, and the ratio of MMPs/TIMPs in lung tissues increased gradually with time. In the Tsm group, the ratio of MMPs/TIMPs decreased gradually, and likewise, the balance was gradually restored, while indicators related to lung injury were gradually declined. These data suggest that SMI alleviates LPS-induced acute lung injury; this protective effect may be related to regulation of the balance of MMPs/TIMPs ratio.
Collapse
|
25
|
Zheng Q, Wang YC, Liu QX, Dong XJ, Xie ZX, Liu XH, Gao W, Bai XJ, Li ZF. FK866 attenuates sepsis-induced acute lung injury through c-jun-N-terminal kinase (JNK)-dependent autophagy. Life Sci 2020; 250:117551. [PMID: 32179075 DOI: 10.1016/j.lfs.2020.117551] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
Abstract
AIMS Increasing evidence indicates that FK866, a specific noncompetitive nicotinamide phosphoribosyl transferase inhibitor, exhibits a protective effect on acute lung injury (ALI). Autophagy plays a pivotal role in sepsis-induced ALI. However, the contribution of autophagy and the underlying mechanism by which FK866-confered lung protection remains elusive. Herein, we aimed to study whether FK866 could alleviate sepsis-induced ALI via the JNK-dependent autophagy. MAIN METHODS Male C57BL/6 mice were subjected to cecal ligation and puncture (CLP) to establish the polymicrobial sepsis mice model, and treated with FK866 (10 mg/kg) at 24, 12 and 0.5 h before the CLP procedure. The lung protective effects were measured by lung histopathology, tissue edema, vascular leakage, inflammation infiltration, autophagy-related protein expression and JNK activity. A549 cells were stimulated with LPS (1000 ng/ml) to generate the ALI cell model, and pretreated with FK866 or SP600125 for 30 min to measure the autophagy-related protein expression and JNK activity. KEY FINDINGS Our results demonstrated that FK866 reduced lung injury score, tissue edema, vascular leakage, and inflammatory infiltration, and upregulated autophagy. The protective effect of autophagy conferred by FK866 on ALI was further clarified by using 3-methyladenine (3MA) and rapamycin. Additionally, the activity of JNK was suppressed by FK866, and inhibition of JNK promoted autophagy and showed a benefit effect. SIGNIFICANCE Our study indicates that FK866 protects against sepsis-induced ALI by induction of JNK-dependent autophagy. This may provide new insights into the functional mechanism of NAMPT inhibition in sepsis-induced ALI.
Collapse
Affiliation(s)
- Qiang Zheng
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Yu-Chang Wang
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Qin-Xin Liu
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Xi-Jie Dong
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Zhen-Xing Xie
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Xing-Hua Liu
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Wei Gao
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Xiang-Jun Bai
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Zhan-Fei Li
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China.
| |
Collapse
|