1
|
Niu M, Yi W, Dong Z, Li X, Dong X, Yu L, Han Y, Zhang O, Sheng Z, An J, Li H, Sun Y. Effective inhibition of dengue virus replication using 3'UTR-targeted Vivo-Morpholinos. Front Immunol 2024; 15:1491230. [PMID: 39676860 PMCID: PMC11638040 DOI: 10.3389/fimmu.2024.1491230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Due to the impact of antibody-dependent enhancement and viral variation, effective vaccines or antiviral therapies remain lacking for the dengue virus (DENV). Nucleic acid drugs, particularly Vivo-Morpholinos (MOs), have emerged as a promising avenue for antiviral treatment due to their programmability and precise targeting, as well as their safety and stability. Method In this study, we designed and developed 10 morpho-modified (octa-guanidine dendrimer) vivo-MO molecules that target each coding gene of DENV. Subsequently, we assessed the inhibitory impact of vivo-MOs on dengue viral RNA load utilizing qRT-PCR. Furthermore, we examined the inhibitory effect on the live virus through a plaque assay and the TCID50 assay. Results We found that the vivo-3'UTR molecule targeting the 3' untranslated region of the dengue virus exhibited the highest inhibitory rate against viral load. The vivo-3'UTR demonstrated 99% inhibition of dengue virus RNA and the inhibition of up to 98% of the live virus. Additionally, the targeted sequence was conserved among all four DENV serotypes, and treatment with 10 μM of vivo-3'UTR resulted in a reduction of viral titers for all four DENV serotypes by over 99.99%. Additionally, we revealed that pre-treatment with vivo-3'UTR had a notable preventive effect against viral infection. Conclusion This study screened an effective vivo-MO target drug for the treatment of dengue virus infection, demonstrating low toxicity in mammalian cell lines, and proposed a novel preventive antiviral approach.
Collapse
Affiliation(s)
- Mengwei Niu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Wenyanbo Yi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Zhuofan Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Xiaofeng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Lifang Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Yao Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Oujia Zhang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ziyang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Asadbeigi A, Bakhtiarizadeh MR, Saffari M, Modarressi MH, Sadri N, Kafi ZZ, Fazilaty H, Ghalyanchilangeroudi A, Esmaeili H. Protection of animals against devastating RNA viruses using CRISPR-Cas13s. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102235. [PMID: 39021763 PMCID: PMC11253668 DOI: 10.1016/j.omtn.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
The intrinsic nature of CRISPR-Cas in conferring immunity to bacteria and archaea has been repurposed to combat pathogenic agents in mammalian and plant cells. In this regard, CRISPR-Cas13 systems have proved their remarkable potential for single-strand RNA viruses targeting. Here, different types of Cas13 orthologs were applied to knockdown foot-and-mouth disease virus (FMDV), a highly contagious disease of a wide variety of species with genetically diverse strains and is widely geographically distributed. Using programmable CRISPR RNAs capable of targeting conserved regions of the viral genome, all Cas13s from CRISPR system type VI (subtype A/B/D) could comprehensively target and repress different serotypes of FMDV virus. This approach has the potential to destroy all strains of a virus as targets the ultra-conserved regions of genome. We experimentally compared the silencing efficiency of CRISPR and RNAi by designing the most effective short hairpin RNAs according to our developed scoring system and observed comparable results. This study showed successful usage of various Cas13 enzymes for suppression of FMDV, which provides a flexible strategy to battle with other animal infectious RNA viruses, an underdeveloped field in the biotechnology scope.
Collapse
Affiliation(s)
- Adnan Asadbeigi
- Cancer Institute, Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417613151, Iran
| | | | - Mojtaba Saffari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417613151, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417613151, Iran
| | - Naser Sadri
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Zahra Ziafati Kafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Hossein Esmaeili
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| |
Collapse
|
3
|
Basu M, Zurla C, Auroni TT, Vanover D, Chaves LCS, Sadhwani H, Pathak H, Basu R, Beyersdorf JP, Amuda OO, Elsharkawy A, Mosur V, Arthur RA, Claussen H, Sasser LE, Wroe JA, Peck HE, Kumar M, Brinton MA, Santangelo PJ. mRNA-encoded Cas13 can be used to treat dengue infections in mice. Nat Microbiol 2024; 9:2160-2172. [PMID: 38839984 DOI: 10.1038/s41564-024-01726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Dengue is a major global health threat, and there are no approved antiviral agents. Prior research using Cas13 only demonstrated dengue mitigation in vitro. Here we demonstrate that systemic delivery of mRNA-encoded Cas13a and guide RNAs formulated in lipid nanoparticles can be used to treat dengue virus (DENV) 2 and 3 in mice. First, we identified guides against DENV 2 and 3 that demonstrated in vitro efficacy. Next, we confirmed that Cas13 enzymatic activity is necessary for DENV 2 or DENV 3 mitigation in vitro. Last, we show that a single dose of lipid-nanoparticle-formulated mRNA-encoded Cas13a and guide RNA, administered 1 day post-infection, promotes survival of all infected animals and serum viral titre decreases on days 2 and 3 post-infection after lethal challenge in mice. Off-target analysis in mice using RNA sequencing showed no collateral cleavage. Overall, these data demonstrate the potential of mRNA-encoded Cas13 as a pan-DENV drug.
Collapse
Affiliation(s)
- Mausumi Basu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Lorena C S Chaves
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Heena Sadhwani
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Heather Pathak
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Rahul Basu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Jared P Beyersdorf
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Amany Elsharkawy
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Varun Mosur
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Loren E Sasser
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Jay A Wroe
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Chaves LCS, Orr-Burks N, Vanover D, Mosur VV, Hosking SR, Kumar E. K. P, Jeong H, Jung Y, Assumpção JAF, Peck HE, Nelson SL, Burke KN, Garrison MA, Arthur RA, Claussen H, Heaton NS, Lafontaine ER, Hogan RJ, Zurla C, Santangelo PJ. mRNA-encoded Cas13 treatment of Influenza via site-specific degradation of genomic RNA. PLoS Pathog 2024; 20:e1012345. [PMID: 38968329 PMCID: PMC11253931 DOI: 10.1371/journal.ppat.1012345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/17/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024] Open
Abstract
The CRISPR-Cas13 system has been proposed as an alternative treatment of viral infections. However, for this approach to be adopted as an antiviral, it must be optimized until levels of efficacy rival or exceed the performance of conventional approaches. To take steps toward this goal, we evaluated the influenza viral RNA degradation patterns resulting from the binding and enzymatic activity of mRNA-encoded LbuCas13a and two crRNAs from a prior study, targeting PB2 genomic and messenger RNA. We found that the genome targeting guide has the potential for significantly higher potency than originally detected, because degradation of the genomic RNA is not uniform across the PB2 segment, but it is augmented in proximity to the Cas13 binding site. The PB2 genome targeting guide exhibited high levels (>1 log) of RNA degradation when delivered 24 hours post-infection in vitro and maintained that level of degradation over time, with increasing multiplicity of infection (MOI), and across modern influenza H1N1 and H3N2 strains. Chemical modifications to guides with potent LbuCas13a function, resulted in nebulizer delivered efficacy (>1-2 log reduction in viral titer) in a hamster model of influenza (Influenza A/H1N1/California/04/09) infection given prophylactically or as a treatment (post-infection). Maximum efficacy was achieved with two doses, when administered both pre- and post-infection. This work provides evidence that mRNA-encoded Cas13a can effectively mitigate Influenza A infections opening the door to the development of a programmable approach to treating multiple respiratory infections.
Collapse
Affiliation(s)
- Lorena C. S. Chaves
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, Georgia, United States of America
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Varun V. Mosur
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Sarah R. Hosking
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, Georgia, United States of America
| | - Pramod Kumar E. K.
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hyeyoon Jeong
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Younghun Jung
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - José A. F. Assumpção
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hannah E. Peck
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Sarah L. Nelson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - McKinzie A. Garrison
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, United States of America
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, United States of America
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Eric R. Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Hogan
- Department of Infectious Diseases, College of Veterinary Medicine University of Georgia, Athens, Georgia, United States of America
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Hassanien RT, Thieulent CJ, Carossino M, Li G, Balasuriya UBR. Modulation of Equid Herpesvirus-1 Replication Dynamics In Vitro Using CRISPR/Cas9-Assisted Genome Editing. Viruses 2024; 16:409. [PMID: 38543774 PMCID: PMC10975850 DOI: 10.3390/v16030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 05/23/2024] Open
Abstract
(1) Background: equid alphaherpesvirus-1 (EHV-1) is a highly contagious viral pathogen prevalent in most horse populations worldwide. Genome-editing technologies such as CRISPR/Cas9 have become powerful tools for precise RNA-guided genome modifications; (2) Methods: we designed single guide RNAs (sgRNA) to target three essential (ORF30, ORF31, and ORF7) and one non-essential (ORF74) EHV-1 genes and determine their effect on viral replication dynamics in vitro; (3) Results: we demonstrated that sgRNAs targeting essential lytic genes reduced EHV-1 replication, whereas those targeting ORF74 had a negligible effect. The sgRNAs targeting ORF30 showed the strongest effect on the suppression of EHV-1 replication, with a reduction in viral genomic copy numbers and infectious progeny virus output. Next-generation sequencing identified variants with deletions in the specific cleavage site of selective sgRNAs. Moreover, we evaluated the combination between different sgRNAs and found that the dual combination of sgRNAs targeting ORF30 and ORF7 significantly suppressed viral replication to lower levels compared to the use of a single sgRNA, suggesting a synergic effect; (4) Conclusion: data demonstrate that sgRNA-guided CRISPR/Cas9 can be used to inhibit EHV-1 replication in vitro, indicating that this programmable technique can be used to develop a novel, safe, and efficacious therapeutic and prophylactic approach against EHV-1.
Collapse
Affiliation(s)
- Rabab T. Hassanien
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Virology Department, Animal Health Research Institute, Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ganwu Li
- Department of Veterinary Diagnostics and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (R.T.H.); (C.J.T.); (M.C.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Zhou XM, Shen ZY, Wu YX, Lin S, Wang MD, Xu T, Wang LL, Sadiq S, Jiao XH, Wu P. Development of a rapid visual detection technology for BmNPV based on CRISPR/Cas13a system. J Invertebr Pathol 2024; 203:108072. [PMID: 38341022 DOI: 10.1016/j.jip.2024.108072] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Pathogenic microorganism of silkworm are important factors that threaten the high-quality development of sericulture. Among them, Bombyx mori nucleopolyhedrovirus (BmNPV) caused diseases often lead to frequent outbreaks and high mortality, resulting in huge losses to sericultural industry. Current molecular detection methods for BmNPV require expensive equipment and sikilled technical personnel. As a result, the most commonly detection method for silkworm egg production enterprises involves observing the presence of polyhedra under a microscope. However, this method has low accuracy and sensitivity. There is an urgent need to develop a new detection technology with high sensitivity, high specificity, and applicability for silkworm farms, silkworm egg production enterprises and quarantine departments. In this study, we successfully established the CRISPR/Cas13a BmNPV visualized detection technology by combining Recombinase Polymerase Amplification (RPA) technology and CRISPR/Cas13a system. This technology is based on microplate lateral, flow test strips and portable fluorescence detector. The detection sensitivity can reach up to 1 copies/μL for positive standard plasmid and 1 fg/μL for BmNPV genome in 30-45 min, demonstrating high sensitivity. By detecting silkworm tissues infected with different pathogens, we determined that CRISPR/Cas13a detection technology has good specificity. In summary, the newly established nucleic acid detection technology for BmNPV is characterized by high sensitivity, high specificity, low cost and convenience for visualization. It can be applied in field detection and silkworm egg quality monitory system.
Collapse
Affiliation(s)
- Xue-Min Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhen-Yu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yi-Xiang Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Meng-Dong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Lu-Lai Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xin-Hao Jiao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China.
| |
Collapse
|
7
|
Zahedipour F, Zahedipour F, Zamani P, Jaafari MR, Sahebkar A. Harnessing CRISPR technology for viral therapeutics and vaccines: from preclinical studies to clinical applications. Virus Res 2024; 341:199314. [PMID: 38211734 PMCID: PMC10825633 DOI: 10.1016/j.virusres.2024.199314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The CRISPR/Cas system, identified as a type of bacterial adaptive immune system, have attracted significant attention due to its remarkable ability to precisely detect and eliminate foreign genetic material and nucleic acids. Expanding upon these inherent capabilities, recent investigations have unveiled the potential of reprogrammed CRISPR/Cas 9, 12, and 13 systems for treating viral infections associated with human diseases, specifically targeting DNA and RNA viruses, respectively. Of particular interest is the RNA virus responsible for the recent global outbreak of coronavirus disease 2019 (COVID-19), which presents a substantial public health risk, coupled with limited efficacy of current prophylactic and therapeutic techniques. In this regard, the utilization of CRISPR/Cas technology offers a promising gene editing approach to overcome the limitations of conventional methods in managing viral infections. This comprehensive review provides an overview of the latest CRISPR/Cas-based therapeutic and vaccine strategies employed to combat human viral infections. Additionally, we discuss significant challenges and offer insights into the future prospects of this cutting-edge gene editing technology.
Collapse
Affiliation(s)
- Farzaneh Zahedipour
- Microbiology Department, Medical Sciences Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Fatemeh Zahedipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Koonin EV, Gootenberg JS, Abudayyeh OO. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry 2023; 62:3465-3487. [PMID: 37192099 PMCID: PMC10734277 DOI: 10.1021/acs.biochem.3c00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Indexed: 05/18/2023]
Abstract
CRISPR systems mediate adaptive immunity in bacteria and archaea through diverse effector mechanisms and have been repurposed for versatile applications in therapeutics and diagnostics thanks to their facile reprogramming with RNA guides. RNA-guided CRISPR-Cas targeting and interference are mediated by effectors that are either components of multisubunit complexes in class 1 systems or multidomain single-effector proteins in class 2. The compact class 2 CRISPR systems have been broadly adopted for multiple applications, especially genome editing, leading to a transformation of the molecular biology and biotechnology toolkit. The diversity of class 2 effector enzymes, initially limited to the Cas9 nuclease, was substantially expanded via computational genome and metagenome mining to include numerous variants of Cas12 and Cas13, providing substrates for the development of versatile, orthogonal molecular tools. Characterization of these diverse CRISPR effectors uncovered many new features, including distinct protospacer adjacent motifs (PAMs) that expand the targeting space, improved editing specificity, RNA rather than DNA targeting, smaller crRNAs, staggered and blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage, etc. These unique properties enabled multiple applications, such as harnessing the promiscuous RNase activity of the type VI effector, Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systems have been adopted for genome editing, as well, despite the challenge of expressing and delivering the multiprotein class 1 effectors. The rich diversity of CRISPR enzymes led to rapid maturation of the genome editing toolbox, with capabilities such as gene knockout, base editing, prime editing, gene insertion, DNA imaging, epigenetic modulation, transcriptional modulation, and RNA editing. Combined with rational design and engineering of the effector proteins and associated RNAs, the natural diversity of CRISPR and related bacterial RNA-guided systems provides a vast resource for expanding the repertoire of tools for molecular biology and biotechnology.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Jonathan S. Gootenberg
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Omar O. Abudayyeh
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Li H, Cao X, Chen R, Guang M, Xu M, Wu X, Yang R, Lei L, Zhang F. Rapid detection of grass carp reovirus type 1 using RPA-based test strips combined with CRISPR Cas13a system. Front Microbiol 2023; 14:1296038. [PMID: 38029146 PMCID: PMC10654748 DOI: 10.3389/fmicb.2023.1296038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Due to the existence of grass carp reovirus (GCRV), grass carp hemorrhagic disease occurs frequently, and its high pathogenicity and infectivity are great challenges to the aquaculture industry. As a highly pathogenic pathogen, the outbreak of hemorrhagic disease often causes tremendous economic losses. Therefore, it is important to rapidly and accurately detect GCRV on site to control timely. Methods In this study, recombinant enzyme amplification (RPA) combined with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a system was employed to establish a method to detect the vp7 gene of grass carp reovirus type 1. This method can be adopted for judging the results by collecting fluorescence signal, ultraviolet excitation visual fluorescence and test strip. Results Combined with the RPA amplification experiment, the detection limit of the RPA-CRISPR method can reach 7.2 × 101 copies/μL of vp7 gene per reaction, and the detection process can be completed within 1 h. In addition, this method had no cross-reaction with the other 11 common aquatic pathogens. Then, the performance of the RPA-CRISPR/Cas13a detection method was evaluated by comparing it with the real-time fluorescence quantitative PCR detection method of clinical samples. The results of RPA-CRISPR/Cas13a detection were shown to be in consistence with the results obtained from the real-time fluorescence quantitative PCR detection. The coincidence rate of this method with 26 GCRV clinical samples was 92.31%. Discussion In summary, this method has high sensitivity, specificity and on-site practicability for detecting GCRV type 1, and has great application potential in on-site GCRV monitoring.
Collapse
Affiliation(s)
- Huaming Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xinyue Cao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Ruige Chen
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Min Guang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Mengran Xu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiaomin Wu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Rongrong Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fuxian Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
Ramezannia Z, Shamekh A, Bannazadeh Baghi H. CRISPR-Cas system to discover host-virus interactions in Flaviviridae. Virol J 2023; 20:247. [PMID: 37891676 PMCID: PMC10605781 DOI: 10.1186/s12985-023-02216-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
The Flaviviridae virus family members cause severe human diseases and are responsible for considerable mortality and morbidity worldwide. Therefore, researchers have conducted genetic screens to enhance insight into viral dependency and develop potential anti-viral strategies to treat and prevent these infections. The host factors identified by the clustered regularly interspaced short palindromic repeats (CRISPR) system can be potential targets for drug development. Meanwhile, CRISPR technology can be efficiently used to treat viral diseases as it targets both DNA and RNA. This paper discusses the host factors related to the life cycle of viruses of this family that were recently discovered using the CRISPR system. It also explores the role of immune factors and recent advances in gene editing in treating flavivirus-related diseases. The ever-increasing advancements of this technology may promise new therapeutic approaches with unique capabilities, surpassing the traditional methods of drug production and treatment.
Collapse
Affiliation(s)
- Zahra Ramezannia
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shamekh
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Mufti IU, Sufyan M, Shahid I, Alzahrani AR, Shahzad N, M Alanazi IM, Ibrahim IAA, Rehman S. Computer-aided identification of dengue virus NS2B/NS3 protease inhibitors: an integrated molecular modelling approach for screening of phytochemicals. J Biomol Struct Dyn 2023; 42:11052-11063. [PMID: 37747078 DOI: 10.1080/07391102.2023.2259496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Globally, dengue (DENV) fever has appeared as the most widespread vector-borne disease, affecting more than 100 million individuals annually. No approved anti-DENV therapy or preventive vaccine is available yet. DENV NS3 protein is associated with protease activity and is essential for viral replication process within the host cell. NS2B is linked with NS3 protein as a cofactor. Hence, NS3/NS2B is a potential druggable target for developing inhibitors against dengue virus. In the present study, a dataset of Beta vulgaris L.-based natural compounds was developed. Virtual ligand screening of 30 phytochemicals was carried out to find novel inhibitors against the NS2B/NS3 protein. Spatial affinity, drug-likeness, and binding behaviors of selected phytochemicals were analyzed. Post-simulation analysis, including Principal Component Analysis (PCA), MMGBSA, and Co-relation analysis, was also performed to provide deep insight for elucidating protein-ligand complexes. This computer-aided screening scrutinized four potent phytochemicals, including betavulgaroside II, vitexin xyloside, epicatechin, and isovitexin2-O-xyloside inhibitors exhibiting optimal binding with viral NS3/NS2B protein. Our study brings novel scaffolds against DENV NS2B/NS3 of serotype-2 to act as lead molecules for further biological optimization. In future, this study will prompt the exploration and development of adjuvant anti-DENV therapy based on natural compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Isra Umbreen Mufti
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Ibrahim Mufadhi M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
12
|
Mazloum A, Karagyaur M, Chernyshev R, van Schalkwyk A, Jun M, Qiang F, Sprygin A. Post-genomic era in agriculture and veterinary science: successful and proposed application of genetic targeting technologies. Front Vet Sci 2023; 10:1180621. [PMID: 37601766 PMCID: PMC10434572 DOI: 10.3389/fvets.2023.1180621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Gene editing tools have become an indispensable part of research into the fundamental aspects of cell biology. With a vast body of literature having been generated based on next generation sequencing technologies, keeping track of this ever-growing body of information remains challenging. This necessitates the translation of genomic data into tangible applications. In order to address this objective, the generated Next Generation Sequencing (NGS) data forms the basis for targeted genome editing strategies, employing known enzymes of various cellular machinery, in generating organisms with specifically selected phenotypes. This review focuses primarily on CRISPR/Cas9 technology in the context of its advantages over Zinc finger proteins (ZNF) and Transcription activator-like effector nucleases (TALEN) and meganucleases mutagenesis strategies, for use in agricultural and veterinary applications. This review will describe the application of CRISPR/Cas9 in creating modified organisms with custom-made properties, without the undesired non-targeted effects associated with virus vector vaccines and bioactive molecules produced in bacterial systems. Examples of the successful and unsuccessful applications of this technology to plants, animals and microorganisms are provided, as well as an in-depth look into possible future trends and applications in vaccine development, disease resistance and enhanced phenotypic traits will be discussed.
Collapse
Affiliation(s)
- Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | | | - Antoinette van Schalkwyk
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Ma Jun
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Fu Qiang
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | | |
Collapse
|
13
|
Wan X, Chen J, Wu Y, Chen Z, Liu Y, Li T, Sun J, Zhang T, Zhou F, Huang X, Li Y, Wang X, Sun X. Rapid and Sensitive Diagnosis of Leber Hereditary Optic Neuropathy Variants Using CRISPR/Cas12a Detection. J Mol Diagn 2023; 25:540-554. [PMID: 37517824 DOI: 10.1016/j.jmoldx.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/08/2022] [Accepted: 04/05/2023] [Indexed: 08/01/2023] Open
Abstract
Leber hereditary optic neuropathy (LHON) is the most common maternally inherited mitochondrial disease, with >90% of cases harboring one of three point variants (m.3460G>A, m.11778G>A, and m.14484T>C). Rapid and sensitive diagnosis of LHON variants is urgently needed for early diagnosis and timely treatment after onset, which is currently limited. Herein, we adapted the Cas12a-based DNA detection platform for LHON mitochondrial variant diagnosis. Single-strand guide CRISPR RNAs and enzymatic recombinase amplification primers were first screened, the CRISPR/Cas12a system was then optimized with restriction enzymes, and finally compared with Sanger sequencing and next-generation sequencing (NGS) in multicenter clinical samples. This approach can be completed within 30 minutes using only one drop of blood and could reach a sensitivity of 1% of heteroplasmy. Among the 182 multicenter clinical samples, the CRISPR/Cas12a detection system showed high consistency with Sanger sequencing and NGS in both specificity and sensitivity. Notably, a sample harboring a de novo 3.78% m.11778G>A variant detected by NGS, but not by Sanger sequencing, was successfully confirmed using the CRISPR/Cas12a assay, which proved the effectiveness of our method. Overall, our CRISPR/Cas12a detection system provides an alternative for rapid, convenient, and sensitive detection of LHON variants, exhibiting great potential for clinical practice.
Collapse
Affiliation(s)
- Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yidong Wu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Zhixuan Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tong Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Ting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rula Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
14
|
Keng CT, Yogarajah T, Lee RCH, Muhammad IBH, Chia BS, Vasandani SR, Lim DS, Guo K, Wong YH, Mok CK, Chu JJH, Chew WL. AAV-CRISPR-Cas13 eliminates human enterovirus and prevents death of infected mice. EBioMedicine 2023; 93:104682. [PMID: 37390772 PMCID: PMC10363442 DOI: 10.1016/j.ebiom.2023.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND RNA viruses account for many human diseases and pandemic events but are often not targetable by traditional therapeutics modalities. Here, we demonstrate that adeno-associated virus (AAV) -delivered CRISPR-Cas13 directly targets and eliminates the positive-strand EV-A71 RNA virus in cells and infected mice. METHODS We developed a Cas13gRNAtor bioinformatics pipeline to design CRISPR guide RNAs (gRNAs) that cleave conserved viral sequences across the virus phylogeny and developed an AAV-CRISPR-Cas13 therapeutics using in vitro viral plaque assay and in vivo EV-A71 lethally-infected mouse model. FINDINGS We show that treatment with a pool of AAV-CRISPR-Cas13-gRNAs designed using the bioinformatics pipeline effectively blocks viral replication and reduces viral titers in cells by >99.99%. We further demonstrate that AAV-CRISPR-Cas13-gRNAs prophylactically and therapeutically inhibited viral replication in infected mouse tissues and prevented death in a lethally challenged EV-A71-infected mouse model. INTERPRETATION Our results show that the bioinformatics pipeline designs efficient CRISPR-Cas13 gRNAs for direct viral RNA targeting to reduce viral loads. Additionally, this new antiviral AAV-CRISPR-Cas13 modality represents an effective direct-acting prophylactic and therapeutic agent against lethal RNA viral infections. FUNDING Agency for Science, Technology and Research (A∗STAR) Assured Research Budget, A∗STAR Central Research Fund UIBR SC18/21-1089UI, A∗STAR Industrial Alignment Fund Pre-Positioning (IAF-PP) grant H17/01/a0/012, MOE Tier 2 2017 (MOE2017-T2-1-078; MOE-T2EP30221-0005), and NUHSRO/2020/050/RO5+5/NUHS-COVID/4.
Collapse
Affiliation(s)
- Choong Tat Keng
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Thinesshwary Yogarajah
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Irfan Bin Hajis Muhammad
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Bing Shao Chia
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Suraj Rajan Vasandani
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Daryl Shern Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Ke Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore
| | - Yi Hao Wong
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Chee Keng Mok
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Justin Jang Hann Chu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos #06-05, 138673, Singapore; Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore.
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore 138672, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore.
| |
Collapse
|
15
|
Yu D, Han HJ, Yu J, Kim J, Lee GH, Yang JH, Song BM, Tark D, Choi BS, Kang SM, Heo WD. Pseudoknot-targeting Cas13b combats SARS-CoV-2 infection by suppressing viral replication. Mol Ther 2023; 31:1675-1687. [PMID: 36945774 PMCID: PMC10028249 DOI: 10.1016/j.ymthe.2023.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
CRISPR-Cas13-mediated viral genome targeting is a novel strategy for defending against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here, we generated mRNA-encoded Cas13b targeting the open reading frame 1b (ORF1b) region to effectively degrade the RNA-dependent RNA polymerase gene. Of the 12 designed CRISPR RNAs (crRNAs), those targeting the pseudoknot site upstream of ORF1b were found to be the most effective in suppressing SARS-CoV-2 propagation. Pseudoknot-targeting Cas13b reduced expression of the spike protein and attenuated viral replication by 99%. It also inhibited the replication of multiple SARS-CoV-2 variants, exhibiting broad potency. We validated the therapeutic efficacy of this system in SARS-CoV-2-infected hACE2 transgenic mice, demonstrating that crRNA treatment significantly reduced viral titers. Our findings suggest that the pseudoknot region is a strategic site for targeted genomic degradation of SARS-CoV-2. Hence, pseudoknot-targeting Cas13b could be a breakthrough therapy for overcoming infections by SARS-CoV-2 or other RNA viruses.
Collapse
Affiliation(s)
- Daseuli Yu
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hee-Jeong Han
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Jeonghye Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihye Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Gun-Hee Lee
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Ju-Hee Yang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Byeong-Min Song
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Byeong-Sun Choi
- Honam Regional Center for Disease Control and Prevention, RCDC, Korea Disease Control and Prevention Agency, Gwangju 61947, Republic of Korea
| | - Sang-Min Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea.
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
16
|
Yang L, Zhang Y, Yi W, Dong X, Niu M, Song Y, Han Y, Li H, Sun Y. A rapid and efficient platform for antiviral crRNA screening using CRISPR-Cas13a-based nucleic acid detection. Front Immunol 2023; 14:1116230. [PMID: 37228594 PMCID: PMC10203571 DOI: 10.3389/fimmu.2023.1116230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Rapid and high-throughput screening of antiviral clustered regularly interspaced short palindromic repeat (CRISPR) RNAs (crRNAs) is urgently required for the CRISPR-Cas13a antiviral system. Based on the same principle, we established an efficient screening platform for antiviral crRNA through CRISPR-Cas13a nucleic acid detection. Method In this study, crRNAs targeting PA, PB1, NP, and PB2 of the influenza A virus (H1N1) were screened using CRISPR-Cas13a nucleic acid detection, and their antiviral effects were confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The RNA secondary structures were predicted by bioinformatics methods. Results The results showed that crRNAs screened by CRISPR-Cas13a nucleic acid detection could effectively inhibit viral RNA in mammalian cells. Besides, we found that this platform for antiviral crRNA screening was more accurate than RNA secondary structure prediction. In addition, we validated the feasibility of the platform by screening crRNAs targeting NS of the influenza A virus (H1N1). Discussion This study provides a new approach for screening antiviral crRNAs and contributes to the rapid advancement of the CRISPR-Cas13a antiviral system.
Collapse
Affiliation(s)
- Lan Yang
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Youcui Zhang
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China
| | - Wenyanbo Yi
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xue Dong
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mengwei Niu
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yingjie Song
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yao Han
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yansong Sun
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
17
|
Kumaran A, Jude Serpes N, Gupta T, James A, Sharma A, Kumar D, Nagraik R, Kumar V, Pandey S. Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application. BIOSENSORS 2023; 13:202. [PMID: 36831968 PMCID: PMC9953454 DOI: 10.3390/bios13020202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 05/25/2023]
Abstract
With the move of molecular tests from diagnostic labs to on-site testing becoming more common, there is a sudden rise in demand for nucleic acid-based diagnostic tools that are selective, sensitive, flexible to terrain changes, and cost-effective to assist in point-of-care systems for large-scale screening and to be used in remote locations in cases of outbreaks and pandemics. CRISPR-based biosensors comprise a promising new approach to nucleic acid detection, which uses Cas effector proteins (Cas9, Cas12, and Cas13) as extremely specialized identification components that may be used in conjunction with a variety of readout approaches (such as fluorescence, colorimetry, potentiometry, lateral flow assay, etc.) for onsite analysis. In this review, we cover some technical aspects of integrating the CRISPR Cas system with traditional biosensing readout methods and amplification technologies such as polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA) and continue to elaborate on the prospects of the developed biosensor in the detection of some major viral and bacterial diseases. Within the scope of this article, we also discuss the recent COVID pandemic and the numerous CRISPR biosensors that have undergone development since its advent. Finally, we discuss some challenges and future prospects of CRISPR Cas systems in point-of-care testing.
Collapse
Affiliation(s)
- Akash Kumaran
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Nathan Jude Serpes
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Tisha Gupta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Vaneet Kumar
- Department of Natural Science, CT University, Ludhiana 142024, Punjab, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
18
|
Zhou Q, Chen Y, Wang R, Jia F, He F, Yuan F. Advances of CRISPR-Cas13 system in COVID-19 diagnosis and treatment. Genes Dis 2022; 10:S2352-3042(22)00317-8. [PMID: 36591005 PMCID: PMC9793954 DOI: 10.1016/j.gendis.2022.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/28/2022] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in over 570 million infections and 6 million deaths worldwide. Early detection and quarantine are essential to arrest the spread of the highly contagious COVID-19. High-risk groups, such as older adults and individuals with comorbidities, can present severe symptoms, including pyrexia, pertussis, and acute respiratory distress syndrome, on SARS-CoV-2 infection that can prove fatal, demonstrating a clear need for high-throughput and sensitive platforms to detect and eliminate SARS-CoV-2. CRISPR-Cas13, an emerging CRISPR system targeting RNA with high specificity and efficiency, has recently drawn much attention for COVID-19 diagnosis and treatment. Here, we summarized the current research progress on CRISPR-Cas13 in COVID-19 diagnosis and treatment and highlight the challenges and future research directions of CRISPR-Cas13 for effectively counteracting COVID-19.
Collapse
Affiliation(s)
| | | | - Ruolei Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fengjing Jia
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
19
|
Zhao L, Qiu M, Li X, Yang J, Li J. CRISPR-Cas13a system: A novel tool for molecular diagnostics. Front Microbiol 2022; 13:1060947. [PMID: 36569102 PMCID: PMC9772028 DOI: 10.3389/fmicb.2022.1060947] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a natural adaptive immune system of prokaryotes. The CRISPR-Cas system is currently divided into two classes and six types: types I, III, and IV in class 1 systems and types II, V, and VI in class 2 systems. Among the CRISPR-Cas type VI systems, the CRISPR/Cas13a system has been the most widely characterized for its application in molecular diagnostics, gene therapy, gene editing, and RNA imaging. Moreover, because of the trans-cleavage activity of Cas13a and the high specificity of its CRISPR RNA, the CRISPR/Cas13a system has enormous potential in the field of molecular diagnostics. Herein, we summarize the applications of the CRISPR/Cas13a system in the detection of pathogens, including viruses, bacteria, parasites, chlamydia, and fungus; biomarkers, such as microRNAs, lncRNAs, and circRNAs; and some non-nucleic acid targets, including proteins, ions, and methyl groups. Meanwhile, we highlight the working principles of some novel Cas13a-based detection methods, including the Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) and its improved versions, Cas13a-based nucleic acid amplification-free biosensors, and Cas13a-based biosensors for non-nucleic acid target detection. Finally, we focus on some issues that need to be solved and the development prospects of the CRISPR/Cas13a system.
Collapse
Affiliation(s)
- Lixin Zhao
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China,Institute of Immunology, PLA, Army Medical University, Chongqing, China
| | - Minyue Qiu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China,Institute of Immunology, PLA, Army Medical University, Chongqing, China
| | - Xiaojia Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Juanzhen Yang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China,Institute of Immunology, PLA, Army Medical University, Chongqing, China,*Correspondence: Jintao Li,
| |
Collapse
|
20
|
Wu S, Tian P, Tan T. CRISPR-Cas13 technology portfolio and alliance with other genetic tools. Biotechnol Adv 2022; 61:108047. [DOI: 10.1016/j.biotechadv.2022.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
|
21
|
Bagchi R, Tinker-Kulberg R, Salehin M, Supakar T, Chamberlain S, Ligaba-Osena A, Josephs EA. Polyvalent guide RNAs for CRISPR antivirals. iScience 2022; 25:105333. [PMID: 36325075 PMCID: PMC9618770 DOI: 10.1016/j.isci.2022.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
CRISPR effector Cas13 recognizes and degrades RNA molecules that are complementary to its guide RNA (gRNA) and possesses potential as an antiviral biotechnology because it can degrade viral mRNA and RNA genomes. Because multiplexed targeting is a critical strategy to improve viral suppression, we developed a strategy to design of gRNAs where individual gRNAs have maximized activity at multiple viral targets, simultaneously, by exploiting the molecular biophysics of promiscuous target recognition by Cas13. These "polyvalent" gRNA sequences ("pgRNAs") provide superior antiviral elimination across tissue/organ scales in a higher organism (Nicotiana benthamiana) compared to conventionally-designed gRNAs-reducing detectable viral RNA by >30-fold, despite lacking perfect complementarity with either of their targets and, when multiplexed, reducing viral RNA by >99.5%. Pairs of pgRNA-targetable sequences are abundant in the genomes of RNA viruses, and this work highlights the need for specific approaches to the challenges of targeting viruses in eukaryotes using CRISPR.
Collapse
Affiliation(s)
- Rammyani Bagchi
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Rachel Tinker-Kulberg
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Mohammad Salehin
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Tinku Supakar
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Sydney Chamberlain
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Ayalew Ligaba-Osena
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Eric A. Josephs
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
22
|
Zhang X, Shi Y, Chen G, Wu D, Wu Y, Li G. CRISPR/Cas Systems-Inspired Nano/Biosensors for Detecting Infectious Viruses and Pathogenic Bacteria. SMALL METHODS 2022; 6:e2200794. [PMID: 36114150 DOI: 10.1002/smtd.202200794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Infectious pathogens cause severe human illnesses and great deaths per year worldwide. Rapid, sensitive, and accurate detection of pathogens is of great importance for preventing infectious diseases caused by pathogens and optimizing medical healthcare systems. Inspired by a microbial defense system (i.e., CRISPR/ CRISPR-associated proteins (Cas) system, an adaptive immune system for protecting microorganisms from being attacked by invading species), a great many new biosensors have been successfully developed and widely applied in the detection of infectious viruses and pathogenic bacteria. Moreover, advanced nanotechnologies have also been integrated into these biosensors to improve their detection stability, sensitivity, and accuracy. In this review, the recent advance in CRISPR/Cas systems-based nano/biosensors and their applications in the detection of infectious viruses and pathogenic bacteria are comprehensively reviewed. First of all, the categories and working principles of CRISPR/Cas systems for establishing the nano/biosensors are simply introduced. Then, the design and construction of CRISPR/Cas systems-based nano/biosensors are comprehensively discussed. In the end, attentions are focused on the applications of CRISPR/Cas systems-based nano/biosensors in the detection of infectious viruses and pathogenic bacteria. Impressively, the remaining opportunities and challenges for the further design and development of CRISPR/Cas system-based nano/biosensors and their promising applications are proposed.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, BT95DL, UK
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
23
|
Yang C, Xie W, Zhang H, Xie W, Tian T, Qin Z. Recent two-year advances in anti-dengue small-molecule inhibitors. Eur J Med Chem 2022; 243:114753. [PMID: 36167010 DOI: 10.1016/j.ejmech.2022.114753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
Dengue is an acute tropical infectious disease transmitted by mosquitoes, which has posed a major challenge to global public health. Unfortunately, there is a lack of clinically proven dengue-specific drugs for its prevention and treatment. As the pathogenesis of dengue has not been fully elucidated, the development of specific drugs is seriously hindered. This article briefly describes the pathogenesis of dengue fever, the molecular characteristics, and epidemiology of dengue virus, and focuses on the potential small-molecule inhibitors of dengue virus, including on-target and multi-targeted inhibitors, which have been reported in the past two years.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macao University of Science and Technology, Macao, 999078, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, 570206, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China
| | - Wenjian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, PR China
| | - Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| |
Collapse
|
24
|
Bhujbal S, Bhujbal R, Giram P. An overview: CRISPR/Cas-based gene editing for viral vaccine development. Expert Rev Vaccines 2022; 21:1581-1593. [PMID: 35959589 DOI: 10.1080/14760584.2022.2112952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Gene-editing technology revolutionized vaccine manufacturing and offers a variety of benefits over traditional vaccinations, such as improved immune response, higher production rate, stability, precise immunogenic activity, and fewer adverse effects. The more recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/associated protein 9 (Cas9) system has become the most widely utilized technology based on its efficiency, utility, flexibility, versatility, ease of use, and cheaper compared to other gene-editing techniques. Considering its wider scope for genomic modification, CRISPR/Cas9-based technology's potential is explored for vaccine development. AREAS COVERED : In this review, we will address the recent advances in the CRISPR/Cas system for the development of vaccines and viral vectors for delivery. In addition, we will discuss strategies for the development of the vaccine, as well as the limitations and future prospects of the CRISPR/Cas system. EXPERT OPINION : Human and animal viruses have been exposed to antiviral CRISPR/Cas9-based engineering to prevent infection, which uses knockout, knock-in, gene activation/deactivation, RNA targeting, and editing cell lines strategies for gene editing of viruses. Because of that CRISPR/Cas system is used to boost the vaccine production yield by removing unwanted genes that cause disease or are required for viral infection.
Collapse
Affiliation(s)
- Santosh Bhujbal
- Department of Pharmacognosy, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Sant. Tukaram Nagar Pimpri, Pune, Maharashtra (India) -411018
| | - Rushikesh Bhujbal
- Department of Quality Assurance Technique, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Sant. Tukaram Nagar Pimpri, Pune, Maharashtra (India) -411018
| | - Prabhanjan Giram
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Sant. Tukaram Nagar Pimpri, Pune, Maharashtra (India) -411018.,Department of Pharmaceutics, Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA- 14260-1660
| |
Collapse
|
25
|
Wang Y, Huang C, Zhao W. Recent advances of the biological and biomedical applications of CRISPR/Cas systems. Mol Biol Rep 2022; 49:7087-7100. [PMID: 35705772 PMCID: PMC9199458 DOI: 10.1007/s11033-022-07519-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease (Cas) system, referred to as CRISPR/Cas system, has attracted significant interest in scientific community due to its great potential in translating into versatile therapeutic tools in biomedical field. For instance, a myriad of studies has demonstrated that the CRISPR/Cas system is capable of detecting various types of viruses, killing antibiotic-resistant bacteria, treating inherited genetic diseases, and providing new strategies for cancer therapy. Furthermore, CRISPR/Cas systems are also exploited as research tools such as genome engineering tool that allows researchers to interrogate the biological roles of unexplored genes or uncover novel functions of known genes. Additionally, the CRISPR/Cas system has been employed to edit the genome of a wide range of eukaryotic, prokaryotic organisms and experimental models, including but not limited to mammalian cells, mice, zebrafish, plants, yeast, and Escherichia coli. The present review mainly focuses on summarizing recent discoveries regarding the type II CRISPR/Cas9 and type VI CRISPR/Cas13a systems to give researchers a glimpse of their potential applications in the biological and biomedical field.
Collapse
Affiliation(s)
- Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China.
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China.
| | - Chun Huang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China
| | - Weiqin Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China
| |
Collapse
|
26
|
Xue Y, Chen Z, Zhang W, Zhang J. Engineering CRISPR/Cas13 System against RNA Viruses: From Diagnostics to Therapeutics. Bioengineering (Basel) 2022; 9:bioengineering9070291. [PMID: 35877342 PMCID: PMC9312194 DOI: 10.3390/bioengineering9070291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022] Open
Abstract
Over the past decades, RNA viruses have been threatened people’s health and led to global health emergencies. Significant progress has been made in diagnostic methods and antiviral therapeutics for combating RNA viruses. ELISA and RT-qPCR are reliable methods to detect RNA viruses, but they suffer from time-consuming procedures and limited sensitivities. Vaccines are effective to prevent virus infection and drugs are useful for antiviral treatment, while both need a relatively long research and development cycle. In recent years, CRISPR-based gene editing and modifying tools have been expanded rapidly. In particular, the CRISPR-Cas13 system stands out from the CRISPR-Cas family due to its accurate RNA-targeting ability, which makes it a promising tool for RNA virus diagnosis and therapy. Here, we review the current applications of the CRISPR-Cas13 system against RNA viruses, from diagnostics to therapeutics, and use some medically important RNA viruses such as SARS-CoV-2, dengue virus, and HIV-1 as examples to demonstrate the great potential of the CRISPR-Cas13 system.
Collapse
|
27
|
Zeng L, Liu Y, Nguyenla XH, Abbott TR, Han M, Zhu Y, Chemparathy A, Lin X, Chen X, Wang H, Rane DA, Spatz JM, Jain S, Rustagi A, Pinsky B, Zepeda AE, Kadina AP, Walker JA, Holden K, Temperton N, Cochran JR, Barron AE, Connolly MD, Blish CA, Lewis DB, Stanley SA, La Russa MF, Qi LS. Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro. Nat Commun 2022; 13:2766. [PMID: 35589813 PMCID: PMC9119983 DOI: 10.1038/s41467-022-30546-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
A major challenge in coronavirus vaccination and treatment is to counteract rapid viral evolution and mutations. Here we demonstrate that CRISPR-Cas13d offers a broad-spectrum antiviral (BSA) to inhibit many SARS-CoV-2 variants and diverse human coronavirus strains with >99% reduction of the viral titer. We show that Cas13d-mediated coronavirus inhibition is dependent on the crRNA cellular spatial colocalization with Cas13d and target viral RNA. Cas13d can significantly enhance the therapeutic effects of diverse small molecule drugs against coronaviruses for prophylaxis or treatment purposes, and the best combination reduced viral titer by over four orders of magnitude. Using lipid nanoparticle-mediated RNA delivery, we demonstrate that the Cas13d system can effectively treat infection from multiple variants of coronavirus, including Omicron SARS-CoV-2, in human primary airway epithelium air-liquid interface (ALI) cultures. Our study establishes CRISPR-Cas13 as a BSA which is highly complementary to existing vaccination and antiviral treatment strategies.
Collapse
Affiliation(s)
- Leiping Zeng
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Yanxia Liu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Xammy Huu Nguyenla
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, 94720, USA
| | - Timothy R Abbott
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Mengting Han
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Yanyu Zhu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Xueqiu Lin
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Draven A Rane
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jordan M Spatz
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Saket Jain
- University of California San Francisco, San Francisco, CA, 94143, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Benjamin Pinsky
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham, Kent ME4 4TB, UK
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg BioHub, San Francisco, CA, 94158, USA
| | - David B Lewis
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Sarah A Stanley
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, 94720, USA.
| | - Marie F La Russa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg BioHub, San Francisco, CA, 94158, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
28
|
Jamehdor S, Pajouhanfar S, Saba S, Uzan G, Teimoori A, Naserian S. Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells 2022; 11:999. [PMID: 35326449 PMCID: PMC8946942 DOI: 10.3390/cells11060999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Viruses are one of the most important concerns for human health, and overcoming viral infections is a worldwide challenge. However, researchers have been trying to manipulate viral genomes to overcome various disorders, including cancer, for vaccine development purposes. CRISPR (clustered regularly interspaced short palindromic repeats) is becoming one of the most functional and widely used tools for RNA and DNA manipulation in multiple organisms. This approach has provided an unprecedented opportunity for creating simple, inexpensive, specific, targeted, accurate, and practical manipulations of viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1), and vaccinia virus. Furthermore, this method can be used to make an effective and precise diagnosis of viral infections. Nevertheless, a valid and scientifically designed CRISPR system is critical to make more effective and accurate changes in viruses. In this review, we have focused on the best and the most effective ways to design sgRNA, gene knock-in(s), and gene knock-out(s) for virus-targeted manipulation. Furthermore, we have emphasized the application of CRISPR technology in virus diagnosis and in finding significant genes involved in virus-host interactions.
Collapse
Affiliation(s)
- Saleh Jamehdor
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 989155432609, Iran;
| | - Sara Pajouhanfar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sadaf Saba
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838738, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
29
|
Chen P, Chen M, Chen Y, Jing X, Zhang N, Zhou X, Li X, Long G, Hao P. Targeted inhibition of Zika virus infection in human cells by CRISPR-Cas13b. Virus Res 2022; 312:198707. [PMID: 35150770 DOI: 10.1016/j.virusres.2022.198707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
Abstract
Zika virus (ZIKV) outbreaks occurred in recent years on an unprecedented scale, which caused fever and severe complications like Guillain-Barré syndrome in adults and fetal abnormalities. No vaccines or other effective treatments against ZIKV are available to date. The CRISPR-Cas13 family has the unique ability to target single-strand RNA molecules and mediate RNA cleavage. In the present study, we sought to exploit CRISPR-Cas13b for developing an anti-ZIKV system in mammalian cells. We first generated a ZIKV infection and reporting system by: 1) fusing mCherry to the ZIKV capsid protein for reporting infection by fluorescence; and 2) deriving a 293T cell line (293T-DC-SIGN) stably expressing DC-SIGN (Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) that became highly susceptible to ZIKV infection. The CRISPR Cas13b expression was reported to be in the cytoplasm of 293T-DC-SIGN cells using a Cas13b-GFP fusion expression vector. Fourteen CRISPR RNAs (crRNAs) were designed to target the most conserved regions of the ZIKV genome through bioinformatics analysis of 1138 ZIKV genome sequences. Five crRNAs were found to have significant effects (p < 0.001; two-sided t test) for Cas13b-targeted inhibition on ZIKV infection in 293T-DC-SIGN cells. Our study demonstrated an exciting example of using the CRISPR-Cas13b system for the treatment and prevention of ZIKV infection, highlighting CRISPR-Cas13 as a promising therapeutic anti-RNA virus strategy.
Collapse
Affiliation(s)
- Ping Chen
- The Joint Program in Infection and Immunity. a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Minjie Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yujie Chen
- The Joint Program in Infection and Immunity. a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xinyun Jing
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Niubing Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaojuan Zhou
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Gang Long
- The Joint Program in Infection and Immunity. a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pei Hao
- The Joint Program in Infection and Immunity. a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
30
|
Wei N, Zheng B, Niu J, Chen T, Ye J, Si Y, Cao S. Rapid Detection of Genotype II African Swine Fever Virus Using CRISPR Cas13a-Based Lateral Flow Strip. Viruses 2022; 14:v14020179. [PMID: 35215773 PMCID: PMC8879322 DOI: 10.3390/v14020179] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
The African swine fever virus (ASFV) is a dsDNA virus that can cause serious, highly infectious, and fatal diseases in wild boars and domestic pigs. The ASFV has brought enormous economic loss to many countries, and no effective vaccine or treatment for the ASFV is currently available. Therefore, the on-site rapid and accurate detection of the ASFV is key to the timely implementation of control. The RNA-guided, RNA-targeting CRISPR effector CRISPR-associated 13 (Cas13a; previously known as C2c2) exhibits a “collateral effect” of promiscuous RNase activity upon the target recognition. The collateral cleavage activity of LwCas13a is activated to degrade the non-targeted RNA, when the crRNA of LwCas13a binds to the target RNA. In this study, we developed a rapid and sensitive ASFV detection method based on the collateral cleavage activity of LwCas13a, which combines recombinase-aided amplification (RAA) and a lateral flow strip (named CRISPR/Cas13a-LFD). The method was an isothermal detection at 37 °C, and the detection can be used for visual readout. The detection limit of the CRISPR/Cas13a-LFD was 101 copies/µL of p72 gene per reaction, and the detection process can be completed within an hour. The assay showed no cross-reactivity to eight other swine viruses, including classical swine fever virus (CSFV), and has a 100% coincidence rate with real-time PCR detection of the ASFV in 83 clinical samples. Overall, this method is sensitive, specific, and practicable onsite for the ASFV detection, showing a great application potential for monitoring the ASFV in the field.
Collapse
Affiliation(s)
- Ning Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (N.W.); (B.Z.); (J.N.); (T.C.); (J.Y.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Bohan Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (N.W.); (B.Z.); (J.N.); (T.C.); (J.Y.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Junjun Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (N.W.); (B.Z.); (J.N.); (T.C.); (J.Y.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (N.W.); (B.Z.); (J.N.); (T.C.); (J.Y.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (N.W.); (B.Z.); (J.N.); (T.C.); (J.Y.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Youhui Si
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (N.W.); (B.Z.); (J.N.); (T.C.); (J.Y.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (Y.S.); (S.C.)
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (N.W.); (B.Z.); (J.N.); (T.C.); (J.Y.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (Y.S.); (S.C.)
| |
Collapse
|
31
|
Wei Hou ZZ, Chen S. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virol Sin 2022; 37:1-10. [PMID: 35234622 PMCID: PMC8922418 DOI: 10.1016/j.virs.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Although tremendous efforts have been made to prevent and treat HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. The combination antiretroviral therapy (cART), although able to suppress HIV-1 replication, cannot eliminate the proviral DNA integrated into the human genome and thus requires lifelong treatment that may lead to various side effects. In recent years, clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) related gene-editing systems have been developed and designed as effective ways to treat HIV-1 infection. However, new gene-targeting tools derived from or functioning like CRISPR/Cas9, including base editor, prime editing, SHERLOCK, DETECTR, PAC-MAN, ABACAS, pfAGO, have been developed and optimized for pathogens detection and diseases correction. Here, we summarize recent studies on HIV-1/AIDS gene therapy and provide more gene-editing targets based on studies relating to the molecular mechanism of HIV-1 infection. We also identify the strategies and potential applications of these new gene-editing technologies for HIV-1/AIDS treatment in the future. Moreover, we discuss the caveats and problems that should be addressed before the clinical use of these versatile CRISPR-based gene targeting tools. Finally, we offer alternative solutions to improve the practice of gene targeting in HIV-1/AIDS gene therapy. New gene-targeting tools derived from CRISPR/Cas9 have been introduced. Recent researches in HIV-1/AIDS gene therapy have been summarized. The strategies and potential applications of new gene editing technologies for HIV-1/AIDS treatment have been provided. The caveats and challenges in HIV-1/AIDS gene therapy have been discussed.
Collapse
|
32
|
Liu Y, Chen D, Zhang X, Chen S, Yang D, Tang L, Yang X, Wang Y, Luo X, Wang M, Hu Z, Huang Y. Construction of Baculovirus-Inducible CRISPR/Cas9 Antiviral System Targeting BmNPV in Bombyx mori. Viruses 2021; 14:59. [PMID: 35062262 PMCID: PMC8780094 DOI: 10.3390/v14010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
The silkworm Bombyx mori is an economically important insect. The sericulture industry is seriously affected by pathogen infections. Of these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) causes approximately 80% of the total economic losses due to pathogen infections. We previously constructed a BmNPV-specific CRISPR/Cas9 silkworm line with significantly enhanced resistance to BmNPV. In order to optimize the resistance properties and minimize its impact on economic traits, we constructed an inducible CRISPR/Cas9 system for use in transgenic silkworms. We used the 39k promoter, which is induced by viral infection, to express Cas9 and the U6 promoter to express four small guide RNA targeting the genes encoding BmNPV late expression factors 1 and 3 (lef-1 and lef-3, respectively), which are essential for viral DNA replication. The system was rapidly activated when the silkworm was infected and showed considerably higher resistance to BmNPV infection than the wild-type silkworm. The inducible system significantly reduced the development effects due to the constitutive expression of Cas9. No obvious differences in developmental processes or economically important characteristics were observed between the resulting transgenic silkworms and wild-type silkworms. Adoption of this accurate and highly efficient inducible CRISPR/Cas9 system targeting BmNPV DNA replication will result in enhanced antivirus measures during sericulture, and our work also provides insights into the broader application of the CRISPR/Cas9 system in the control of infectious diseases and insect pests.
Collapse
Affiliation(s)
- Yujia Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Chen
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China;
| | - Xiaoqian Zhang
- China College of Forestry, Shandong Agricultural University, Taian 271018, China;
| | - Shuqing Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linmeng Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
| | - Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (Y.L.); (S.C.); (D.Y.); (L.T.); (X.Y.); (Y.W.); (X.L.)
| |
Collapse
|
33
|
Baddeley HJE, Isalan M. The Application of CRISPR/Cas Systems for Antiviral Therapy. Front Genome Ed 2021; 3:745559. [PMID: 34723245 PMCID: PMC8549726 DOI: 10.3389/fgeed.2021.745559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
As CRISPR/Cas systems have been refined over time, there has been an effort to apply them to real world problems, such as developing sequence-targeted antiviral therapies. Viruses pose a major threat to humans and new tools are urgently needed to combat these rapidly mutating pathogens. Importantly, a variety of CRISPR systems have the potential to directly cleave DNA and RNA viral genomes, in a targeted and easily-adaptable manner, thus preventing or treating infections. This perspective article highlights recent studies using different Cas effectors against various RNA viruses causing acute infections in humans; a latent virus (HIV-1); a chronic virus (hepatitis B); and viruses infecting livestock and animal species of industrial importance. The outlook and remaining challenges are discussed, particularly in the context of tacking newly emerging viruses, such as SARS-CoV-2.
Collapse
Affiliation(s)
- Helen J E Baddeley
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Kordyś M, Sen R, Warkocki Z. Applications of the versatile CRISPR-Cas13 RNA targeting system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1694. [PMID: 34553495 DOI: 10.1002/wrna.1694] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas are adaptable natural prokaryotic defense systems that act against invading viruses and plasmids. Among the six currently known major CRISPR-Cas types, the type VI CRISPR-Cas13 is the only one known to exclusively bind and cleave foreign RNA. Within the last couple of years, this system has been adapted to serve numerous, and sometimes not obvious, applications, including some that might be developed as effective molecular therapies. Indeed, Cas13 has been adapted to kill antibiotic-resistant bacteria. In a cell-free environment, Cas13 has been used in the development of highly specific, sensitive, multiplexing-capable, and field-adaptable detection tools. Importantly, Cas13 can be reprogrammed and applied to eukaryotes to either combat pathogenic RNA viruses or in the regulation of gene expression, facilitating the knockdown of mRNA, circular RNA, and noncoding RNA. Furthermore, Cas13 has been harnessed for in vivo RNA modifications including programmable regulation of alternative splicing, A-to-I and C to U editing, and m6A modifications. Finally, approaches allowing for the detection and characterization of RNA-interacting proteins have also been demonstrated. Here, we provide a comprehensive overview of the applications utilizing CRISPR-Cas13 that illustrate its versatility. We also discuss the most important limitations of the CRISPR-Cas13-based technologies, and controversies regarding them. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Martyna Kordyś
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | |
Collapse
|
35
|
Nguyen H, Wilson H, Jayakumar S, Kulkarni V, Kulkarni S. Efficient Inhibition of HIV Using CRISPR/Cas13d Nuclease System. Viruses 2021; 13:1850. [PMID: 34578431 PMCID: PMC8473377 DOI: 10.3390/v13091850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
Recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas13 proteins are programmable RNA-guided ribonucleases that target single-stranded RNA (ssRNA). CRISPR/Cas13-mediated RNA targeting has emerged as a powerful tool for detecting and eliminating RNA viruses. Here, we demonstrate the effectiveness of CRISPR/Cas13d to inhibit HIV-1 replication. We designed guide RNAs (gRNAs) targeting highly conserved regions of HIV-1. RfxCas13d (CasRx) in combination with HIV-specific gRNAs efficiently inhibited HIV-1 replication in cell line models. Furthermore, simultaneous targeting of four distinct, non-overlapping sites in the HIV-1 transcript resulted in robust inhibition of HIV-1 replication. We also show the effective HIV-1 inhibition in primary CD4+ T-cells and suppression of HIV-1 reactivated from latently infected cells using the CRISPR/Cas13d system. Our study demonstrates the utility of the CRISPR/Cas13d nuclease system to target acute and latent HIV infection and provides an alternative treatment modality against HIV.
Collapse
Affiliation(s)
- Hoang Nguyen
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (H.N.); (H.W.); (S.J.)
| | - Hannah Wilson
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (H.N.); (H.W.); (S.J.)
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (H.N.); (H.W.); (S.J.)
| | - Viraj Kulkarni
- Disease Intervention and Prevention Program; Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (H.N.); (H.W.); (S.J.)
| |
Collapse
|
36
|
Tang N, Zhang Y, Shen Z, Yao Y, Nair V. Application of CRISPR-Cas9 Editing for Virus Engineering and the Development of Recombinant Viral Vaccines. CRISPR J 2021; 4:477-490. [PMID: 34406035 DOI: 10.1089/crispr.2021.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technology, discovered originally as a bacterial defense system, has been extensively repurposed as a powerful tool for genome editing for multiple applications in biology. In the field of virology, CRISPR-Cas9 technology has been widely applied on genetic recombination and engineering of genomes of various viruses to ask some fundamental questions about virus-host interactions. Its high efficiency, specificity, versatility, and low cost have also provided great inspiration and hope in the field of vaccinology to solve a series of bottleneck problems in the development of recombinant viral vaccines. This review highlights the applications of CRISPR editing in the technological advances compared to the traditional approaches used for the construction of recombinant viral vaccines and vectors, the main factors affecting their application, and the challenges that need to be overcome for further streamlining their effective usage in the prevention and control of diseases. Factors affecting efficiency, target specificity, and fidelity of CRISPR-Cas editing in the context of viral genome editing and development of recombinant vaccines are also discussed.
Collapse
Affiliation(s)
- Na Tang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, P.R. China; University of Oxford, Oxford, United Kingdom
| | - Yaoyao Zhang
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom
| | - Zhiqiang Shen
- Shandong Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, P.R. China; University of Oxford, Oxford, United Kingdom
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom.,The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Butiuc-Keul A, Farkas A, Carpa R, Iordache D. CRISPR-Cas System: The Powerful Modulator of Accessory Genomes in Prokaryotes. Microb Physiol 2021; 32:2-17. [PMID: 34192695 DOI: 10.1159/000516643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022]
Abstract
Being frequently exposed to foreign nucleic acids, bacteria and archaea have developed an ingenious adaptive defense system, called CRISPR-Cas. The system is composed of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) array, together with CRISPR (cas)-associated genes. This system consists of a complex machinery that integrates fragments of foreign nucleic acids from viruses and mobile genetic elements (MGEs), into CRISPR arrays. The inserted segments (spacers) are transcribed and then used by cas proteins as guide RNAs for recognition and inactivation of the targets. Different types and families of CRISPR-Cas systems consist of distinct adaptation and effector modules with evolutionary trajectories, partially independent. The origin of the effector modules and the mechanism of spacer integration/deletion is far less clear. A review of the most recent data regarding the structure, ecology, and evolution of CRISPR-Cas systems and their role in the modulation of accessory genomes in prokaryotes is proposed in this article. The CRISPR-Cas system's impact on the physiology and ecology of prokaryotes, modulation of horizontal gene transfer events, is also discussed here. This system gained popularity after it was proposed as a tool for plant and animal embryo editing, in cancer therapy, as antimicrobial against pathogenic bacteria, and even for combating the novel coronavirus - SARS-CoV-2; thus, the newest and promising applications are reviewed as well.
Collapse
Affiliation(s)
- Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Dumitrana Iordache
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Singsuksawat E, Onnome S, Posiri P, Suphatrakul A, Srisuk N, Nantachokchawapan R, Praneechit H, Sae-kow C, Chidpratum P, Sa-ngiamsuntorn K, Hongeng S, Avirutnan P, Duangchinda T, Siridechadilok B. Potent programmable antiviral against dengue virus in primary human cells by Cas13b RNP with short spacer and delivery by VLP. Mol Ther Methods Clin Dev 2021; 21:729-740. [PMID: 33969146 PMCID: PMC8087611 DOI: 10.1016/j.omtm.2021.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
With sequencing as a standard frontline protocol to identify emerging viruses such Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), direct utilization of sequence data to program antivirals against the viruses could accelerate drug development to treat their infections. CRISPR-Cas effectors are promising candidates that could be programmed to inactivate viral genetic material based on sequence data, but several challenges such as delivery and design of effective CRISPR RNA (crRNA) need to be addressed to realize practical use. Here, we showed that virus-like particle (VLP) could deliver PspCas13b-crRNA ribonucleoprotein (RNP) in nanomolar range to efficiently suppress dengue virus infection in primary human target cells. Shortening spacer length could significantly enhance RNA-targeting efficiency of PspCas13b in mammalian cells compared to the natural length of 30 nucleotides without compromising multiplex targeting by a crRNA array. Our results demonstrate the potentials of applying PspCas13b RNP to suppress RNA virus infection, with implications in targeting host RNA as well.
Collapse
Affiliation(s)
- Ekapot Singsuksawat
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand
| | - Suppachoke Onnome
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand
| | - Pratsaneeyaporn Posiri
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand
| | - Amporn Suphatrakul
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand
| | - Nittaya Srisuk
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand
| | | | - Hansa Praneechit
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chutimon Sae-kow
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand
| | - Pala Chidpratum
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand
| | - Khanit Sa-ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thaneeya Duangchinda
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand
| | - Bunpote Siridechadilok
- National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
39
|
Abstract
Despite numerous viral outbreaks in the last decade, including a devastating global pandemic, diagnostic and therapeutic technologies remain severely lacking. CRISPR-Cas systems have the potential to address these critical needs in the response against infectious disease. Initially discovered as the bacterial adaptive immune system, these systems provide a unique opportunity to create programmable, sequence-specific technologies for detection of viral nucleic acids and inhibition of viral replication. This review summarizes how CRISPR-Cas systems-in particular the recently discovered DNA-targeting Cas12 and RNA-targeting Cas13, both possessing a unique trans-cleavage activity-are being harnessed for viral diagnostics and therapies. We further highlight the numerous technologies whose development has accelerated in response to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Catherine A. Freije
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA,Ph.D. Program in Virology, Harvard Medical School, Boston, MA 02115, USA,Corresponding author
| | - Pardis C. Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA,Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA,Corresponding author
| |
Collapse
|
40
|
Latest Advances of Virology Research Using CRISPR/Cas9-Based Gene-Editing Technology and Its Application to Vaccine Development. Viruses 2021; 13:v13050779. [PMID: 33924851 PMCID: PMC8146441 DOI: 10.3390/v13050779] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, the CRISPR/Cas9-based gene-editing techniques have been well developed and applied widely in several aspects of research in the biological sciences, in many species, including humans, animals, plants, and even in viruses. Modification of the viral genome is crucial for revealing gene function, virus pathogenesis, gene therapy, genetic engineering, and vaccine development. Herein, we have provided a brief review of the different technologies for the modification of the viral genomes. Particularly, we have focused on the recently developed CRISPR/Cas9-based gene-editing system, detailing its origin, functional principles, and touching on its latest achievements in virology research and applications in vaccine development, especially in large DNA viruses of humans and animals. Future prospects of CRISPR/Cas9-based gene-editing technology in virology research, including the potential shortcomings, are also discussed.
Collapse
|
41
|
Ding R, Long J, Yuan M, Jin Y, Yang H, Chen M, Chen S, Duan G. CRISPR/Cas System: A Potential Technology for the Prevention and Control of COVID-19 and Emerging Infectious Diseases. Front Cell Infect Microbiol 2021; 11:639108. [PMID: 33968799 PMCID: PMC8102830 DOI: 10.3389/fcimb.2021.639108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
The continued global pandemic of coronavirus disease 2019 (COVID-19) poses a serious threat to global public health and social stability and it has become a serious global public health problem. Unfortunately, existing diagnostic and therapeutic approaches for the prevention and control of COVID-19 have many shortcomings. In recent years, the emerging CRISPR/Cas technology can complement the problems of traditional methods. Biological tools based on CRISPR/Cas systems have been widely used in biomedicine. In particular, they are advantageous in pathogen detection, clinical antiviral therapy, drug, and vaccine development. Therefore, CRISPR/Cas technology may have great potential for application in the prevention and control of COVID-19 and emerging infectious diseases in the future. This article summarizes the existing applications of CRISPR/Cas technology in infectious diseases with the aim of providing effective strategies for the prevention and control of COVID-19 and other emerging infectious diseases in the future.
Collapse
Affiliation(s)
- Ronghua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingzhu Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Molecular Medicine in Henan Province, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Lin X, Liu Y, Chemparathy A, Pande T, La Russa M, Qi LS. A comprehensive analysis and resource to use CRISPR-Cas13 for broad-spectrum targeting of RNA viruses. Cell Rep Med 2021; 2:100245. [PMID: 33778788 PMCID: PMC7985958 DOI: 10.1016/j.xcrm.2021.100245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and variants has led to significant mortality. We recently reported that an RNA-targeting CRISPR-Cas13 system, called prophylactic antiviral CRISPR in human cells (PAC-MAN), offered an antiviral strategy against SARS-CoV-2 and influenza A virus. Here, we expand in silico analysis to use PAC-MAN to target a broad spectrum of human- or livestock-infectious RNA viruses with high specificity, coverage, and predicted efficiency. Our analysis reveals that a minimal set of 14 CRISPR RNAs (crRNAs) is able to target >90% of human-infectious viruses across 10 RNA virus families. We predict that a set of 5 experimentally validated crRNAs can target new SARS-CoV-2 variant sequences with zero mismatches. We also build an online resource (crispr-pacman.stanford.edu) to support community use of CRISPR-Cas13 for broad-spectrum RNA virus targeting. Our work provides a new bioinformatic resource for using CRISPR-Cas13 to target diverse RNA viruses to facilitate the development of CRISPR-based antivirals.
Collapse
Affiliation(s)
- Xueqiu Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yanxia Liu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Augustine Chemparathy
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Management Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tara Pande
- Los Altos High School, Los Altos, CA 94022, USA
| | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
- ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Escalona‐Noguero C, López‐Valls M, Sot B. CRISPR/Cas technology as a promising weapon to combat viral infections. Bioessays 2021; 43:e2000315. [PMID: 33569817 PMCID: PMC7995209 DOI: 10.1002/bies.202000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The versatile clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has emerged as a promising technology for therapy and molecular diagnosis. It is especially suited for overcoming viral infections outbreaks, since their effective control relies on an efficient treatment, but also on a fast diagnosis to prevent disease dissemination. The CRISPR toolbox offers DNA- and RNA-targeting nucleases that constitute dual weapons against viruses. They allow both the manipulation of viral and host genomes for therapeutic purposes and the detection of viral nucleic acids in "Point of Care" sensor devices. Here, we thoroughly review recent advances in the use of the CRISPR/Cas system for the treatment and diagnosis of viral deleterious infections such as HIV or SARS-CoV-2, examining their strengths and limitations. We describe the main points to consider when designing CRISPR antiviral strategies and the scientific efforts to develop more sensitive CRISPR-based viral detectors. Finally, we discuss future prospects to improve both applications. Also see the video abstract here: https://www.youtube.com/watch?v=C0z1dLpJWl4.
Collapse
Affiliation(s)
| | | | - Begoña Sot
- Fundación IMDEA‐NanocienciaMadridSpain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)MadridSpain
| |
Collapse
|
44
|
Wang G, Li J. Review, analysis, and optimization of the CRISPR Streptococcus pyogenes Cas9 system. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
45
|
Safari F, Afarid M, Rastegari B, Borhani-Haghighi A, Barekati-Mowahed M, Behzad-Behbahani A. CRISPR systems: Novel approaches for detection and combating COVID-19. Virus Res 2021; 294:198282. [PMID: 33428981 PMCID: PMC7832022 DOI: 10.1016/j.virusres.2020.198282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
Type V and VI CRISPR enzymes are RNA-guided, DNA and RNA-targeting effectors that allow specific gene knockdown. Cas12 and Cas13 are CRISPR proteins that are efficient agents for diagnosis and combating single-stranded RNA (ssRNA) viruses. The programmability of these proteins paves the way for the detection and degradation of RNA viruses by targeting RNAs complementary to its CRISPR RNA (crRNA). Approximately two-thirds of viruses causing diseases contain ssRNA genomes. The Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has caused the outbreak of the coronavirus disease 2019 (COVID-19), which has infected more than 88 million people worldwide with near 2 million deaths since December 2019. Thus, accurate and rapid diagnostic and therapeutic tools are essential for early detection and treatment of this widespread infectious disease. For us, the CRISPR based platforms seem to be a plausible new approach for an accurate detection and treatment of SARS-CoV-2. In this review, we talk about Cas12 and Cas13 CRISPR systems and their applications in diagnosis and treatment of RNA virus mediated diseases. In continue, the SARS-CoV-2 pathogenicity, and its conventional diagnostics and antivirals will be discussed. Moreover, we highlight novel CRISPR based diagnostic platforms and therapies for COVID-19. We also discuss the challenges of diagnostic CRISPR based platforms as well as clarifying the proposed solution for high efficient selective in vivo delivery of CRISPR components into SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Afarid
- Shooshtari Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mazyar Barekati-Mowahed
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, OH, USA
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
46
|
Mattioli IA, Hassan A, Oliveira ON, Crespilho FN. On the Challenges for the Diagnosis of SARS-CoV-2 Based on a Review of Current Methodologies. ACS Sens 2020; 5:3655-3677. [PMID: 33267587 PMCID: PMC7724986 DOI: 10.1021/acssensors.0c01382] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Diagnosis of COVID-19 has been challenging owing to the need for mass testing and for combining distinct types of detection to cover the different stages of the infection. In this review, we have surveyed the most used methodologies for diagnosis of COVID-19, which can be basically categorized into genetic-material detection and immunoassays. Detection of genetic material with real-time polymerase chain reaction (RT-PCR) and similar techniques has been achieved with high accuracy, but these methods are expensive and require time-consuming protocols which are not widely available, especially in less developed countries. Immunoassays for detecting a few antibodies, on the other hand, have been used for rapid, less expensive tests, but their accuracy in diagnosing infected individuals has been limited. We have therefore discussed the strengths and limitations of all of these methodologies, particularly in light of the required combination of tests owing to the long incubation periods. We identified the bottlenecks that prevented mass testing in many countries, and proposed strategies for further action, which are mostly associated with materials science and chemistry. Of special relevance are the methodologies which can be integrated into point-of-care (POC) devices and the use of artificial intelligence that do not require products from a well-developed biotech industry.
Collapse
Affiliation(s)
- Isabela A. Mattioli
- São Carlos Institute of
Chemistry, University of São Paulo,
São Carlos 13560-970, São Paulo,
Brazil
| | - Ayaz Hassan
- São Carlos Institute of
Chemistry, University of São Paulo,
São Carlos 13560-970, São Paulo,
Brazil
| | - Osvaldo N. Oliveira
- São Carlos Institute of
Physics, University of São Paulo,
São Carlos 13560-590, São Paulo,
Brazil
| | - Frank N. Crespilho
- São Carlos Institute of
Chemistry, University of São Paulo,
São Carlos 13560-970, São Paulo,
Brazil
| |
Collapse
|
47
|
Yin L, Zhao F, Sun H, Wang Z, Huang Y, Zhu W, Xu F, Mei S, Liu X, Zhang D, Wei L, Cen S, Hu S, Liang C, Guo F. CRISPR-Cas13a Inhibits HIV-1 Infection. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:147-155. [PMID: 32585623 PMCID: PMC7321785 DOI: 10.1016/j.omtn.2020.05.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/15/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas provides bacteria and archaea with immunity against invading phages and foreign plasmid DNA and has been successfully adapted for gene editing in a variety of species. The class 2 type VI CRISPR-Cas effector Cas13a targets and cleaves RNA, providing protection against RNA phages. Here we report the repurposing of CRISPR-Cas13a to inhibit human immunodeficiency virus type 1 (HIV-1) infection through targeting HIV-1 RNA and diminishing viral gene expression. We observed strong inhibition of HIV-1 infection by CRISPR-Cas13a in human cells. We showed that CRISPR-Cas13a not only diminishes the level of newly synthesized viral RNA, either from the transfected plasmid DNA or from the viral DNA, which is integrated into cellular DNA, but it also targets and destroys the viral RNA that enters cells within viral capsid, leading to strong inhibition of HIV-1 infection. Together, our results suggest that CRISPR-Cas13a provides a potential novel tool to treat viral diseases in humans.
Collapse
Affiliation(s)
- Lijuan Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Hong Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhen Wang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Weijun Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Di Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| | - Siqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China.
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China.
| |
Collapse
|