1
|
Balkrishna A, Mittal R, Bishayee A, Kumar AP, Bishayee A. miRNA signatures affecting the survival outcome in distant metastasis of triple-negative breast cancer. Biochem Pharmacol 2025; 231:116683. [PMID: 39608504 DOI: 10.1016/j.bcp.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Triple-negative breast cancer (TNBC) constitutes for 10-15% of all breast cancer cases. Tumor heterogeneity, high invasiveness, distant metastasis, lack of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 expression contribute to TNBC associated with poor overall survival outcomes amongst diseased individuals. The disparity in clinico-pathological and metastatic patterns to distant sites has substantially enhanced the incidences of tumor recurrence. Survival outcomes amongst metastatic TNBC patients are worse in comparison to non-metastatic TNBC counterparts. MicroRNAs (miRNAs) have emerged as significant drivers to function either as oncogene or tumor suppressors by exerting modulating effects on the expression of target genes in the TNBC tumor microenvironment. The pleiotropic nature of miRNAs expands their preclinical and clinical utility in combating both metastatic and non-metastatic TNBC cases and thereby improves their survival outcomes. The present review article aims to highlight the varying survival outcomes in metastatic and non-metastatic TNBC cases. The present review article emphasizes the therapeutic and prognostic potential of miRNAs in TNBC to improve survival outcomes by retarding distant metastasis to lung, bone, brain, and lymph nodes.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249 405, India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249 405, India.
| | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
2
|
Kumar S, Ranga A. Role of miRNAs in breast cancer development and progression: Current research. Biofactors 2025; 51:e2146. [PMID: 39601401 DOI: 10.1002/biof.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Breast cancer, a complex and heterogeneous ailment impacting numerous women worldwide, persists as a prominent cause of cancer-related fatalities. MicroRNAs (miRNAs), small non-coding RNAs, have garnered significant attention for their involvement in breast cancer's progression. These molecules post-transcriptionally regulate gene expression, influencing crucial cellular processes including proliferation, differentiation, and apoptosis. This review provides an overview of the current research on the role of miRNAs in breast cancer. It discusses the role of miRNAs in breast cancer, including the different subtypes of breast cancer, their molecular characteristics, and the mechanisms by which miRNAs regulate gene expression in breast cancer cells. Additionally, the review highlights recent studies identifying specific miRNAs that are dysregulated in breast cancer and their potential use as diagnostic and prognostic biomarkers. Furthermore, the review explores the therapeutic potential of miRNAs in breast cancer treatment. Preclinical studies have shown the effectiveness of miRNA-based therapies, such as antagomir and miRNA mimic therapies, in inhibiting tumor growth and metastasis. Emerging areas, including the application of artificial intelligence (AI) to advance miRNA research and the "One Health" approach that integrates human and animal cancer insights, are also discussed. However, challenges remain before these therapies can be fully translated into clinical practice. In conclusion, this review emphasizes the significance of miRNAs in breast cancer research and their potential as innovative diagnostic and therapeutic tools. A deeper understanding of miRNA dysregulation in breast cancer is essential for their successful application in clinical settings. With continued research, miRNA-based approaches hold promise for improving patient outcomes in this devastating disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Ranga
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
3
|
Hoover E, Roy Chowdhury C, Ruggiero OM, Day ES. Conjugation of Antibodies and siRNA Duplexes to Polymer Nanoparticles via Maleimide-Thiol Chemistry. ACS OMEGA 2024; 9:47637-47646. [PMID: 39651074 PMCID: PMC11618400 DOI: 10.1021/acsomega.4c07025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024]
Abstract
Polymeric nanoparticles (NPs) have shown great promise as highly modifiable platforms that can be applied across many different disease states. They are advantageous because they can encapsulate a range of hydrophobic and hydrophilic cargoes while having customizable surface properties. Depending on the desired biointerfacing capabilities, the surface of polymeric NPs can be modified with moieties, such as antibodies, peptides, nucleic acids, and more. The work presented here is intended to provide mechanistic insight into how different parameters influence the loading of antibodies, small interfering ribonucleic acids (siRNAs), or both on the surface of poly(lactic-co-glycolic acid) (PLGA) NPs via maleimide-thiol chemistry. Some of the conjugation parameters investigated include the buffer concentration, maleimide to protein ratio, and the addition of an excipient such as Tween-20. Through variation in the concentration of FZD7 antibodies added to the reaction mixture, we established tunable conjugation and found the upper limit of their loading density under the conditions tested. We also confirmed antibody conjugation through two different mechanisms: via a thiol-modified antibody or a thiol-modified poly(ethylene glycol) (PEG) linker. Conjugation of thiolated siRNA duplexes targeting β-catenin was also investigated through variations in both Tween-20 concentration and CaCl2 buffer concentration. Finally, the coconjugation of both antibodies and siRNA duplexes was explored. Overall, this work outlines a basis for tunable biomolecule loading on polymer NPs using maleimide-thiol chemistry and reveals the incredible versatility of polymer NP platforms.
Collapse
Affiliation(s)
- Elise
C. Hoover
- Department
of Biomedical Engineering, University of
Delaware, Newark, DE 19713, United States
| | - Chitran Roy Chowdhury
- Department
of Biomedical Engineering, University of
Delaware, Newark, DE 19713, United States
| | - Olivia M. Ruggiero
- Department
of Biomedical Engineering, University of
Delaware, Newark, DE 19713, United States
| | - Emily S. Day
- Department
of Biomedical Engineering, University of
Delaware, Newark, DE 19713, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, DE 19713, United
States
- Helen
F. Graham Cancer Center and Research Institute, Newark, DE 19713, United States
| |
Collapse
|
4
|
Liang H, Yin G, Feng D, Chen H, Liu X, Li J. Research trends on nanomaterials in triple negative breast cancer (TNBC): a bibliometric analysis from 2010 to 2024. Drug Deliv Transl Res 2024:10.1007/s13346-024-01704-9. [PMID: 39242466 DOI: 10.1007/s13346-024-01704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer (BC) is an important cause of cancer-related death in the world. As a subtype of BC with the worst prognosis, triple-negative breast cancer (TNBC) is a serious threat to human life and health. In recent years, there has been an increasing amount of research aimed at designing and developing nanomaterials for the diagnosis and treatment of TNBC. The purpose of this study was to comprehensively evaluate the current status and trend of the application of nanomaterials in TNBC through bibliometric analysis. Studies focusing on nanomaterials and cancer were searched from the Web of Science core collection (WOSCC) database, and relevant literature meeting the inclusion criteria was selected for inclusion in the study. VOSviewer and CiteSpace were used to perform bibliometric and visual analysis of the included publications. A total of 2338 studies were included. Annual publications have increased from 2010 to 2024. China, the United States and India were the leading countries in the field, accounting for 66.1%, 11.5% and 7.2% of publications, respectively. The Chinese Academy of Sciences and Li Yaping were the most influential institutions and authors, respectively. Journal of Controlled Release was considered the most productive journal. Cancer Research was considered to be the most co-cited journal. Drug delivery and anti-cancer mechanisms related to nanomaterials were considered to be the most widely studied aspects, and green synthesis and anti-cancer mechanisms were also recent research hotspots. In this study, the characteristics of publications were summarized, and the most influential countries, institutions, authors, journals, hot spots and trends in the application of nanomaterials in cancer were identified. These findings provide valuable insights into the current state and future direction of this dynamic field.
Collapse
Affiliation(s)
- Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Dandan Feng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Hanhan Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Jinan, Shandong, 250014, China
| | - Xiaofei Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Jinan, Shandong, 250014, China
| | - Jingwei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Jinan, Shandong, 250014, China.
| |
Collapse
|
5
|
Duan W, Shen Q, Ju L, Huang Z, Geng J, Wu Q, Yu C, Wei J. Homologous Tumor Cell-Derived Biomimetic Nano-Trojan Horse Integrating Chemotherapy with Genetherapy for Boosting Triple-Negative Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45523-45536. [PMID: 39141925 DOI: 10.1021/acsami.4c08842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that carries the worst prognosis and lacks specific therapeutic targets. To achieve accurate "cargos" delivery at the TNBC site, we herein constructed a novel biomimetic nano-Trojan horse integrating chemotherapy with gene therapy for boosting TNBC treatment. Briefly, we initially introduce the diselenide-bond-containing organosilica moieties into the framework of mesoporous silica nanoparticles (MONs), thereby conferring biodegradability to intratumoral redox conditions in the obtained MONSe. Subsequently, doxorubicin (Dox) and therapeutic miR-34a are loaded into MONSe, thus achieving the combination of chemotherapy and gene-therapy. After homologous tumor cell membrane coating, the ultimate homologous tumor cell-derived biomimetic nano-Trojan horse (namely, MONSe@Dox@miR-34a@CM) can selectively enter the tumor cells in a stealth-like fashion. Notably, such a nanoplatform not only synergistically eradicated the tumor but also inhibited the proliferation of breast cancer stem-like cells (BCSCs) in vitro and in vivo. With the integration of homologous tumor cell membrane-facilitated intratumoral accumulation, excellent biodegradability, and synergistic gene-chemotherapy, our biomimetic nanocarriers hold tremendous promise for the cure of TNBC in the future.
Collapse
Affiliation(s)
- Wenjie Duan
- Department of Pharmacy, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing 210009, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Linjie Ju
- Department of Pharmacy, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing 210009, China
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing 210009, China
| |
Collapse
|
6
|
Prasad A, Bakr MM, ElMeshad AN. Surface-functionalised polymeric nanoparticles for breast cancer treatment: processes and advances. J Drug Target 2024; 32:770-784. [PMID: 38717907 DOI: 10.1080/1061186x.2024.2353359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The World Health Organization (WHO) reported that of all the non-communicable diseases, cancer is considered the second cause of death worldwide. This has driven the big pharma companies to prioritise anticancer products in their pipeline. In addition, research has focused on exploration of new anticancer molecules and design of suitable dosage forms to achieve effective drug delivery to the tumour site. Nanotechnology is a valuable tool to build nano delivery systems with controlled and targeted drug release properties. Nanoparticles can be fabricated by robust, scalable and economic techniques using various polymers. Moreover, specific functional groups can be introduced to the surface of nanoparticles enabling targeting to a specific tissue; besides, they exhibit versatile drug release patterns according to the rate of polymer degradation. This review outlines the processes and advances in surface functionalisation of nanoparticles employed for treatment of breast cancer. The therapeutic molecules, the polymers used to fabricate nanoparticles, the techniques used to prepare the nanoparticles have been reviewed with a focus on the processes employed to functionalise these nanoparticles with suitable ligands to target different types of breast cancer.
Collapse
Affiliation(s)
- Aprameya Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mohamed Mofreh Bakr
- Department of Pharmaceutics, Egyptian Drug Authority, Formerly Known as National Organization for Drug Control and Research, Giza, Egypt
| | - Aliaa N ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, The Egyptian Chinese University, Cairo, Egypt
| |
Collapse
|
7
|
Towner RA, Dissanayake R, Ahmed M. Clinical Advances in Triple Negative Breast Cancer Treatment: Focus on Poly (L-lactide-coglycolide) Nanoparticles. J Pharmacol Exp Ther 2024; 390:53-64. [PMID: 38580448 DOI: 10.1124/jpet.123.002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer and is associated with high probability of metastasis and poor prognosis. Chemotherapeutics and surgery remain the most common options for TNBC patients; however, chemotherapeutic resistance and relapse of tumors limit the progression free survival and patient life span. This review provides an overview of recent chemotherapeutics that are in clinical trial, and the combination of drugs that are being investigated to overcome the drug resistance and to improve patient survival in different molecular subtypes of TNBCs. Nanotherapeutics have emerged as a promising platform for TNBC treatment and aim to improve the selectivity and solubility of drugs, reduce systemic side effects, and overcome multi-drug resistance. The study explores the role of nanoparticles for TNBC treatment and summarizes the types of nanoparticles that are in clinical trials. Poly(L-lactide-co-glycolide) (PLGA) is the most studied polymeric carrier for drug delivery and for TNBC treatment in research and in clinics. This review is about providing recent advancements in PLGA nanotherapeutic formulations and their application to help treat TNBC. Some background on current chemotherapies and pathway inhibitors is provided so that the readers are aware of what is currently considered for TNBC. Some of the pathway inhibitors may also be of importance for nanotherapeutics development. SIGNIFICANCE STATEMENT: This minireview summarizes the progress on chemotherapeutics and nanoparticle delivery for treatment of TNBC and specifically highlights the lead compounds that are in clinical trials.
Collapse
Affiliation(s)
- Rheal A Towner
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Ranga Dissanayake
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| | - Marya Ahmed
- Department of Chemistry (R.A.T., R.D., M.A.) and Faculty of Sustainable Design Engineering (M.A.), University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
8
|
Battogtokh G, Obidiro O, Akala EO. Recent Developments in Combination Immunotherapy with Other Therapies and Nanoparticle-Based Therapy for Triple-Negative Breast Cancer (TNBC). Cancers (Basel) 2024; 16:2012. [PMID: 38893132 PMCID: PMC11171312 DOI: 10.3390/cancers16112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC), lacking specific receptors found in other breast cancer subtypes, poses significant treatment challenges due to limited therapeutic options. Therefore, it is necessary to develop novel treatment approaches for TNBC. In the last few decades, many attempts have been reported for alternative tools for TNBC treatment: immunotherapy, radiotherapy, targeted therapy, combination therapy, and nanotechnology-based therapy. Among them, combination therapy and nanotechnology-based therapy show the most promise for TNBC treatment. This review outlines recent advancements in these areas, highlighting the efficacy of combination therapy (immunotherapy paired with chemotherapy, targeted therapy, or radiotherapy) in both preclinical and clinical stages and nanotechnology-based therapies utilizing various nanoparticles loaded with anticancer agents, nucleic acids, immunotherapeutics, or CRISPRs in preclinical stages for TNBC treatment.
Collapse
Affiliation(s)
| | | | - Emmanuel O. Akala
- Center for Drug Research and Development, Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA; (G.B.); (O.O.)
| |
Collapse
|
9
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
10
|
Hoover E, Ruggiero OM, Swingler RN, Day ES. FZD7-Targeted Nanoparticles to Enhance Doxorubicin Treatment of Triple-Negative Breast Cancer. ACS OMEGA 2024; 9:14323-14335. [PMID: 38559981 PMCID: PMC10976388 DOI: 10.1021/acsomega.3c10275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy agent commonly used to treat triple-negative breast cancer (TNBC), but it has insufficient efficacy against the disease and considerable toxicity due to its off-target delivery. To improve the specificity of DOX for TNBC, we encapsulated it in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) coated with antibodies against Frizzled7 (FZD7), a receptor that is overexpressed on TNBC cells and which is a key activator of the Wnt signaling pathway. In vitro studies show that DOX encapsulation does not hinder its ability to localize to the nucleus in human TNBC cell cultures and that DOX delivered via NPs induces apoptosis and DNA damage via H2A.X phosphorylation to the same degree as freely delivered DOX. FZD7-targeted NPs delivering DOX caused significantly greater inhibition of metabolic activity and led to a smaller cell population following treatment when compared to freely delivered DOX or DOX-loaded NPs coated only with poly(ethylene glycol) (PEG). The FZD7 antibodies additionally provided significant levels of Wnt pathway inhibition, as demonstrated by an increase in β-catenin phosphorylation, indicative of β-catenin destruction and downregulation. These results show that FZD7-targeted platforms have great promise for improving the therapeutic window of otherwise toxic chemotherapies like DOX in TNBC and other cancers that display the overexpression of FZD7 receptors.
Collapse
Affiliation(s)
- Elise
C. Hoover
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
| | - Olivia M. Ruggiero
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
| | - Rachel N. Swingler
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
| | - Emily S. Day
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
- Helen
F. Graham Cancer Center and Research Institute, Newark, Delaware 19713, United States
| |
Collapse
|
11
|
Kumari L, Mishra L, Sharma Y, Chahar K, Kumar M, Patel P, Gupta GD, Kurmi BD. NOTCH Signaling Pathway: Occurrence, Mechanism, and NOTCH-Directed Therapy for the Management of Cancer. Cancer Biother Radiopharm 2024; 39:19-34. [PMID: 37797218 DOI: 10.1089/cbr.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
It is now well understood that many signaling pathways are vital in carrying out and controlling essential pro-survival and pro-growth cellular functions. The NOTCH signaling pathway, a highly conserved evolutionary signaling pathway, has been thoroughly studied since the discovery of NOTCH phenotypes about 100 years ago in Drosophila melanogaster. Abnormal NOTCH signaling has been linked to the pathophysiology of several diseases, notably cancer. In tumorigenesis, NOTCH plays the role of a "double-edged sword," that is, it may act as an oncogene or as a tumor suppressor gene depending on the nature of the context. However, its involvement in several cancers and inhibition of the same provides targeted therapy for the management of cancer. The use of gamma (γ)-secretase inhibitors and monoclonal antibodies for cancer treatment involved NOTCH receptors inhibition, leading to the possibility of a targeted approach for cancer treatment. Likewise, several natural compounds, including curcumin, resveratrol, diallyl sulfide, and genistein, also play a dynamic role in the management of cancer by inhibition of NOTCH receptors. This review outlines the functions and structure of NOTCH receptors and their associated ligands with the mechanism of the signaling pathway. In addition, it also emphasizes the role of NOTCH-targeted nanomedicine in various cancer treatment strategies.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | | | - Yash Sharma
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Kanak Chahar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Mritunjay Kumar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
12
|
Dinakar YH, Rajana N, Kumari NU, Jain V, Mehra NK. Recent Advances of Multifunctional PLGA Nanocarriers in the Management of Triple-Negative Breast Cancer. AAPS PharmSciTech 2023; 24:258. [PMID: 38097825 DOI: 10.1208/s12249-023-02712-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Even though chemotherapy stands as a standard option in the therapy of TNBC, problems associated with it such as anemia, bone marrow suppression, immune suppression, toxic effects on healthy cells, and multi-drug resistance (MDR) can compromise their effects. Nanoparticles gained paramount importance in overcoming the limitations of conventional chemotherapy. Among the various options, nanotechnology has appeared as a promising path in preclinical and clinical studies for early diagnosis of primary tumors and metastases and destroying tumor cells. PLGA has been extensively studied amongst various materials used for the preparation of nanocarriers for anticancer drug delivery and adjuvant therapy because of their capability of higher encapsulation, easy surface functionalization, increased stability, protection of drugs from degradation versatility, biocompatibility, and biodegradability. Furthermore, this review also provides an overview of PLGA-based nanoparticles including hybrid nanoparticles such as the inorganic PLGA nanoparticles, lipid-coated PLGA nanoparticles, cell membrane-coated PLGA nanoparticles, hydrogels, exosomes, and nanofibers. The effects of all these systems in various in vitro and in vivo models of TNBC were explained thus pointing PLGA-based NPs as a strategy for the management of TNBC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Nalla Usha Kumari
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
13
|
Anilkumar KV, Rema LP, John MC, Vanesa John T, George A. miRNAs in the prognosis of triple-negative breast cancer: A review. Life Sci 2023; 333:122183. [PMID: 37858714 DOI: 10.1016/j.lfs.2023.122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive and invasive type of breast cancer (BC) with high mortality rate wherein effective target medicaments are lacking. It is a very heterogeneous group with several subtypes that account for 10-20% of cancer among women globally, being negative for three most important receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)), with an early and high recurrence resulting in poor survival rate. Therefore, a more thorough knowledge on carcinogenesis of TNBC is required for the development of personalized treatment options. miRNAs can either promote or suppress tumorigenesis and have been linked to a number of features of cancer progression, including proliferation, metastasis, apoptosis, and epithelial-mesenchymal transition (EMT). Recent miRNA research shows that there is great potential for the development of novel biomarkers as they have emerged as drivers of tumorigenesis and provide opportunities to target various components involved in TNBC, thus helping to solve this difficult-to-treat disease. In this review, we summarize the most relevant miRNAs that play an essential role in TNBC biology. Their role with regard to molecular mechanisms underlying TNBC progression has been discussed, and their potential use as therapeutic or prognostic markers to unravel the intricacy of TNBC based on the pieces of evidence obtained from various works of literature has been briefly addressed.
Collapse
Affiliation(s)
- Kavya V Anilkumar
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India; Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - L P Rema
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India
| | - Mithun Chacko John
- Department of Medical Oncology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - T Vanesa John
- Department of Pathology, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Alex George
- Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India.
| |
Collapse
|
14
|
Pandey P, Khan F, Choi M, Singh SK, Kang HN, Park MN, Ko SG, Sahu SK, Mazumder R, Kim B. Review deciphering potent therapeutic approaches targeting Notch signaling pathway in breast cancer. Biomed Pharmacother 2023; 164:114938. [PMID: 37267635 DOI: 10.1016/j.biopha.2023.114938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
In the current period of drug development, natural products have provided an unrivaled supply of anticancer medications. By modifying the cancer microenvironment and various signaling pathways, natural products and their derivatives and analogs play a significant role in cancer treatment. These substances are effective against several signaling pathways, particularly the cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch, Wnt, and Hedgehog pathways). Natural products have a long history, but more research is needed to understand their current function in the research and development of cancer treatments and the potential for natural products to serve as a significant source of therapeutic agents in the future. Several target-specific anticancer medications failed to treat cancer, necessitating research into natural compounds with multiple target properties. To help develop a better treatment plan for managing breast cancer, this review has outlined the anticancerous potential of several therapeutic approaches targeting the notch signaling system in breast tumors.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sujeet Kumar Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sanjeev Kumar Sahu
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rupa Mazumder
- Noida Institute of Engineering & Technology (Pharmacy Institute), Greater Noida 201306, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
15
|
Szczepanek J, Skorupa M, Jarkiewicz-Tretyn J, Cybulski C, Tretyn A. Harnessing Epigenetics for Breast Cancer Therapy: The Role of DNA Methylation, Histone Modifications, and MicroRNA. Int J Mol Sci 2023; 24:ijms24087235. [PMID: 37108398 PMCID: PMC10138995 DOI: 10.3390/ijms24087235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer exhibits various epigenetic abnormalities that regulate gene expression and contribute to tumor characteristics. Epigenetic alterations play a significant role in cancer development and progression, and epigenetic-targeting drugs such as DNA methyltransferase inhibitors, histone-modifying enzymes, and mRNA regulators (such as miRNA mimics and antagomiRs) can reverse these alterations. Therefore, these epigenetic-targeting drugs are promising candidates for cancer treatment. However, there is currently no effective epi-drug monotherapy for breast cancer. Combining epigenetic drugs with conventional therapies has yielded positive outcomes and may be a promising strategy for breast cancer therapy. DNA methyltransferase inhibitors, such as azacitidine, and histone deacetylase inhibitors, such as vorinostat, have been used in combination with chemotherapy to treat breast cancer. miRNA regulators, such as miRNA mimics and antagomiRs, can alter the expression of specific genes involved in cancer development. miRNA mimics, such as miR-34, have been used to inhibit tumor growth, while antagomiRs, such as anti-miR-10b, have been used to inhibit metastasis. The development of epi-drugs that target specific epigenetic changes may lead to more effective monotherapy options in the future.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | | | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
16
|
Shinde SS, Ahmed S, Malik JA, Hani U, Khanam A, Ashraf Bhat F, Ahmad Mir S, Ghazwani M, Wahab S, Haider N, Almehizia AA. Therapeutic Delivery of Tumor Suppressor miRNAs for Breast Cancer Treatment. BIOLOGY 2023; 12:467. [PMID: 36979159 PMCID: PMC10045434 DOI: 10.3390/biology12030467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
The death rate from breast cancer (BC) has dropped due to early detection and sophisticated therapeutic options, yet drug resistance and relapse remain barriers to effective, systematic treatment. Multiple mechanisms underlying miRNAs appear crucial in practically every aspect of cancer progression, including carcinogenesis, metastasis, and drug resistance, as evidenced by the elucidation of drug resistance. Non-coding RNAs called microRNAs (miRNAs) attach to complementary messenger RNAs and degrade them to inhibit the expression and translation to proteins. Evidence suggests that miRNAs play a vital role in developing numerous diseases, including cancer. They affect genes critical for cellular differentiation, proliferation, apoptosis, and metabolism. Recently studies have demonstrated that miRNAs serve as valuable biomarkers for BC. The contrast in the expression of miRNAs in normal tissue cells and tumors suggest that miRNAs are involved in breast cancer. The important aspect behind cancer etiology is the deregulation of miRNAs that can specifically influence cellular physiology. The main objective of this review is to emphasize the role and therapeutic capacity of tumor suppressor miRNAs in BC and the advancement in the delivery system that can deliver miRNAs specifically to cancerous cells. Various approaches are used to deliver these miRNAs to the cancer cells with the help of carrier molecules, like nanoparticles, poly D, L-lactic-co-glycolic acid (PLGA) particles, PEI polymers, modified extracellular vesicles, dendrimers, and liposomes. Additionally, we discuss advanced strategies of TS miRNA delivery techniques such as viral delivery, self-assembled RNA-triple-helix hydrogel drug delivery systems, and hyaluronic acid/protamine sulfate inter-polyelectrolyte complexes. Subsequently, we discuss challenges and prospects on TS miRNA therapeutic delivery in BC management so that miRNAs will become a routine technique in developing individualized patient profiles.
Collapse
Affiliation(s)
- Sonali S. Shinde
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
- Department of Biomedical Engineering, Indian Institute of Technology, Rupnagar 140001, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Afreen Khanam
- Department of Pharmacognosy and Phytochemistry, Jamia Hamdard, New Delhi 110062, India
| | | | - Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, Hazratbal, Srinagar 190006, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Banerjee M, Devi Rajeswari V. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review. Crit Rev Oncol Hematol 2023; 182:103901. [PMID: 36584723 DOI: 10.1016/j.critrevonc.2022.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Triple-Negative Breast Cancer is the most aggressive form and accounts the 15%-25% of all breast cancer. Receptors are absent in triple-negative breast cancer, which makes them unresponsive to the current hormonal therapies. The patients with TNBC are left with the option of cytotoxic chemotherapy. The Wnt pathways are connected to cancer, and when activated, they result in mammary hyperplasia and tumors. The tumor suppressor microRNAs can block tumor cell proliferation, invasion, and migration, lead to cancer cell death, and are also known to down-regulate the WNT signaling. Nanoparticles with microRNA have been seen to be more effective when compared with their single release. In this review, we have tried to understand how Wnt signaling plays a crucial role in TNBC, EMT, metastasis, anti-drug resistance, and regulation of Wnt by microRNA. The role of nano-carriers in delivering micro-RNA. The clinical biomarkers, including the present state-of-the-art, involve novel pathways of Wnt.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
18
|
Shuaib M, Kumar S. Induced expression of miR-1250-5p exerts tumor suppressive role in triple-negative breast cancer cells. J Cell Biochem 2023; 124:282-293. [PMID: 36548440 DOI: 10.1002/jcb.30362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and it has a prevalence rate of 15%-20% among all breast cancer cases in younger women. Still, the underlying molecular mechanisms of its pathogenesis are not entirely understood. In the previous study, we identified that microRNA (miR)-1250-5p is significantly down-expressed in TNBC cells. Thus, in the present study, we explore the functional anticancer role of miR-1250-5p in the transient mimic transfected TNBC cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to examine the effect of miR-1250-5p on cell viability of TNBC (MDA-MB-231 and MDA-MB-453) cells. The confocal microscopy, quantitative real-time polymerase chain reaction, and western blot analysis techniques were used to assess the effect of miR-1250-5p on cancer hallmarks in test cells. Induced miR-1250-5p expression in MDA-MB-231 and MDA-MB-453 cells decreased cell viability in a time-dependent manner. Increased miR-1250-5p expression levels significantly decreased cell cycle G1/S phase transition markers (Cyclin D1 and CDK4) at messenger RNA (mRNA) and protein levels in TNBC cells compared to scrambled sequence transfected cells. Transient transfection of TNBC cells with miR-1250-5p mimic increased apoptosis in TNBC cells by increasing the level of active caspase (Caspase 8 and Caspase 3) of the intrinsic pathway. Apoptosis-related morphological changes were also observed in the test cells. Further, the induced expression of miR-1250-5p significantly decreased epithelial-mesenchymal transition (EMT) by altering the mRNA and protein levels of E-cadherin and Vimentin. Moreover, results of confocal microscopy revealed increased reactive oxygen species generation, and decreased mitochondria membrane potential in miR-1250-5p mimic transient transfected TNBC cells. In conclusion, miR-1250-5p acts as tumor suppressor in TNBC cells and its induction by therapeutics might be a novel strategy for the disease treatment.
Collapse
Affiliation(s)
- Mohd Shuaib
- Department of Biochemistry, Molecular Signaling & Drug Discovery Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Shashank Kumar
- Department of Biochemistry, Molecular Signaling & Drug Discovery Laboratory, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
19
|
Farheen J, Hosmane NS, Zhao R, Zhao Q, Iqbal MZ, Kong X. Nanomaterial-assisted CRISPR gene-engineering - A hallmark for triple-negative breast cancer therapeutics advancement. Mater Today Bio 2022; 16:100450. [PMID: 36267139 PMCID: PMC9576993 DOI: 10.1016/j.mtbio.2022.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20-24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients by about 21 months, emphasizing the need for advanced treatment. Recently, the adaptive immunity mechanism of archaea and bacteria, called clustered regularly interspaced short palindromic repeats (CRISPR) combined with nanotechnology, has been utilized as a potent gene manipulating tool with an extensive clinical application in cancer genomics due to its easeful usage and cost-effectiveness. However, CRISPR/Cas are arguably the efficient technology that can be made efficient via organic material-assisted approaches. Despite the efficacy of the CRISPR/Cas@nano complex, problems regarding successful delivery, biodegradability, and toxicity remain to render its medical implications. Therefore, this review is different in focus from past reviews by (i) detailing all possible genetic mechanisms of TNBC occurrence; (ii) available treatments and gene therapies for TNBC; (iii) overview of the delivery system and utilization of CRISPR-nano complex in TNBC, and (iv) recent advances and related toxicity of CRISPR-nano complex towards clinical trials for TNBC.
Collapse
Affiliation(s)
- Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Narayan S. Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Qingwei Zhao
- Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - M. Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
20
|
Ismail A, El-Mahdy HA, Abulsoud AI, Sallam AAM, Eldeib MG, Elsakka EG, Zaki MB, Doghish AS. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review. Int J Biol Macromol 2022; 224:1541-1565. [DOI: 10.1016/j.ijbiomac.2022.10.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
21
|
Hashemi M, Hasani S, Hajimazdarany S, Mirmazloomi SR, Makvandy S, Zabihi A, Goldoost Y, Gholinia N, Kakavand A, Tavakolpournegari A, Salimimoghadam S, Nabavi N, Zarrabi A, Taheriazam A, Entezari M, Hushmandi K. Non-coding RNAs targeting notch signaling pathway in cancer: From proliferation to cancer therapy resistance. Int J Biol Macromol 2022; 222:1151-1167. [DOI: 10.1016/j.ijbiomac.2022.09.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
|
22
|
Zhang Y, Yang M, Yang S, Hong F. Role of noncoding RNAs and untranslated regions in cancer: A review. Medicine (Baltimore) 2022; 101:e30045. [PMID: 35984196 PMCID: PMC9388041 DOI: 10.1097/md.0000000000030045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most prevalent diseases worldwide, and poses a threat to human health. Noncoding RNAs (ncRNAs) constitute most transcripts, but they cannot be translated into proteins. Studies have shown that ncRNAs can act as tumor suppressors or oncogenes. This review describes the role of several ncRNAs in various cancers, including microRNAs (miRNAs) such as the miR-34 family, let-7, miR-17-92 cluster, miR-210, and long noncoding RNAs (lncRNAs) such as HOX transcript antisense intergenic RNA (HOTAIR), Metastasis associated lung adenocarcinoma transcript 1 (MALAT1), H19, NF-κB-interacting lncRNA (NKILA), as well as circular RNAs (circRNAs) and untranslated regions (UTRs), highlighting their effects on cancer growth, invasion, metastasis, angiogenesis, and apoptosis. They function as tumor suppressors or oncogenes that interfere with different axes and pathways, including p53 and IL-6, which are involved in the progression of cancer. The characteristic expression of some ncRNAs in cancer also allows them to be used as biomarkers for early diagnosis and therapeutic candidates. There is a complex network of interactions between ncRNAs, with some lncRNAs and circRNAs acting as competitive endogenous RNAs (ceRNAs) to decoy miRNAs and repress their expression. The ceRNA network is a part of the ncRNA network and numerous ncRNAs work as nodes or hubs in the network, and disruption of their interactions can cause cancer development. Therefore, the balance and stabilization of this network are important for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yiping Zhang
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
- Queen Mary College, School of Medicine, Nanchang University, Nanchang, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou, China
| | - Shulong Yang
- Department of Physiology, Key Research Laboratory of Chronic Diseases, Fuzhou Medical College, Nanchang University, Fuzhou, China
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Herbal Ingredients in the Prevention of Breast Cancer: Comprehensive Review of Potential Molecular Targets and Role of Natural Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6044640. [PMID: 36017236 PMCID: PMC9398845 DOI: 10.1155/2022/6044640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Among various cancers, breast cancer is the most prevalent type in women throughout the world. Breast cancer treatment is challenging due to complex nature of the etiology of disease. Cell division cycle alterations are often encountered in a variety of cancer types including breast cancer. Common treatments include chemotherapy, surgery, radiotherapy, and hormonal therapy; however, adverse effects and multidrug resistance lead to complications and noncompliance. Accordingly, there is an increasing demand for natural products from medicinal plants and foods. This review summarizes molecular mechanisms of signaling pathways in breast cancer and identifies mechanisms by which natural compounds may exert their efficacy in the treatment of breast cancer.
Collapse
|
24
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
25
|
|
26
|
Hussen BM, Salihi A, Abdullah ST, Rasul MF, Hidayat HJ, Hajiesmaeili M, Ghafouri-Fard S. Signaling pathways modulated by miRNAs in breast cancer angiogenesis and new therapeutics. Pathol Res Pract 2022; 230:153764. [PMID: 35032831 DOI: 10.1016/j.prp.2022.153764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) act as oncogenes or tumor suppressors by suppressing the expression of target genes, some of which are engaged in angiogenic signaling pathways directly or indirectly. Tumor development and metastasis are dependent on angiogenesis, and it is the main reason for the poor prognosis of cancer patients. New blood vessels are formed from pre-existing vessels when angiogenesis occurs. Thus, it is essential to develop primary tumors and the spread of cancer to surrounding tissues. MicroRNAs (miRNAs) are small noncoding RNAs involved in various biological processes. They can bind to the 3'-UTR of their target genes and prevent them from expressing. MiRNAs control the activity of endothelial cells (ECs) through altering many biological pathways, which plays a key role in cancer progression and angiogenesis. Recent findings revealed that tumor-derived extracellular vesicles participated directly in the control of tumor angiogenesis by delivering miRNAs to ECs. miRNAs recently show great promise in cancer therapies to inhibit angiogenesis. In this study, we showed the miRNA-regulated signaling pathways in tumor angiogenesis with highlighting the anti-angiogenic therapy response and miRNA delivery methods that have been used to inhibit angiogenesis in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Tang Y, Chen Y, Zhang Z, Tang B, Zhou Z, Chen H. Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective. Pharmaceutics 2021; 13:pharmaceutics13122116. [PMID: 34959397 PMCID: PMC8708448 DOI: 10.3390/pharmaceutics13122116] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are characterized by intrinsic self-renewal and tumorigenic properties, and play important roles in tumor initiation, progression, and resistance to diverse forms of anticancer therapy. Accordingly, targeting signaling pathways that are critical for CSC maintenance and biofunctions, including the Wnt, Notch, Hippo, and Hedgehog signaling cascades, remains a promising therapeutic strategy in multiple cancer types. Furthermore, advances in various cancer omics approaches have largely increased our knowledge of the molecular basis of CSCs, and provided numerous novel targets for anticancer therapy. However, the majority of recently identified targets remain ‘undruggable’ through small-molecule agents, whereas the implications of exogenous RNA interference (RNAi, including siRNA and miRNA) may make it possible to translate our knowledge into therapeutics in a timely manner. With the recent advances of nanomedicine, in vivo delivery of RNAi using elaborate nanoparticles can potently overcome the intrinsic limitations of RNAi alone, as it is rapidly degraded and has unpredictable off-target side effects. Herein, we present an update on the development of RNAi-delivering nanoplatforms in CSC-targeted anticancer therapy and discuss their potential implications in clinical trials.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| |
Collapse
|
28
|
miRNA Delivery by Nanosystems: State of the Art and Perspectives. Pharmaceutics 2021; 13:pharmaceutics13111901. [PMID: 34834316 PMCID: PMC8619868 DOI: 10.3390/pharmaceutics13111901] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are short (~21-23 nucleotides), non-coding endogenous RNA molecules that modulate gene expression at the post-transcriptional level via the endogenous RNA interference machinery of the cell. They have emerged as potential biopharmaceuticals candidates for the treatment of various diseases, including cancer, cardiovascular and metabolic diseases. However, in order to advance miRNAs therapeutics into clinical settings, their delivery remains a major challenge. Different types of vectors have been investigated to allow the delivery of miRNA in the diseased tissue. In particular, non-viral delivery systems have shown important advantages such as versatility, low cost, easy fabrication and low immunogenicity. Here, we present a general overview of the main types of non-viral vectors developed for miRNA delivery, with their advantages, limitations and future perspectives.
Collapse
|
29
|
Iqbal S, Luo B, Melamed JR, Day ES. Critical Evaluation of Different Lysosomal Labeling Methods Used to Analyze RNA Nanocarrier Trafficking in Cells. Bioconjug Chem 2021; 32:2245-2256. [PMID: 34543006 PMCID: PMC9014481 DOI: 10.1021/acs.bioconjchem.1c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of nucleic acids to regulate gene expression is a rapidly developing field with immense clinical potential. Nanomaterials are frequently used to deliver nucleic acids into cells as they can overcome the poor cellular uptake and endo/lysosomal degradation of bare nucleic acids. For these nanocarriers to be effective, they must escape endo/lysosomal compartments to deliver their nucleic acid cargo into the cytosol (for ribonucleic acid (RNA)) or nucleus (for deoxyribonucleic acid (DNA)). This process is poorly understood and remains an area of active research toward the goal of developing effective delivery strategies. Fluorescent endo/lysosomal markers are among the most widely employed tools used to evaluate the endosomal escape of nucleic acid nanocarriers. However, the endo/lysosomal labeling method may alter the extent of and route of nanocarrier uptake by cells. The impact of these markers on cellular function and cell-nanocarrier interactions has not been probed in a systematic manner. To investigate this, we compared the effects of several common lysosomal labeling methods, namely, LysoTracker Red (LT Red), transient lysosomal-associated membrane protein 1-mutant green fluorescent protein (LAMP1-mGFP) transfection (Transient GFP), and stable lentiviral LAMP1-mGFP transfection (Stable GFP), on cellular metabolic activity, nanocarrier uptake, nanocarrier/lysosomal label colocalization, and gene silencing potency in U87 glioblastoma and MDA-MB-231 breast cancer cells using polyethyleneimine (PEI)/ribonucleic acid (RNA) polyplexes as a model nanocarrier. In both U87s and MDA-MB-231s, Transient GFP and LT Red labeling reduced metabolic activity relative to untransfected (Parental) cells, while Stable GFP labeling increased metabolic activity. Congruently, flow cytometry indicates Stable GFP cells have greater polyplex uptake than LT Red-labeled cells in both cell lines. Despite these similar trends in uptake, polyplex intracellular trafficking differs in the two cell lines, as confocal imaging revealed greater polyplex/lysosome colocalization in Stable GFP U87 cells than LT Red-labeled U87 cells, while the trend was reversed in MBA-MB-231s. The level of RNA-mediated gene silencing achieved in Parental versus Stable GFP U87 and MDA-MB-231 cells agreed with the observed levels of polyplex/lysosome colocalization, supporting the established concept that endosomal escape is the rate-limiting step for RNA interference. These findings indicate that lysosomal labels can profoundly alter cellular function and cell-nanocarrier interactions, presenting critical new considerations for researchers investigating nanoparticle trafficking.
Collapse
Affiliation(s)
- Shoaib Iqbal
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Benjamin Luo
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Jilian R Melamed
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, Delaware 19713, United States
| |
Collapse
|
30
|
Dang MN, Hoover EC, Scully MA, Sterin EH, Day ES. Antibody Nanocarriers for Cancer Management. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100295. [PMID: 34423177 PMCID: PMC8373047 DOI: 10.1016/j.cobme.2021.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibodies are extremely valuable tools in modern medicine due to their ability to target diseased cells through selective antigen binding and thereby regulate cellular signaling or inhibit cell-cell interactions with high specificity. However, the therapeutic utility of freely delivered antibodies is limited by high production costs, low efficacy, dose-limiting toxicities, and inability to cross the cellular membrane (which hinders antibodies against intracellular targets). To overcome these limitations, researchers have begun to develop nanocarriers that can improve antibodies' delivery efficiency, safety profile, and clinical potential. This review summarizes recent advances in the design and implementation of nanocarriers for extracellular or intracellular antibody delivery, emphasizing important design considerations, and points to future directions for the field.
Collapse
Affiliation(s)
- Megan N. Dang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Elise C. Hoover
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Mackenzie A. Scully
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Eric H. Sterin
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Emily S. Day
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, 19713, United States
| |
Collapse
|
31
|
Marracino L, Fortini F, Bouhamida E, Camponogara F, Severi P, Mazzoni E, Patergnani S, D’Aniello E, Campana R, Pinton P, Martini F, Tognon M, Campo G, Ferrari R, Vieceli Dalla Sega F, Rizzo P. Adding a "Notch" to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Front Cell Dev Biol 2021; 9:695114. [PMID: 34527667 PMCID: PMC8435685 DOI: 10.3389/fcell.2021.695114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the Notch pathway is implicated in the pathophysiology of cardiovascular diseases (CVDs), but, as of today, therapies based on the re-establishing the physiological levels of Notch in the heart and vessels are not available. A possible reason is the context-dependent role of Notch in the cardiovascular system, which would require a finely tuned, cell-specific approach. MicroRNAs (miRNAs) are short functional endogenous, non-coding RNA sequences able to regulate gene expression at post-transcriptional levels influencing most, if not all, biological processes. Dysregulation of miRNAs expression is implicated in the molecular mechanisms underlying many CVDs. Notch is regulated and regulates a large number of miRNAs expressed in the cardiovascular system and, thus, targeting these miRNAs could represent an avenue to be explored to target Notch for CVDs. In this Review, we provide an overview of both established and potential, based on evidence in other pathologies, crosstalks between miRNAs and Notch in cellular processes underlying atherosclerosis, myocardial ischemia, heart failure, calcification of aortic valve, and arrhythmias. We also discuss the potential advantages, as well as the challenges, of using miRNAs for a Notch-based approach for the diagnosis and treatment of the most common CVDs.
Collapse
Affiliation(s)
- Luisa Marracino
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Esmaa Bouhamida
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Camponogara
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele D’Aniello
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberta Campana
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Paola Rizzo
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| |
Collapse
|
32
|
Shadbad MA, Safaei S, Brunetti O, Derakhshani A, Lotfinejad P, Mokhtarzadeh A, Hemmat N, Racanelli V, Solimando AG, Argentiero A, Silvestris N, Baradaran B. A Systematic Review on the Therapeutic Potentiality of PD-L1-Inhibiting MicroRNAs for Triple-Negative Breast Cancer: Toward Single-Cell Sequencing-Guided Biomimetic Delivery. Genes (Basel) 2021; 12:genes12081206. [PMID: 34440380 PMCID: PMC8391239 DOI: 10.3390/genes12081206] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The programmed death-ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) is a well-established inhibitory immune checkpoint axis in triple-negative breast cancer (TNBC). Growing evidence indicates that tumoral PD-L1 can lead to TNBC development. Although conventional immune checkpoint inhibitors have improved TNBC patients’ prognosis, their effect is mainly focused on improving anti-tumoral immune responses without substantially regulating oncogenic signaling pathways in tumoral cells. Moreover, the conventional immune checkpoint inhibitors cannot impede the de novo expression of oncoproteins, like PD-L1, in tumoral cells. Accumulating evidence has indicated that the restoration of specific microRNAs (miRs) can downregulate tumoral PD-L1 and inhibit TNBC development. Since miRs can target multiple mRNAs, miR-based gene therapy can be an appealing approach to inhibit the de novo expression of oncoproteins, like PD-L1, restore anti-tumoral immune responses, and regulate various intracellular singling pathways in TNBC. Therefore, we conducted the current systematic review based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) to provide a comprehensive and unbiased synthesis of currently available evidence regarding the effect of PD-L1-inhibiting miRs restoration on TNBC development and tumor microenvironment. For this purpose, we systematically searched the Cochrane Library, Embase, Scopus, PubMed, ProQuest, Web of Science, Ovid, and IranDoc databases to obtain the relevant peer-reviewed studies published before 25 May 2021. Based on the current evidence, the restoration of miR-424-5p, miR-138-5p, miR-570-3p, miR-200c-3p, miR-383-5p, miR-34a-5p, miR-3609, miR-195-5p, and miR-497-5p can inhibit tumoral PD-L1 expression, transform immunosuppressive tumor microenvironment into the pro-inflammatory tumor microenvironment, inhibit tumor proliferation, suppress tumor migration, enhance chemosensitivity of tumoral cells, stimulate tumor apoptosis, arrest cell cycle, repress the clonogenicity of tumoral cells, and regulate various oncogenic signaling pathways in TNBC cells. Concerning the biocompatibility of biomimetic carriers and the valuable insights provided by the single-cell sequencing technologies, single-cell sequencing-guided biomimetic delivery of these PD-L1-inhibiting miRs can decrease the toxicity of traditional approaches, increase the specificity of miR-delivery, enhance the efficacy of miR delivery, and provide the affected patients with personalized cancer therapy.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (M.A.S.); (P.L.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Parisa Lotfinejad
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (M.A.S.); (P.L.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonio Giovanni Solimando
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonella Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
- Correspondence: (N.S.); (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.)
| |
Collapse
|
33
|
Pal RR, Rajpal V, Singh P, Saraf SA. Recent Findings on Thymoquinone and Its Applications as a Nanocarrier for the Treatment of Cancer and Rheumatoid Arthritis. Pharmaceutics 2021; 13:775. [PMID: 34067322 PMCID: PMC8224699 DOI: 10.3390/pharmaceutics13060775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer causes a considerable amount of mortality in the world, while arthritis is an immunological dysregulation with multifactorial pathogenesis including genetic and environmental defects. Both conditions have inflammation as a part of their pathogenesis. Resistance to anticancer and disease-modifying antirheumatic drugs (DMARDs) happens frequently through the generation of energy-dependent transporters, which lead to the expulsion of cellular drug contents. Thymoquinone (TQ) is a bioactive molecule with anticancer as well as anti-inflammatory activities via the downregulation of several chemokines and cytokines. Nevertheless, the pharmacological importance and therapeutic feasibility of thymoquinone are underutilized due to intrinsic pharmacokinetics, including short half-life, inadequate biological stability, poor aqueous solubility, and low bioavailability. Owing to these pharmacokinetic limitations of TQ, nanoformulations have gained remarkable attention in recent years. Therefore, this compilation intends to critically analyze recent advancements in rheumatoid arthritis and cancer delivery of TQ. This literature search revealed that nanocarriers exhibit potential results in achieving targetability, maximizing drug internalization, as well as enhancing the anti-inflammatory and anticancer efficacy of TQ. Additionally, TQ-NPs (thymoquinone nanoparticles) as a therapeutic payload modulated autophagy as well as enhanced the potential of other drugs when given in combination. Moreover, nanoformulations improved pharmacokinetics, drug deposition, using EPR (enhanced permeability and retention) and receptor-mediated delivery, and enhanced anti-inflammatory and anticancer properties. TQ's potential to reduce metal toxicity, its clinical trials and patents have also been discussed.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Vasundhara Rajpal
- Department of Biotechology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India;
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| |
Collapse
|
34
|
Li G, Yin J, Wu Z, Li S, He A, Sun Z. Expression level of miRNA in the peripheral blood of patients with multiple myeloma and its clinical significance. Am J Transl Res 2021; 13:5343-5349. [PMID: 34150128 PMCID: PMC8205780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the expression level of serum miRNA-192-5p and its clinical value in the diagnosis and care of patients with multiple myeloma (MM). METHODS Eighty-eight patients with MM admitted to our hospital from June 2017 to April 2020 were selected as the observation group. In addition, 70 patients who received osteoporosis testing in our hospital in the corresponding period but were excluded from having MM and haematological malignancy were selected as the control group. The relative expression level of serum miRNA-192-5p was detected. The expression level of serum miRNA and its correlation with patient-related clinical parameters were compared and analyzed. The ROC curve was used to analyze its diagnostic efficacy for MM. RESULTS The relative expression level of serum miRNA-192-5p in MM patients was remarkably lower than that in the control group (P < 0.05); the AUC area of serum miRNA-192-5p in patients with a diagnosis of MM was 0.853, with a cutoff value of 0.72, the sensitivity of 86.30%, and the specificity of 81.20%, P = 0.030. The relative expression level of miRNA-192-5p in the serum of patients with high β2-MG and creatinine levels was markedly reduced compared to that in patients with low β2-MG levels (P < 0.05); the relative expression level of miRNA-192-5p in the serum of patients with low hemoglobin and albumin levels was markedly reduced compared to that in patients with normal hemoglobin and albumin (P < 0.05); and there was significantly negative correlation between the relative expression level of miRNA-192-5p in the serum of MM patients and IgG and IgA levels, respectively (P < 0.05). CONCLUSION miRNA-192-5p may serve as an auxiliary diagnostic tool in the diagnosis of MM. Furthermore, because there is certain correlation between serum miRNA-192-5p and MM progression and prognosis, it may be regarded as a novel marker for MM monitoring.
Collapse
Affiliation(s)
- Guangbao Li
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| | - Jianwen Yin
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| | - Zutong Wu
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| | - Shizhong Li
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| | - Aijun He
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| | - Zhenzhen Sun
- Department of Peadiatrics, The First Affiliated Hospital of Shaoyang UniversityShaoyang 422000, P. R. China
| |
Collapse
|
35
|
Li Y, Jia F, Deng X, Wang X, Lu J, Shao L, Cui X, Pan Z, Wu Y. Combinatorial miRNA-34a replenishment and irinotecan delivery via auto-fluorescent polymeric hybrid micelles for synchronous colorectal cancer theranostics. Biomater Sci 2021; 8:7132-7144. [PMID: 33150879 DOI: 10.1039/d0bm01579b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synergistic combination of microRNA (miRNA) modulation and chemotherapy has emerged as an effective strategy to combat cancer. Irinotecan (IRI) is a potent antitumor chemotherapeutic in clinical practice and has been used for treating various malignant tumors, including colorectal cancer (CRC). However, IRI is not effective for advanced CRC or metastatic behavior. Herein, novel polymeric hybrid micelles were engineered based on two different amphiphilic copolymers, polyethyleneimine-poly(d,l-lactide) (PEI-PLA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethyleneglycol) (DSPE-PEG), in which IRI and a tumor suppressive microRNA-34a (miR-34a) gene were efficiently co-loaded (MINPs) to achieve a chemo-miRNA combination therapy against CRC. MINPs were successfully constructed by two-step film dispersion and electrostatic interaction methods. IRI and miR-34a could be efficaciously encapsulated as MINPs and transferred to CRC cells. After encapsulation, MINPs would then upregulate miR-34a expression and regulate miR-34a-related downstream genes, which in turn led to enhanced cell cytotoxicity and apoptosis ratios. MINPs presented an excitation-dependent multi-wavelength emission feature due to the intrinstic fluorescence properties of PEI-PLA and could be utilized for in vitro/vivo imaging. According to the in vivo experimental results, MINPs possess the great characteristic of accumulating in situ in a tumor site and lightening it after intravenous administration. Furthermore, MINPs presented extraordinary antitumor efficacy owing to the combined therapy effects of IRI and miR-34a with good biocompability. Overall, our findings validated MINPs-mediated miR-34a replenishment and IRI co-delivery to serve as an effective theranostic platform and provided an innovative horizon for combining chemo-gene therapy against CRC.
Collapse
Affiliation(s)
- Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
37
|
Study and Preparation of Multifunctional Poly(L-Lysine)@Hyaluronic Acid Nanopolyplexes for the Effective Delivery of Tumor Suppressive MiR-34a into Triple-Negative Breast Cancer Cells. MATERIALS 2020; 13:ma13235309. [PMID: 33255217 PMCID: PMC7727712 DOI: 10.3390/ma13235309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Non-viral gene delivery using exogenous microRNAs is a potential strategy for fighting cancers with poor prognosis and which lack specific therapies, such as triple-negative breast cancer (TNBC). Herein we report the synthesis of six nontoxic electrostatic polymeric nanocapsules (P1 to P6) for microRNA delivery in TNBC cells. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize the nanopolyplexes, synthesized with Poly(L-Lysine) and hyaluronic acid (Ha). Studies on the activity of the ternary HA/PLI/miRNA-34 nanopolyplexes towards TNBC cell line MDA-MB-231 were conducted. The nanopolyplexes mediated intracellular restoration of tumor suppressor miR34a was evaluated by using Western blotting to quantify the expression level of the Bcl-2 protein. The results suggest that the P5, with a ratio PLI/Ha of 0.05, was the most promising for the delivery of miR-34a into TNBC cells; the P5 nanocapsules were able to reduce Bcl-2 expression at a protein level, and had an effect in the overall cell viability after 24 h treatment.
Collapse
|
38
|
Tang Z, Chen W, Xu Y, Lin X, Liu X, Li Y, Liu Y, Luo Z, Liu Z, Fang W, Zhao M. miR-4721, Induced by EBV-miR-BART22, Targets GSK3β to Enhance the Tumorigenic Capacity of NPC through the WNT/β-catenin Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:557-571. [PMID: 33230457 PMCID: PMC7566007 DOI: 10.1016/j.omtn.2020.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is prevalent in East and Southeast Asia. In a previous study, Epstein-Barr virus (EBV)-miR-BART22 induces tumor metastasis and stemness and is significantly involved in NPC progression. In the present study, we observed that miR-4721 is induced by EBV-miR-BART22 through phosphatidylinositol 3-kinase (PI3K)/AKT/c-JUN/Sp1 signaling to promote its transcription. In a subsequent study, we observed that miR-4721 serves as a potential oncogenic factor promoting NPC cell cycle progression and cell proliferation in vitro and in vivo. Mechanism analysis indicated that miR-4721 directly targetes GSK3β and reduces its expression, which therefore elevates β-catenin intra-nuclear aggregation and activates its downstream cell cycle factors, including CCND1 and c-MYC. In clinical samples, miR-4721 and GSK3β are respectively observed to be upregulated and downregulated in NPC progression. Elevated expression of miR-4721 is positively associated with clinical progression and poor prognosis. Our study first demonstrated that miR-4721 as an oncogene is induced by EBV-miR-BART22 via modulating PI3K/AKT/c-JUN/Sp1 signaling to target GSK3β, which thus activates the WNT/β-catenin-stimulated cell cycle signal and enhances the tumorigenic capacity in NPC. miR-4721 may be a potential biomarker or therapeutic target in NPC treatment in the future.
Collapse
Affiliation(s)
- ZiBo Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - WeiFeng Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Yan Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Xiong Liu
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - YongHao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - YiYi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - ZhiJian Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zhen Liu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 511436 Guangzhou, China
| | - WeiYi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - MengYang Zhao
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.,Department of Oncology, The People's Hospital of Zhengzhou University, 450003 Zhengzhou, China
| |
Collapse
|