1
|
Yang C, Yan Z, Sun Z, Hu F, Xu W. FOXO3 Inhibits the Cisplatin Resistance and Progression of Melanoma Cells by Promoting CDKN1C Transcription. Appl Biochem Biotechnol 2024; 196:7834-7848. [PMID: 38568329 DOI: 10.1007/s12010-024-04909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Forkhead box O3 (FOXO3) and cyclin dependent kinase inhibitor 1 C Gene (CDKN1C) have been shown to be involved in the melanoma process, but their roles in the cisplatin (DDP) resistance of melanoma remain unclear. METHODS The mRNA levels of CDKN1C and FOXO3 were measured using quantitative real-time PCR. The protein levels of CDKN1C, FOXO3 and mitochondrial oxidative phosphorylation (mtOXPHOS)-related markers were determinant by western blot analysis. The DDP resistance, proliferation, and apoptosis of melanoma cells were assessed by cell counting kit 8 assay, colony formation assay and flow cytometry. Glucose consumption, lactate production and ATP level were detected to assess glycolysis. The regulation of FOXO3 on CDKN1C was confirmed by ChIP assay and dual-luciferase reporter assay. In vivo experiments were performed to evaluate the effect of FOXO3 on DDP sensitivity in melanoma tumor tissues. RESULTS CDKN1C and FOXO3 were downregulated in chemoresistant melanoma tissues, and their low expression levels were related to the poor prognosis of melanoma patients. Overexpression of CDKN1C and FOXO3 repressed DDP resistance, proliferation, and glycolysis, while promoted apoptosis and mtOXPHOS in DDP-resistant melanoma cells. Further analysis suggested that FOXO3 could bind to CDKN1C promoter region to enhance its transcription. Besides, CDKN1C knockdown reversed the regulation of FOXO3 on melanoma cell DDP resistance and progression. Moreover, FOXO3 overexpression enhanced the DDP sensitivity of melanoma tumor tissues in vivo. CONCLUSION FOXO3 promoted the transcription of CDKN1C, thereby inhibiting the DDP resistance and progression of melanoma cells.
Collapse
Affiliation(s)
- Chao Yang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Zeqiang Yan
- Department of Gastroenterology, Affiliated Hospital of Hubei, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Zhihua Sun
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Fen Hu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Wei Xu
- Department of Dermatology, Affiliated Hospital of Hubei, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China.
| |
Collapse
|
2
|
Mitra A, Yi D, Dai Z, de Jesus Perez V. Unraveling the role of HIF and epigenetic regulation in pulmonary arterial hypertension: implications for clinical research and its therapeutic approach. Front Med (Lausanne) 2024; 11:1460376. [PMID: 39450110 PMCID: PMC11499164 DOI: 10.3389/fmed.2024.1460376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with high pulmonary pressure, which ultimately leads to right heart failure and premature death. Emerging evidence suggests that both hypoxia and epigenetics play a pivotal role in the pathogenesis of PAH development. In this review article, we summarize the current developments in regulation of hypoxia inducible factor (HIF) isoforms in PAH vascular remodeling and the development of suitable animal models for discovery and testing of HIF pathway-targeting PAH therapeutics. In addition, we also discuss the epigenetic regulation of HIF-dependent isoforms in PAH and its therapeutic potential from a new perspective which highlights the importance of HIF isoform-specific targeting as a novel salutary strategy for PAH treatment.
Collapse
Affiliation(s)
- Ankita Mitra
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, United States
| | - Dan Yi
- Department of Internal Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ, United States
| | - Zhiyu Dai
- Department of Internal Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ, United States
- Department of Medicine, Washington University School of Medicine in St. Louis (WashU), St. Louis, MO, United States
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
3
|
Wen Y, Lei W, Zhang J, Liu Q, Li Z. Advances in understanding the role of lncRNA in ferroptosis. PeerJ 2024; 12:e17933. [PMID: 39210921 PMCID: PMC11361268 DOI: 10.7717/peerj.17933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
LncRNA is a type of transcript with a length exceeding 200 nucleotides, which was once considered junk transcript with no biological function during the transcription process. In recent years, lncRNA has been shown to act as an important regulatory factor at multiple levels of gene expression, affecting various programmed cell death modes including ferroptosis. Ferroptosis, as a new form of programmed cell death, is characterized by a deficiency of cysteine or inactivation of glutathione peroxidase, leading to depletion of glutathione, aggregation of iron ions, and lipid peroxidation. These processes are influenced by many physiological processes, such as the Nrf2 pathway, autophagy, p53 pathway and so on. An increasing number of studies have shown that lncRNA can block the expression of specific molecules through decoy effect, guide specific proteins to function, or promote interactions between molecules as scaffolds. These modes of action regulate the expression of key factors in iron metabolism, lipid metabolism, and antioxidant metabolism through epigenetic or genetic regulation, thereby regulating the process of ferroptosis. In this review, we snapshotted the regulatory mechanism of ferroptosis as an example, emphasizing the regulation of lncRNA on these pathways, thereby helping to fully understand the evolution of ferroptosis in cell fate.
Collapse
Affiliation(s)
- Yating Wen
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jie Zhang
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Qiong Liu
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongyu Li
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Wang C, Wang Z, Zi Y, Dan X, Xu J, Zhao J, Xu W, Wu Z, Liu W, Ma B. Compensatory upregulation of MT2A alleviates neurogenic intermittent claudication through inhibiting activated p38 MAPK-mediated neuronal apoptosis. Hum Cell 2024; 37:675-688. [PMID: 38546949 DOI: 10.1007/s13577-024-01043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/08/2024] [Indexed: 04/15/2024]
Abstract
Neurogenic intermittent claudication (NIC), a classic symptom of lumbar spinal stenosis (LSS), is associated with neuronal apoptosis. To explore the novel therapeutic target of NIC treatment, we constructed the rat model of NIC by cauda equina compression (CEC) method and collected dorsal root ganglion (DRG) tissues, a region responsible for sensory and motor function, for mRNA sequencing. Bioinformatic analysis of mRNA sequencing indicated that upregulated metallothionein 2A (MT2A), an apoptosis-regulating gene belonging to the metallothionein family, might participate in NIC progression. Activated p38 MAPK mediated motor dysfunction following LSS and it was also found in DRG tissues of rats with NIC. Therefore, we supposed that MT2A might affect NIC progression by regulating p38 MAPK pathway. Then the rat model of NIC was used to explore the exact role of MT2A. Rats at day 7 post-CEC exhibited poorer motor function and had two-fold MT2A expression in DRG tissues compared with rats with sham operation. Co-localization analysis showed that MT2A was highly expressed in neurons, but not in microglia or astrocytes. Subsequently, neurons isolated from DRG tissues of rats were exposed to hypoxia condition (3% O2, 92% N2, 5% CO2) to induce cell damage. Gain of MT2A function in neurons was performed by lentivirus-mediated overexpression. MT2A overexpression inhibited apoptosis by inactivating p38 MAPK in hypoxia-exposed neurons. Our findings indicated that high MT2A expression was related to NIC progression, and MT2A overexpression protected against NIC through inhibiting activated p38 MAPK-mediated neuronal apoptosis in DRG tissues.
Collapse
Affiliation(s)
- Chenggang Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhanchao Wang
- Department of Orthopedics, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ying Zi
- Department of Orthopedics, Air Force Hospital of the Northern Theater of Chinese People's Liberation Army (PLA), Shenyang, Liaoning, China
| | - Xuejian Dan
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jiahui Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Liu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Bin Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
5
|
Li H, Gao W, Wang H, Zhang H, Huang L, Yuan T, Zheng W, Wu Q, Liu J, Xu W, Wang W, Yang L, Zhu Y. Evidence from an Avian Embryo Model that Zinc-Inducible MT4 Expression Protects Mitochondrial Function Against Oxidative Stress. J Nutr 2024; 154:896-907. [PMID: 38301957 DOI: 10.1016/j.tjnut.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Metallothioneins (MTs) have a strong affinity for zinc (Zn) and remain at a sufficiently high level in mitochondria. As the avian embryo is highly susceptible to oxidative damage and relatively easy to manipulate in a naturally closed chamber, it is an ideal model of the effects of oxidative stress on mitochondrial function. However, the protective roles and molecular mechanisms of Zn-inducible protein expression on mitochondrial function in response to various stressors are poorly understood. OBJECTIVES The study aimed to investigate the mechanisms by which Zn-induced MT4 expression protects mitochondrial function and energy metabolism subjected to oxidative stress using the avian embryo and embryonic primary hepatocyte models. METHODS First, we investigated whether MT4 expression alters mitochondrial function. Then, we examined the effects of Zn-induced MT4 overexpression and MT4 silencing on embryonic primary hepatocytes from breeder hens fed a normal Zn diet subjected to a tert-butyl hydroperoxide (BHP) oxidative stress challenge during incubation. In vivo, the avian embryos from hens fed the Zn-deficient and Zn-adequate diets were used to determine the protective roles of Zn-induced MT4 expression on the function of mitochondria exposed to oxidative stress induced by in ovo BHP injection. RESULTS An in vitro study revealed that Zn-induced MT4 expression reduced reactive oxygen species accumulation in primary hepatocytes. MT4 silencing exacerbated BHP-mediated mitochondrial dysfunction whereas Zn-inducible MT4 overexpression mitigated it. Another in vivo study disclosed that maternal Zn-induced MT4 expression protected mitochondrial function in chick embryo hepatocytes against oxidative stress by inhibiting the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/peroxisome proliferators-activated receptor-γ (PPAR-γ) pathway. CONCLUSION This study underscores the potential protective roles of Zn-induced MT4 expression via the downregulation of the PGC-1α/PPAR-γ pathway on mitochondrial function stimulated by the stress challenge in the primary hepatocytes in an avian embryo model. Our findings suggested that Zn-induced MT4 expression could provide a new therapeutic target and preventive strategy for repairing mitochondrial dysfunction in disease.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Wei Gao
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Heng Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Huaqi Zhang
- College of Agriculture, Tongren Polytechnic University, Tongren, People's Republic of China
| | - Liang Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Tong Yuan
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Wenxuan Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qilin Wu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ju Liu
- Department of Poultry Breeding, Enping Long Industrial Co. Ltd., Enping, People's Republic of China
| | - Weihan Xu
- Department of Poultry Breeding, Zhengzhi Poultry Industry Co. Ltd., Shantou, People's Republic of China
| | - Wence Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Yongwen Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Lv J, Liu X, Sun Z, Gao J, Yu X, Zhang M, Zhang Z, Ren S, Zuo Y. STEAP3 promotes colon cancer cell proliferation and migration via regulating histone acetylation. Hum Genet 2024; 143:343-355. [PMID: 38480539 DOI: 10.1007/s00439-024-02646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/19/2024] [Indexed: 04/25/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent diagnosed cancer in men and second most prevalent cancer in women. H3K27ac alterations are more commonly than gene mutations in colorectal cancer. Most colorectal cancer genes have significant H3K27ac changes, which leads to an over-expression disorder in gene transcription. Over-expression of STEAP3 is involved in a variety of tumors, participating in the regulation of cancer cell proliferation and migration. The purpose of this work is to investigate the role of STEAP3 in the regulation of histone modification (H3K27ac) expression in colon cancer. Bioinformatic ChIP-seq, ChIP-qPCR and ATAC-seq were used to analyze the histone modification properties and gene accessibility of STEAP3. Western blot and qRT-PCR were used to evaluate relative protein and gene expression, respectively. CRISPR/Cas9 technology was used to knockout STEAP3 on colon cancer cells to analyze the effect of ATF3 on STEAP3. STEAP3 was over-expressed in colon cancer and associated with higher metastases and more invasive and worse stage of colon cancer. ChIP-seq and ChIP-qPCR analyses revealed significant enrichment of H3K27ac in the STEAP3 gene. In addition, knocking down STEAP3 significantly inhibits colon cancer cell proliferation and migration and down-regulates H3K27ac expression. ChIP-seq found that ATF3 is enriched in the STEAP3 gene and CRISPR/Cas9 technology used for the deletion of the ATF3 binding site suppresses the expression of STEAP3. Over-expression of STEAP3 promotes colon cancer cell proliferation and migration. Mechanical studies have indicated that H3K27ac and ATF3 are significantly enriched in the STEAP3 gene and regulate the over-expression of STEAP3.
Collapse
Affiliation(s)
- Jinjuan Lv
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiaoqian Liu
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Zhiwei Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jianfeng Gao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaoqi Yu
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Mengyan Zhang
- Department of Medical Laboratory, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, 272011, China
| | - Zhenyu Zhang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Yunfei Zuo
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
7
|
Zhou L, Jiang J, Huang Z, Jin P, Peng L, Luo M, Zhang Z, Chen Y, Xie N, Gao W, Nice EC, Li JQ, Chen HN, Huang C. Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m6A-mediated degradation of STEAP3 mRNA. Mol Cancer 2022; 21:168. [PMID: 35986274 PMCID: PMC9392287 DOI: 10.1186/s12943-022-01638-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Hypoxia, a typical hallmark of solid tumors, exhibits an essential role in the progression of colorectal cancer (CRC), in which the dysregulation of long non-coding RNAs (lncRNAs) is frequently observed. However, the underlying mechanisms are not clearly defined. Methods The TCGA database was analyzed to identify differential lncRNA expression involved in hypoxia-induced CRC progression. qRT-PCR was conducted to validate the upregulation of lncRNA STEAP3-AS1 in CRC cell lines and tumor-bearing mouse and zebrafish models under hypoxia. ChIP-qRT-PCR was used to detect the transcriptional activation of STEAP3-AS1 mediated by HIF-1α. RNA-seq, fluorescent in situ hybridization, RNA pulldown, RNA immunoprecipitation, co-immunoprecipitation, immunofluorescence and immunoblot experiments were used to ascertain the involved mechanisms. Functional assays were performed in both in vitro and in vivo models to investigate the regulatory role of STEAP3-AS1/STEAP3/Wnt/β-catenin axis in CRC proliferation and metastasis. Results Here, we identified a hypoxia-induced antisense lncRNA STEAP3-AS1 that was highly expressed in clinical CRC tissues and positively correlated with poor prognosis of CRC patients. Upregulation of lncRNA STEAP3-AS1, which was induced by HIF-1α-mediated transcriptional activation, facilitated the proliferation and metastasis of CRC cells both in vitro and in vivo. Mechanistically, STEAP3-AS1 interacted competitively with the YTH domain-containing family protein 2 (YTHDF2), a N6-methyladenosine (m6A) reader, leading to the disassociation of YTHDF2 with STEAP3 mRNA. This effect protected STEAP3 mRNA from m6A-mediated degradation, enabling the high expression of STEAP3 protein and subsequent production of cellular ferrous iron (Fe2+). Increased Fe2+ levels elevated Ser 9 phosphorylation of glycogen synthase kinase 3 beta (GSK3β) and inhibited its kinase activity, thus releasing β-catenin for nuclear translocation and subsequent activation of Wnt signaling to support CRC progression. Conclusions Taken together, our study highlights the mechanisms of lncRNA STEAP3-AS1 in facilitating CRC progression involving the STEAP3-AS1/STEAP3/Wnt/β-catenin axis, which may provide novel diagnostic biomarkers or therapeutic targets to benefit CRC treatment. Graphical abstract Hypoxia-induced HIF-1α transcriptionally upregulates the expression of lncRNA STEAP3-AS1, which interacts competitively with YTHDF2, thus upregulating mRNA stability of STEAP3 and consequent STEAP3 protein expression. The enhanced STEAP3 expression results in production of cellular ferrous iron (Fe2+), which induces the Ser 9 phosphorylation and inactivation of GSK3β, releasing β-catenin for nuclear translocation and contributing to subsequent activation of Wnt signaling to promote CRC progression.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01638-1.
Collapse
|
8
|
Yuan J, Li Z, Lin Z, Yao S, Han Y, Fu Q, Liu J. Label-free quantitative proteomics reveals the Steap3-Gm2a axis inhibiting the phagosomal escape of Listeria monocytogenes. Microbes Infect 2022; 24:104999. [DOI: 10.1016/j.micinf.2022.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022]
|
9
|
Li F, Jiao X, Zhao J, Liao X, Wei Y, Li Q. Antitumor mechanisms of an exopolysaccharide from Lactobacillus fermentum on HT-29 cells and HT-29 tumor-bearing mice. Int J Biol Macromol 2022; 209:552-562. [PMID: 35421410 DOI: 10.1016/j.ijbiomac.2022.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022]
Abstract
We have obtained an exopolysaccharide (YL-11 EPS) produced by Lactobacillus fermentum YL-11 isolated from fermented milk and confirmed that it can effectively inhibit colon cancer HT-29 cells proliferation in vitro. The aim of this study is to study anti-colon cancer effect in vivo and its possible mechanisms. Animal assays indicated YL-11 EPS treatment significantly suppressed the growth of HT-29 tumor xenograft without exhibiting obvious negative effects on normal cells. Cell experiments demonstrated YL-11 EPS treatment up regulated the ratio of Bax/Bcl-2 and induced the decrease in mitochondrial membrane potential and improved the expression of cleaved caspases-3 and cleaved PARP proteins, and finally induced HT-29 cells apoptosis, suggesting the involvement of mitochondrial pathway. Moreover, YL-11 EPS can block the PI3K/AKT signaling pathway and arrest the cell cycle in G1-phase to exert its anti-colon cancer activity. Overall, YL-11 EPS can be explored as a potential nutraceutical to prevent colorectal cancer.
Collapse
Affiliation(s)
- Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
10
|
Ye CL, Du Y, Yu X, Chen ZY, Wang L, Zheng YF, Liu XH. STEAP3 Affects Ferroptosis and Progression of Renal Cell Carcinoma Through the p53/xCT Pathway. Technol Cancer Res Treat 2022; 21:15330338221078728. [PMID: 35275508 PMCID: PMC8921746 DOI: 10.1177/15330338221078728] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Renal cell carcinoma is particularly sensitive to ferroptosis, an iron-dependent non-apoptotic form of cell death. This mechanism does not require activation of caspase or the participation of other apoptotic effector molecules (such as BAX or BAK), nor is it accompanied by the morphological characteristics or biochemical processes of apoptosis. The STEAP3 gene was found because it promotes tumor apoptosis in prostate cancer, but its role in renal cell carcinoma has not been studied in depth. Through real-time quantitative polymerase chain reaction, we found that the expression of the STEAP3 gene was upregulated in renal cell carcinoma tissue samples and cell lines, and it was found to be highly expressed in renal cell carcinoma tissue through immunohistochemistry. This upregulation is related to poor survival and prognosis of patients. We used erastin, a ferroptosis inducer, found that renal cell carcinoma became more susceptible to ferroptosis after knocking down STEAP3. The results indicate that renal cell carcinoma cell lines with knocked down STEAP3 expression are more sensitive to ferroptosis, and this effect occurs through the p53/xCT pathway. In summary, our research helps to identify new biomarkers and provides new targets for the treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Cheng Lin Ye
- 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.,* Cheng Lin Ye and Yang Du are co-first authors and contributed equally in this paper
| | - Yang Du
- 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.,* Cheng Lin Ye and Yang Du are co-first authors and contributed equally in this paper
| | - Xi Yu
- 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhi Yuan Chen
- 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Lei Wang
- 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Yong Fa Zheng
- 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Xiu Heng Liu
- 117921Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
11
|
Guo Q, Li L, Hou S, Yuan Z, Li C, Zhang W, Zheng L, Li X. The Role of Iron in Cancer Progression. Front Oncol 2021; 11:778492. [PMID: 34858857 PMCID: PMC8631356 DOI: 10.3389/fonc.2021.778492] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential trace element for the human body, and its deficiency or excess can induce a variety of biological processes. Plenty of evidences have shown that iron metabolism is closely related to the occurrence and development of tumors. In addition, iron plays an important role in cell death, which is very important for the development of potential strategies for tumor treatment. Here, we reviewed the latest research about iron metabolism disorders in various types of tumors, the functions and properties of iron in ferroptosis and ferritinophagy, and new opportunities for iron-based on treatment methods for tumors, providing more information regarding the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Liwen Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenhui Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Jing X, Xu G, Gong Y, Li J, LingfengWu, Zhu W, He Y, Li Z, Pan S. A five-gene methylation signature predicts overall survival of patients with clear cell renal cell carcinoma. J Clin Lab Anal 2021; 35:e24031. [PMID: 34716619 PMCID: PMC8649352 DOI: 10.1002/jcla.24031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In this study, we aimed to screen methylation signatures associated with the prognosis of patients with clear cell renal cell carcinoma (ccRCC). METHODS Gene expression and methylation profiles of ccRCC patients were downloaded from publicly available databases, and differentially expressed genes (DEGs)-differentially methylated genes (DMGs) were obtained. Subsequently, gene set enrichment and transcription factor (TF) regulatory network analyses were performed. In addition, a prognostic model was constructed and the relationship between disease progression and immunity was analyzed. RESULTS A total of 23 common DEGs-DMGs were analyzed, among which 14 DEGs-DMGs were obtained with a cutoff value of PCC < 0 and p < 0.05. The enrichment analysis showed that the 14 DEGs-DMGs were enriched in three GO terms and three KEGG pathways. In addition, a total of six TFs were shown to be associated with the 14 DEGs-DMGs, including RP58, SOX9, NF-κB65, ATF6, OCT, and IK2. A prognostic model using five optimized DEGs-DMGs which efficiently predicted survival was constructed and validated using the GSE105288 dataset. Additionally, four types of immune cells (NK cells, macrophages, neutrophils, and cancer-associated fibroblasts), as well as ESTIMATE, immune, and stromal scores were found to be significantly correlated with ccRCC progression (normal, primary, and metastasis) in addition to the five optimized DEGs-DMGs. CONCLUSION A five-gene methylation signature with the predictive ability for ccRCC prognosis was investigated in this study, consisting of CCNB2, CDKN1C, CTSH, E2F2, and ERMP1. In addition, potential targets for methylation-mediated immunotherapy were highlighted.
Collapse
Affiliation(s)
- Xiao Jing
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Xu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Yu Gong
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Junlong Li
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - LingfengWu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wei Zhu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yi He
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhongyi Li
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shouhua Pan
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
13
|
Yuan D, Zhu Y. Knockdown of LINC01224 Suppresses Colon Cancer Progression by Sponging miR-485-5p to Downregulate MCL1. Cancer Manag Res 2021; 13:7803-7812. [PMID: 34675675 PMCID: PMC8520417 DOI: 10.2147/cmar.s289024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background Colon cancer (CC) is the most commonly occurring malignant tumor in the world. The current cancer treatment options have been less effective especially in the advanced stages of CC and patients have poor overall survival. Hence, there is an urgent need to explore novel molecular therapeutic targets for CC treatment. Methods qRT-PCR was performed to detect the levels of lncRNA LINC01224 (LINC01224), microRNA-485-5p (miR-485-5p), MCL1 in CC tumor tissues or cell lines. Two si-RNAs against LINC01224 were used to silence the level of LINC01224, and CCK-8 assay, colony formation assay, and transwell assay were performed to explore the role of LINC01224 on the proliferation, migration, and invasion of CC cell lines. Kaplan–Meier method was applied for evaluating the association between LINC01224 level and the overall survival of CC patients. Through bioinformatics analysis, we found that LINC01224 sponged miR-485-5p and consequently targeted MCL1. Dual-luciferase reporter assay, RNA pull-down assay, qRT-PCR, and Western blot assay were conducted for verification of the interactions among LINC01224, miR-485-5p, and MCL1. Furthermore, the role of LINC01224/miR-485-5p/MCL1 axis in CC progression was investigated by CCK-8 assay, colony formation assay, and transwell assay. Results LINC01224 was highly expressed in CC tumor tissues and CC cell lines, and its expression was associated with the overall survival of CC patients. The LINC01224-siRNAs (si-LINC01224) markedly suppressed the level of LINC01224 in CC cell lines (HT29 and SW480 cells) and consequently significantly suppressed the proliferation, migration, and invasion of the HT29 and SW480 cells. LINC01224 was verified to sponge miR-485-5p and consequently targeted MCL1. MiR-485-5p inhibitor or MCL1 overexpression (MCL1 OE) markedly restored the repressive effect of the si-LINC01224 pool on MCL1 expression level, as well as proliferation, migration, and invasion of HT29 and SW480 cells. Conclusion This study identified LINC01224/miR-485-5p/MCL1 axis as a novel molecular therapeutic target involved in CC progression.
Collapse
Affiliation(s)
- Danping Yuan
- Department of Colorectal Surgery, Ningbo First Hospital, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Yanan Zhu
- Department of Emergency, Taizhou Hospital of Zhejiang Province, Linhai, 317000, Zhejiang, People's Republic of China
| |
Collapse
|
14
|
Su L, Zhang J, Zhang X, Zheng L, Zhu Z. Identification of cell cycle as the critical pathway modulated by exosome-derived microRNAs in gallbladder carcinoma. Med Oncol 2021; 38:141. [PMID: 34655361 PMCID: PMC8520510 DOI: 10.1007/s12032-021-01594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Gallbladder cancer (GBC), the most common malignancy in the biliary tract, is highly lethal malignant due to seldomly specific symptoms in the early stage of GBC. This study aimed to identify exosome-derived miRNAs mediated competing endogenous RNAs (ceRNA) participant in GBC tumorigenesis. A total of 159 differentially expressed miRNAs (DEMs) was identified as exosome-derived miRNAs, contains 34 upregulated exo-DEMs and 125 downregulated exo-DEMs based on the expression profiles in GBC clinical samples downloaded from the Gene Expression Omnibus database with the R package. Among them, 2 up-regulated exo-DEMs, hsa-miR-125a-3p and hsa-miR-4647, and 5 down-regulated exo-DEMs, including hsa-miR-29c-5p, hsa-miR-145a-5p, hsa-miR-192-5p, hsa-miR-194-5p, and hsa-miR-338-3p, were associated with the survival of GBC patients. Results of the gene set enrichment analysis showed that the cell cycle-related pathways were activated in GBC tumor tissues, mainly including cell cycle, M phase, and cell cycle checkpoints. Furthermore, the dysregulated ceRNA network was constructed based on the lncRNA-miRNA-mRNA interactions using miRDB, TargetScan, miRTarBase, miRcode, and starBase v2.0., consisting of 27 lncRNAs, 6 prognostic exo-DEMs, and 176 mRNAs. Together with prognostic exo-DEMs, the STEAP3-AS1/hsa-miR-192-5p/MAD2L1 axis was identified, suggesting lncRNA STEAP3-AS1, might as a sponge of exosome-derived hsa-miR-192-5p, modulates cell cycle progression via affecting MAD2L1 expression in GBC tumorigenesis. In addition, the biological functions of genes in the ceRNA network were also annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Our study promotes exploration of the molecular mechanisms associated with tumorigenesis and provide potential targets for GBC diagnosis and treatment.
Collapse
Affiliation(s)
- Li Su
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Jicheng Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xinglong Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Lei Zheng
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Zhifa Zhu
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China
| |
Collapse
|
15
|
Nandwani A, Rathore S, Datta M. LncRNAs in cancer: Regulatory and therapeutic implications. Cancer Lett 2020; 501:162-171. [PMID: 33359709 DOI: 10.1016/j.canlet.2020.11.048] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a class of RNAs that do not code for proteins but are critical in regulating diverse cellular processes and maintaining cell function. In doing so, they have, in recent years, added a potentially new and significant layer of biological regulation. These are more than 200 nucleotides in length and are implicated in a range of diseases and therefore have emerged as potential tools for possible therapeutic intervention. For a disease as complex as cancer, emerging technologies suggest the presence of mutations on genomic loci that do not encode proteins, but give rise to lncRNAs. Aberrant signatures of lncRNAs are now a consistent feature of almost all types of cancers and their associated complications. Analysis and characterisation of functional pathways that lncRNAs are involved with suggest that lncRNAs interact with the chromatin, the protein or with the RNA to demonstrate their cellular effects to modulate proliferation, migration, differentiation, apoptosis and cell death. This review summarizes the current knowledge of lncRNAs, their implications in diverse types of cancer and their possible therapeutic utility.
Collapse
Affiliation(s)
- Arun Nandwani
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Shalu Rathore
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
16
|
Ghafouri-Fard S, Shoorei H, Anamag FT, Taheri M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front Oncol 2020; 10:608975. [PMID: 33330110 PMCID: PMC7734207 DOI: 10.3389/fonc.2020.608975] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|