1
|
Saadh MJ, Faisal A, Adil M, Zabibah RS, Mamadaliev AM, Jawad MJ, Alsaikhan F, Farhood B. Parkinson's Disease and MicroRNAs: A Duel Between Inhibition and Stimulation of Apoptosis in Neuronal Cells. Mol Neurobiol 2024; 61:8552-8574. [PMID: 38520611 DOI: 10.1007/s12035-024-04111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Parkinson's disease (PD) is one of the most prevalent diseases of central nervous system that is caused by degeneration of the substantia nigra's dopamine-producing neurons through apoptosis. Apoptosis is regulated by initiators' and executioners' caspases both in intrinsic and extrinsic pathways, further resulting in neuronal damage. In that context, targeting apoptosis appears as a promising therapeutic approach for treating neurodegenerative diseases. Non-coding RNAs-more especially, microRNAs, or miRNAs-are a promising target for the therapy of neurodegenerative diseases because they are essential for a number of cellular processes, including signaling, apoptosis, cell proliferation, and gene regulation. It is estimated that a substantial portion of coding genes (more than 60%) are regulated by miRNAs. These small regulatory molecules can have wide-reaching consequences on cellular processes like apoptosis, both in terms of intrinsic and extrinsic pathways. Furthermore, it was recommended that a disruption in miRNA expression levels could also result in perturbation of typical apoptosis pathways, which may be a factor in certain diseases like PD. The latest research on miRNAs and their impact on neural cell injury in PD models by regulating the apoptosis pathway is summarized in this review article. Furthermore, the importance of lncRNA/circRNA-miRNA-mRNA network for regulating apoptosis pathways in PD models and treatment is explored. These results can be utilized for developing new strategies in PD treatment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Schönberg J, Borlak J. miRNA biomarkers to predict risk of primary non-function of fatty allografts and drug induced acute liver failures. Mol Cell Biochem 2024:10.1007/s11010-024-05129-3. [PMID: 39424772 DOI: 10.1007/s11010-024-05129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
Primary non-function (PNF) of an allograft defines an irreversible graft failure and although rare, constitutes a life-threatening condition that requires high-urgency re-transplantation. Equally, drug induced acute liver failures (ALF) are seldom but the rapid loss of hepatic function may require orthotropic liver transplantation (OLT). Recently, we reported the development of a rodent PNF-disease model of fatty allografts and showed that a dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of PNF. Based on findings from the rat PNF-disease model, we selected 15 miRNA-biomarker candidates for clinical validation and performed RT-qPCRs in well-documented PNF cases following OLT of fatty allografts. To assess specificity and selectivity, we compared their regulation in pre- and intraoperative liver biopsies and pre- and post-operative blood samples of patients undergoing elective hepatobiliary surgery. Additionally, we assessed their regulation in drug induced ALF. We confirmed clinical relevance for 11 PNF-associated miRNAs and found expression of miRNA-27b-3p, miRNA-122-3p, miRNA-125a-5p, miRNA-125b-5p and miRNA-192-5p to correlate with the hepatic steatosis grades. Furthermore, we demonstrate selectivity and specificity for the biomarker candidates with opposite regulation of let-7b-5p, miRNA-122-5p, miRNA-125b-5p and miRNA-194-5p in blood samples of patients following successful OLTs and/or liver resection. Moreover, by considering findings from 21 independent ALF-studies, we observed nine PNF-associated miRNAs regulated in common. We report miRNAs highly regulated in PNF and ALF, and their common regulation in different diseases broadens the perspective as biomarker candidates. Our study warrants independent confirmation in randomized clinical trials.
Collapse
Affiliation(s)
- Juliette Schönberg
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Wang H, Liu X, Chen Y, Li W, Ge Y, Liang H, Xu B, Li X. The regulatory role of miR-21 in ferroptosis by targeting FTH1 and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135580. [PMID: 39186845 DOI: 10.1016/j.jhazmat.2024.135580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Arsenic is recognized as a hazardous environmental toxicant strongly associated with neurological damage, but the mechanism is ambiguous. Neuronal cell death is one of the mechanisms of arsenic-induced neurological injury. Ferroptosis is involved in the pathophysiological process of many neurological diseases, however, the role and regulatory mechanism of ferroptosis in nerve injury under arsenic exposure remains uncovered. Our findings confirmed the role of ferroptosis in arsenic-induced learning and memory disorder and revealed miR-21 played a regulatory role in neuronal ferroptosis. Further study discovered that miR-21 regulated neuronal ferroptosis by targeting at FTH1, a finding which has not been documented before. We also found an extra increase of ferroptosis in neuronal cells conditionally cultured by medium collected from arsenic-exposed microglial cells when compared with neuronal cells directly exposed to the same dose of arsenic. Moreover, microglia-derived exosomes removal or miR-21 knockdown in microglia inhibited neuronal ferroptosis, suggesting the role of intercellular communication in the promotion of neuronal ferroptosis. In summary, our findings highlighted the regulatory role of miR-21 in ferroptosis and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis.
Collapse
Affiliation(s)
- Huanhuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Xudan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Yao Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Wanying Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Yanhong Ge
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Huning Liang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122.
| | - Xin Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122.
| |
Collapse
|
4
|
Wang X, Ji H, Yang Y, Zhang D, Kong X, Li X, Li H, Lu Y, Yang G, Liu J, Wu H, Hong J, Ma X. Moxibustion Regulates the BRG1/Nrf2/HO-1 Pathway by Inhibiting MicroRNA-222-3p to Prevent Oxidative Stress in Intestinal Epithelial Cells in Ulcerative Colitis and Colitis-Associated Colorectal Cancer. J Immunol Res 2024; 2024:8273732. [PMID: 39359694 PMCID: PMC11446618 DOI: 10.1155/2024/8273732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 10/04/2024] Open
Abstract
Oxidative stress is crucial in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). Intestinal epithelial cells (IECs) are an important component of the intestinal barrier. In previous studies, we have demonstrated that suppressing microRNA-222-3p (miR-222-3p) can protect against oxidative stress in IECs, which ameliorates colonic injuries in UC mice and prevents the conversion of UC to CAC. In this case, we hope to explore whether moxibustion can alleviate UC and CAC by inhibiting miR-222-3p based on mouse models of UC and CAC. After herb-partitioned moxibustion (HPM) intervention, the disease activity index (DAI) and colon macroscopic damage index (CMDI) were significantly reduced in UC mice, and the number and volume of intestinal tumors were decreased considerably in CAC mice. Meanwhile, we found that HPM suppressed miR-222-3p expression and upregulated the mRNA and protein expression of Brahma-related gene 1 (BRG1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), while inhibiting Kelch-like ECH-associated protein 1 (Keap1) expression in IECs of UC and CAC mice. With changes in reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α), we verified that HPM protects against oxidative stress and inflammation in IECs of UC and CAC mice. The effect of HPM was inhibited in miR-222-3p overexpression mice, further demonstrating that the protective effect of HPM on UC and CAC mice was through inhibiting miR-222-3p. In summary, HPM regulates the BRG1/Nrf2/HO-1 pathway by inhibiting miR-222-3p to attenuate oxidative stress in IECs in UC and CAC.
Collapse
Affiliation(s)
- Xuejun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Eye Institute and Department of Ophthalmology Eye and ENT Hospital Fudan University, Shanghai 200030, China
| | - Haiyang Ji
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiehe Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hongna Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yunqiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guang Yang
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jie Liu
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jue Hong
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiaopeng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Shanghai Research Institute of Acupuncture and Meridian Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| |
Collapse
|
5
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2024:10.1007/s12013-024-01492-6. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Saadh MJ, Ahmed HH, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Jawad MJ, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. Small molecule and big function: MicroRNA-mediated apoptosis in rheumatoid arthritis. Pathol Res Pract 2024; 261:155508. [PMID: 39116571 DOI: 10.1016/j.prp.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune condition and chronic inflammatory disease, mostly affecting synovial joints. The complex pathogenesis of RA is supportive of high morbidity, disability, and mortality rates. Pathological changes a common characteristic in RA synovial tissue is attributed to the inadequacy of apoptotic pathways. In that regard, apoptotic pathways have been the center of attention in RA therapeutic approaches. As the regulators in the complex network of apoptosis, microRNAs (miRNAs) are found to be vital modulators in both intrinsic and extrinsic pathways through altering their regulatory genes. Indeed, miRNA, a member of the family of non-coding RNAs, are found to be an important player in not even apoptosis, but proliferation, gene expression, signaling pathways, and angiogenesis. Aberrant expression of miRNAs is implicated in attenuation and/or intensification of various apoptosis routes, resulting in culmination of human diseases including RA. Considering the need for more studies focused on the underlying mechanisms of RA in order to elevate the unsatisfactory clinical treatments, this study is aimed to delineate the importance of apoptosis in the pathophysiology of this disease. As well, this review is focused on the critical role of miRNAs in inducing or inhibiting apoptosis of RA-synovial fibroblasts and fibroblast-like synoviocytes and how this mechanism can be exerted for therapeutic purposes for RA.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand- 831001, India.
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
8
|
Letafati A, Taghiabadi Z, Ardekani OS, Abbasi S, Najafabadi AQ, Jazi NN, Soheili R, Rodrigo R, Yavarian J, Saso L. Unveiling the intersection: ferroptosis in influenza virus infection. Virol J 2024; 21:185. [PMID: 39135112 PMCID: PMC11321227 DOI: 10.1186/s12985-024-02462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
The influenza virus (IFV) imposes a considerable health and economic burden globally, requiring a comprehensive understanding of its pathogenic mechanisms. Ferroptosis, an iron-dependent lipid peroxidation cell death pathway, holds unique implications for the antioxidant defense system, with possible contributions to inflammation. This exploration focuses on the dynamic interplay between ferroptosis and the host defense against viruses, emphasizing the influence of IFV infections on the activation of the ferroptosis pathway. IFV causes different types of cell death, including apoptosis, necrosis, and ferroptosis. IFV-induced ferroptotic cell death is mediated by alterations in iron homeostasis, intensifying the accumulation of reactive oxygen species and promoting lipid peroxidation. A comprehensive investigation into the mechanism of ferroptosis in viral infections, specifically IFV, has great potential to identify therapeutic strategies. This understanding may pave the way for the development of drugs using ferroptosis inhibitors, presenting an effective approach to suppress viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Taghiabadi
- Department of Microbiology and Virology of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Omid Salahi Ardekani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Simin Abbasi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Qaraee Najafabadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Negar Nayerain Jazi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jila Yavarian
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy.
| |
Collapse
|
9
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2024:10.1007/s10528-024-10897-0. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Tang X, Ren Y, Zeng W, Feng X, He M, Lv Y, Li Y, He Y. MicroRNA-based interventions in aberrant cell cycle diseases: Therapeutic strategies for cancers, central nervous system disorders and comorbidities. Biomed Pharmacother 2024; 177:116979. [PMID: 38906026 DOI: 10.1016/j.biopha.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Malignant tumors and central nervous system (CNS) disorders are intricately linked to a process known as "aberrant cell cycle re-entry," which plays a critical role in the progression of these diseases. Addressing the dysregulation in cell cycles offers a promising therapeutic approach for cancers and CNS disorders. MicroRNAs (miRNAs) play a crucial role as regulators of gene expression in cell cycle transitions, presenting a promising therapeutic avenue for treating these disorders and their comorbidities. This review consolidates the progress made in the last three years regarding miRNA-based treatments for diseases associated with aberrant cell cycle re-entry. It encompasses exploring fundamental mechanisms and signaling pathways influenced by miRNAs in cancers and CNS disorders, particularly focusing on the therapeutic effects of exosome-derived miRNAs. The review also identifies specific miRNAs implicated in comorbidity of cancers and CNS disorders, discusses the future potential of miRNA reagents in managing cell cycle-related diseases.
Collapse
Affiliation(s)
- Xiaojuan Tang
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China; School of Biomedical Sciences Hunan University, Hunan University, Changsha, Hunan 410012, China.
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaoting Feng
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Min He
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yuan Lv
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Yongmin Li
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Yongheng He
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
11
|
Soltani-Fard E, Taghvimi S, Karimi F, Vahedi F, Khatami SH, Behrooj H, Deylami Hayati M, Movahedpour A, Ghasemi H. Urinary biomarkers in diabetic nephropathy. Clin Chim Acta 2024; 561:119762. [PMID: 38844018 DOI: 10.1016/j.cca.2024.119762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Diabetic nephropathy (DN), a significant consequence of diabetes, is associated with adverse cardiovascular and renal disease as well as mortality. Although microalbuminuria is considered the best non-invasive marker for DN, better predictive markers are needed of sufficient sensitivity and specificity to detect disease in general and in early disease specifically. Even prior to appearance of microalbuminuria, urinary biomarkers increase in diabetics and can serve as accurate nephropathy biomarkers even in normoalbuminuria. In this review, a number of novel urine biomarkers including those reflecting kidney damage caused by glomerular/podocyte damage, tubular damage, oxidative stress, inflammation, and intrarenal renin-angiotensin system activation are discussed. Our review also includes emerging biomarkers such as urinary microRNAs. These short noncoding miRNAs regulate gene expression and could be utilized to identify potential novel biomarkers in DN development and progression. .
Collapse
Affiliation(s)
- Elahe Soltani-Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Farzaneh Vahedi
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
12
|
Yang T, Hu J, Zhang L, Liu L, Pan X, Zhou Y, Wu Y, Shi X, Obiegbusi CN, Dong X. CircCUL1 inhibits trophoblast cell migration and invasion and promotes cell autophagy by sponging hsa-miR-30e-3p in fetal growth restriction via the ANXA1/PI3K/AKT axis. J Biochem Mol Toxicol 2024; 38:e23759. [PMID: 39003567 DOI: 10.1002/jbt.23759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Fetal growth restriction (FGR) severely affects the health outcome of newborns and represents a major cause of perinatal morbidity. The precise involvement of circCULT1 in the progression of FGR remains unclear. We performed next-generation sequencing and RT-qPCR to identify differentially expressed circRNAs in placental tissues affected by FGR by comparing them with unaffected counterparts. Edu, flow cytometry, and transwell assay were conducted to detect HTR8/SVneo cell's function in regard to cell proliferation, migration, and invasion. The interaction between circCUL1 and hsa-miR-30e-3p was assessed through dual-luciferase reporter assays, validation of the interaction between circCUL1 and ANXA1 was performed using RNA pulldown and immunoprecipitation assays. Western blot analysis was performed to evaluate protein levels of autophagy markers and components of the PI3K/AKT signaling pathway. A knockout (KO) mouse model was established for homologous mmu-circ-0001469 to assess fetal mouse growth and development indicators. Our findings revealed an upregulation of circCUL1 expression in placental tissues from patients with FGR. We found that suppression of circCUL1 increased the trophoblast cell proliferation, migration, and invasion, circCUL1 could interact with hsa-miR-30e-3p. Further, circCUL1 stimulated autophagy, modulating trophoblast cell autophagy via the ANXA1/PI3K/AKT pathway, and a notable disparity was observed, with KO mice displaying accelerated embryo development and exhibiting heavier placentas in comparison to wild-type C57BL/6 mice. By modulating the ANXA1/PI3K/AKT signaling pathway through the interaction with hsa-miR-30e-3p, circCUL1 promotes autophagy while concurrently suppressing trophoblast cell proliferation, migration, and invasion. These findings offer novel insights into potential diagnostic markers and therapeutic targets for FGR research.
Collapse
Affiliation(s)
- Tong Yang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin Pan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yanqiu Zhou
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xian Shi
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chidera N Obiegbusi
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Zhang J, Tian Z, Qin C, Momeni MR. The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs. Hum Cell 2024; 37:887-903. [PMID: 38587596 DOI: 10.1007/s13577-024-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Physical activity on a regular basis has been shown to bolster the overall wellness of an individual; research is now revealing that these changes are accompanied by epigenetic modifications. Regular exercise has been proven to make intervention plans more successful and prolong adherence to them. When it comes to epigenetic changes, there are four primary components. This includes changes to the DNA, histones, expression of particular non-coding RNAs and DNA methylation. External triggers, such as physical activity, can lead to modifications in the epigenetic components, resulting in changes in the transcription process. This report pays attention to the current knowledge that pertains to the epigenetic alterations that occur after exercise, the genes affected and the resulting characteristics.
Collapse
Affiliation(s)
- Junxiong Zhang
- Xiamen Academy of Art and Design, Fuzhou University, Xiamen, 361024, Fujian, China.
| | - Zhongxin Tian
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| | - Chao Qin
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | | |
Collapse
|
14
|
Lin S, Chen Q, Tan C, Su M, Min L, Ling L, Zhou J, Zhu T. ZEB family is a prognostic biomarker and correlates with anoikis and immune infiltration in kidney renal clear cell carcinoma. BMC Med Genomics 2024; 17:153. [PMID: 38840097 PMCID: PMC11151722 DOI: 10.1186/s12920-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Zinc finger E-box binding homEeobox 1 (ZEB1) and ZEB2 are two anoikis-related transcription factors. The mRNA expressions of these two genes are significantly increased in kidney renal clear cell carcinoma (KIRC), which are associated with poor survival. Meanwhile, the mechanisms and clinical significance of ZEB1 and ZEB2 upregulation in KIRC remain unknown. METHODS Through the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, expression profiles, prognostic value and receiver operating characteristic curves (ROCs) of ZEB1 and ZEB2 were evaluated. The correlations of ZEB1 and ZEB2 with anoikis were further assessed in TCGA-KIRC database. Next, miRTarBase, miRDB, and TargetScan were used to predict microRNAs targeting ZEB1 and ZEB2, and TCGA-KIRC database was utilized to discern differences in microRNAs and establish the association between microRNAs and ZEBs. TCGA, TIMER, TISIDB, and TISCH were used to analyze tumor immune infiltration. RESULTS It was found that ZEB1 and ZEB2 expression were related with histologic grade in KIRC patient. Kaplan-Meier survival analyses showed that KIRC patients with low ZEB1 or ZEB2 levels had a significantly lower survival rate. Meanwhile, ZEB1 and ZEB2 are closely related to anoikis and are regulated by microRNAs. We constructed a risk model using univariate Cox and LASSO regression analyses to identify two microRNAs (hsa-miR-130b-3p and hsa-miR-138-5p). Furthermore, ZEB1 and ZEB2 regulate immune cell invasion in KIRC tumor microenvironments. CONCLUSIONS Anoikis, cytotoxic immune cell infiltration, and patient survival outcomes were correlated with ZEB1 and ZEB2 mRNA upregulation in KIRC. ZEB1 and ZEB2 are regulated by microRNAs.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qi Chen
- Department of Urology, Foshan First People's Hospital, Foshan City, Guangdong Province, China
| | - Canliang Tan
- Department of general surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Manyi Su
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ling Min
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lv Ling
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Junhao Zhou
- Department of general surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
- KingMed school of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- KingMed school of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
15
|
Sadri Nahand J, Khanaliha K, Khatami A, Aminjavaheri P, Abbasi-Kolli M, Mirzaei H, Motlaghzadeh S, Nahid-Samiei R, Bokharaei-Salim F. Expression pattern analysis of the long non-coding RNAs (TINCR, RP11-573D15.8, RP11-156E8.1), and their target genes (AKT1, FOXO1 and MAPK3) in patients with HIV infection, and elite controllers. Heliyon 2024; 10:e30900. [PMID: 38803943 PMCID: PMC11128862 DOI: 10.1016/j.heliyon.2024.e30900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Elite controllers (ECs) defined as a small subclass of subjects with HIV capable of controlling human immunodeficiency virus (HIV) replication in the lack of antiretroviral treatment. One class of RNA molecules that serve as vital components in the network of HIV-related transcriptional regulation, are long noncoding RNAs (lncRNAs). The critical part that they take is in transcriptional regulation of HIV through monitoring various cellular signaling pathways. Reportedly, AKT and MAPK signaling pathways serve a crucial role in modulation of HIV infection. In the current investigation, we utilized bioinformatics tools to predict the lncRNAs that have the ability to interact with MAPK3, AKT, and FOXO1. Then, PBMC expression levels of lncRNAs and their target genes (AKT, FOXO1 and MAPK3) measured in the ECs (n = 15), HIV-positive (n = 40) patients and healthy control subjects (n = 40). We found a significant increase and decrease in the level of AKT and FOXO1 expression within the ECs group, respectively than in the HIV + group (P-value <0.0001 and 0.04, respectively). In the ECs group, the level of TINCR and RP11-156E8.1 was overexpressed compared to the HIV + group (P-value: 0.004 and 0.001, respectively). While RP11-573D15.8 level in ECs exhibited a significant suppression in contrast to HIV + group (P-value: 0.02). According to the receiver-operating characteristic (ROC) curve results, AKT and TINCR could serve as useful biomarkers for screening ECs groups from HIV + patients and healthy control groups. Overall, different expression patterns of selected factors and ROC curve results showed these factors could critically contribute to HIV controlling and be considered as diagnostic markers for ECs from HIV + samples.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisasadat Aminjavaheri
- Department of Microbial Biotechnology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rahil Nahid-Samiei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Saadh MJ, Mahdi MS, Allela OQB, Alazzawi TS, Ubaid M, Rakhimov NM, Athab ZH, Ramaiah P, Chinnasamy L, Alsaikhan F, Farhood B. Critical role of miR-21/exosomal miR-21 in autophagy pathway. Pathol Res Pract 2024; 257:155275. [PMID: 38643552 DOI: 10.1016/j.prp.2024.155275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
Activation of autophagy, a process of cellular stress response, leads to the breakdown of proteins, organelles, and other parts of the cell in lysosomes, and can be linked to several ailments, such as cancer, neurological diseases, and rare hereditary syndromes. Thus, its regulation is very carefully monitored. Transcriptional and post-translational mechanisms domestically or in whole organisms utilized to control the autophagic activity, have been heavily researched. In modern times, microRNAs (miRNAs) are being considered to have a part in post-translational orchestration of the autophagic activity, with miR-21 as one of the best studied miRNAs, it is often more than expressed in cancer cells. This regulatory RNA is thought to play a major role in a plethora of processes and illnesses including growth, cancer, cardiovascular disease, and inflammation. Different studies have suggested that a few autophagy-oriented genes, such as PTEN, Rab11a, Atg12, SIPA1L2, and ATG5, are all targeted by miR-21, indicating its essential role in the regulation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Nodir M Rakhimov
- Department of Oncology, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Oncology, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia jSchool of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Ostrycharz E, Fitzner A, Kęsy A, Siennicka A, Hukowska-Szematowicz B. MicroRNAs participate in the regulation of apoptosis and oxidative stress-related gene expression in rabbits infected with Lagovirus europaeus GI.1 and GI.2 genotypes. Front Microbiol 2024; 15:1349535. [PMID: 38516020 PMCID: PMC10955125 DOI: 10.3389/fmicb.2024.1349535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
MicroRNAs (miRs) are a group of small, 17-25 nucleotide, non-coding RNA that regulate gene expression at the post-transcriptional level. To date, little is known about the molecular signatures of regulatory interactions between miRs and apoptosis and oxidative stress in viral diseases. Lagovirus europaeus is a virus that causes severe disease in rabbits (Oryctolagus cuniculus) called Rabbit Hemorrhagic Disease (RHD) and belongs to the Caliciviridae family, Lagovirus genus. Within Lagovirus europaeus associated with RHD, two genotypes (GI.1 and GI.2) have been distinguished, and the GI.1 genotype includes four variants (GI.1a, GI.1b, GI.1c, and GI.1d). The study aimed to assess the expression of miRs and their target genes involved in apoptosis and oxidative stress, as well as their potential impact on the pathways during Lagovirus europaeus-two genotypes (GI.1 and GI.2) infection of different virulences in four tissues (liver, lung, kidneys, and spleen). The expression of miRs and target genes related to apoptosis and oxidative stress was determined using quantitative real-time PCR (qPCR). In this study, we evaluated the expression of miR-21 (PTEN, PDCD4), miR-16b (Bcl-2, CXCL10), miR-34a (p53, SIRT1), and miRs-related to oxidative stress-miR-122 (Bach1) and miR-132 (Nfr-2). We also examined the biomarkers of both processes (Bax, Bax/Bcl-2 ratio, Caspase-3, PARP) and HO-I as biomarkers of oxidative stress. Our report is the first to present the regulatory effects of miRs on apoptosis and oxidative stress genes in rabbit infection with Lagovirus europaeus-two genotypes (GI.1 and GI.2) in four tissues (liver, lungs, kidneys, and spleen). The regulatory effect of miRs indicates that, on the one hand, miRs can intensify apoptosis (miR-16b, miR-34a) in the examined organs in response to a viral stimulus and, on the other hand, inhibit (miR-21), which in both cases may be a determinant of the pathogenesis of RHD and tissue damage. Biomarkers of the Bax and Bax/Bcl-2 ratio promote more intense apoptosis after infection with the Lagovirus europaeus GI.2 genotype. Our findings demonstrate that miR-122 and miR-132 regulate oxidative stress in the pathogenesis of RHD, which is associated with tissue damage. The HO-1 biomarker in the course of rabbit hemorrhagic disease indicates oxidative tissue damage. Our findings show that miR-21, miR-16b, and miR-34a regulate three apoptosis pathways. Meanwhile, miR-122 and miR-132 are involved in two oxidative stress pathways.
Collapse
Affiliation(s)
- Ewa Ostrycharz
- Institute of Biology, University of Szczecin, Szczecin, Poland
- Doctoral School, University of Szczecin, Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
| | - Andrzej Fitzner
- Department of Foot and Mouth Disease, National Veterinary Research Institute-State Research Institute, Zduńska Wola, Poland
- National Reference Laboratory for Rabbit Hemorrhagic Disease (RHD), Zduńska Wola, Poland
| | - Andrzej Kęsy
- Department of Foot and Mouth Disease, National Veterinary Research Institute-State Research Institute, Zduńska Wola, Poland
- National Reference Laboratory for Rabbit Hemorrhagic Disease (RHD), Zduńska Wola, Poland
| | - Aldona Siennicka
- Department of Laboratory Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
| |
Collapse
|
18
|
Alharbi KS. Noncoding RNAs in hepatitis: Unraveling the apoptotic pathways. Pathol Res Pract 2024; 255:155170. [PMID: 38324964 DOI: 10.1016/j.prp.2024.155170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Hepatitis is a worldwide health issue that causes inflammation of the liver and is frequently brought on by viral infections, specifically those caused by the hepatitis B and C viruses. Although the pathophysiological causes of hepatitis are complex, recent research indicates that noncoding RNAs (ncRNAs) play a crucial role in regulating apoptosis, an essential process for maintaining liver homeostasis and advancing the illness. Noncoding RNAs have been linked to several biological processes, including apoptosis. These RNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Distinct expression patterns characterising different stages of the disease have been discovered, indicating dysregulation of these non-coding RNAs in liver tissues infected with hepatitis. The complex interplay that exists between these noncoding RNAs and apoptotic effectors, including caspases and members of the Bcl-2 family, plays a role in the precarious equilibrium that regulates cell survival and death during hepatitis. The purpose of this review is to provide an overview of ncRNA-mediated apoptosis in hepatitis, as well as insights into possible therapeutic targets and diagnostic indicators.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
19
|
Kookli K, Soleimani KT, Amr EF, Ehymayed HM, Zabibah RS, Daminova SB, Saadh MJ, Alsaikhan F, Adil M, Ali MS, Mohtashami S, Akhavan-Sigari R. Role of microRNA-146a in cancer development by regulating apoptosis. Pathol Res Pract 2024; 254:155050. [PMID: 38199132 DOI: 10.1016/j.prp.2023.155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Despite great advances in diagnostic and treatment options for cancer, like chemotherapy surgery, and radiation therapy it continues to remain a major global health concern. Further research is necessary to find new biomarkers and possible treatment methods for cancer. MicroRNAs (miRNAs), tiny non-coding RNAs found naturally in the body, can influence the activity of several target genes. These genes are often disturbed in diseases like cancer, which perturbs functions like differentiation, cell division, cell cycle, apoptosis and proliferation. MiR-146a is a commonly and widely used miRNA that is often overexpressed in malignant tumors. The expression of miR-146a has been correlated with many pathological and physiological changes in cancer cells, such as the regulation of various cell death paths. It's been established that the control of cell death pathways has a huge influence on cancer progression. To improve our understanding of the interrelationship between miRNAs and cancer cell apoptosis, it's necessary to explore the impact of miRNAs through the alteration in their expression levels. Research has demonstrated that the appearance and spread of cancer can be mitigated by moderating the expression of certain miRNA - a commencement of treatment that presents a hopeful approach in managing cancer. Consequently, it is essential to explore the implications of miR-146a with respect to inducing different forms of tumor cell death, and evaluate its potential to serve as a target for improved chemotherapy outcomes. Through this review, we provide an outline of miR-146a's biogenesis and function, as well as its significant involvement in apoptosis. As well, we investigate the effects of exosomal miR-146a on the promotion of apoptosis in cancer cells and look into how it could possibly help combat chemotherapeutic resistance.
Collapse
Affiliation(s)
- Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | | | - Eman Fathy Amr
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shakhnoza B Daminova
- Department of Prevention of Dental Diseases, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Tashkent Medical Pediatric Institute, Bogishamol Street 223, Tashkent, Uzbekistan
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | | | | | - Saghar Mohtashami
- University of California Los Angeles, School of Dentistry, Los Angeles, CA, USA.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
20
|
Shaikh MAJ, Altamimi ASA, Afzal M, Gupta G, Singla N, Gilhotra R, Almalki WH, Kazmi I, Alzarea SI, Prasher P, Singh SK, Dua K. Unraveling the impact of miR-21 on apoptosis regulation in glioblastoma. Pathol Res Pract 2024; 254:155121. [PMID: 38262269 DOI: 10.1016/j.prp.2024.155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Glioblastoma is a prevalent form of carcinoma that exhibits a greater incidence rate across diverse demographics globally. Despite extensive global efforts, GBM continues to be a highly lethal disease that is characterized by a grim prognosis. There is a wealth of evidence suggesting that the pathophysiology of GBM is associated with the dysregulation of numerous cellular and molecular processes. The etiology of GBM may involve various cellular and molecular pathways, including EGFR, PDCD4, NF-κB, MAPK, matrix metalloproteinases, STAT, and Akt. MicroRNAs, short non-coding RNA molecules, regulate gene expression and mRNA translation after transcription but before translation to exert control over a wide range of biological functions. Extensive research has consistently demonstrated the upregulation of miRNA-21 in glioma, indicating its involvement in diverse biological pathways that facilitate tumor cell survival. By explaining the intricate interplay between miR-21 and the regulation of apoptosis in GBM, this review has the potential to significantly enhance our comprehension of the illness and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India.
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
21
|
Khanaliha K, Sadri Nahand J, Khatami A, Mirzaei H, Chavoshpour S, Taghizadieh M, Karimzadeh M, Donyavi T, Bokharaei‐Salim F. Analyzing the expression pattern of the noncoding RNAs (HOTAIR, PVT-1, XIST, H19, and miRNA-34a) in PBMC samples of patients with COVID-19, according to the disease severity in Iran during 2022-2023: A cross-sectional study. Health Sci Rep 2024; 7:e1861. [PMID: 38332929 PMCID: PMC10850438 DOI: 10.1002/hsr2.1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background and aims MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are well-known types of noncoding RNAs (ncRNAs), which have been known as the key regulators of gene expression. They can play critical roles in viral infection by regulating the host immune response and interacting with genes in the viral genome. In this regard, ncRNAs can be employed as biomarkers for viral diseases. The current study aimed to evaluate peripheral blood mononuclear cell (PBMC) ncRNAs (lncRNAs-homeobox C antisense intergenic RNA [HOTAIR], -H19, X-inactive-specific transcript [XIST], plasmacytoma variant translocation 1 [PVT-1], and miR-34a) as diagnostic biomarkers to differentiate severe COVID-19 cases from mild ones. Methods Candidate ncRNAs were selected according to previous studies and assessed by real-time polymerase chain reaction in the PBMC samples of patients with severe coronavirus disease 2019 (COVID-19) (n = 40), healthy subjects (n = 40), and mild COVID-19 cases (n = 40). Furthermore, the diagnostic value of the selected ncRNAs was assessed by analyzing the receiver-operating characteristic (ROC). Results The results demonstrated that the expression pattern of the selected ncRNAs was significantly different between the studied groups. The levels of HOTAIR, XIST, and miR-34a were remarkably overexpressed in the severe COVID-19 group in comparison with the mild COVID-19 group, and in return, the PVT-1 levels were lower than in the mild COVID-19 group. Interestingly, the XIST expression level in men with severe COVID-19 was higher compared to women with mild COVID-19. ROC results suggested that HOTAIR and PVT-1 could serve as useful biomarkers for screening mild COVID-19 from severe COVID-19. Conclusions Overall, different expression patterns of the selected ncRNAs and ROC curve results revealed that these factors can contribute to COVID-19 pathogenicity and can be considered diagnostic markers of COVID-19 severe outcomes.
Collapse
Affiliation(s)
- Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - AliReza Khatami
- Department of VirologyIran University of Medical SciencesTehranIran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical SciencesKashanIran
| | - Sara Chavoshpour
- Department of VirologyTehran University of Medical SciencesTehranIran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimzadeh
- Core Research Facilities (CRF)Isfahan University of Medical ScienceIsfahanIran
| | - Tahereh Donyavi
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | |
Collapse
|
22
|
Azar Bahadori R, Shabani D, Arjmandrad E, Kazerani M, Rohani M, Ramazani Karim Z, Ali-Kheyl M, Nosratabadi R, Pourghadamyari H, Zaemi MA. Circulating miRNA-106b-5p As a Potential Biomarker for Coronary Artery Disease. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:325-336. [PMID: 39493512 PMCID: PMC11530952 DOI: 10.22088/ijmcm.bums.13.3.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/07/2024] [Indexed: 11/05/2024]
Abstract
Coronary artery diseases (CAD) represent a significant global health concern and are recognized as a primary contributor to mortality on a worldwide scale. Early diagnosis of CAD is one of promising goal to manage this disorder. Recent investigations have highlighted the pivotal involvement of microRNAs (miRNAs) in diverse health conditions, notably CAD. The principal objective of this investigation was to identify appropriate miRNAs that could be employed for the early detection of CAD. In the present study, we analyzed dataset of CAD (GSE113079) and 100 differentially expressed mRNAs (DEmRNAs) were detected. The miRNAs that have a significant interaction with DEmRNAs were chosen. By computational prediction method, 5 miRNAs (miR-106b-5p, miR-20a-3p, miR-17-3p, miR-146a-5p, and miR-155-3p) were selected. Finally, we assessed the anticipated expression levels of microRNAs in CAD patients and healthy control groups. Our findings revealed a statistically significant elevation solely in the expression level of miR-106b-5p within the CAD group when compared to the control group (p>0.001). Our study demonstrated an elevation in the expression of miR-106b-5p in individuals diagnosed with CAD. This microRNA may be used as a diagnostic biomarker in patients with CAD. However, further investigations are needed to confirm these results.
Collapse
Affiliation(s)
- Rosita Azar Bahadori
- Department of Molecular Genetics, Parand Branch, Islamic Azad University, Tehran, Iran.
| | - Dina Shabani
- Cellular and Molecular Biology, Department of Biology. Science Faculty, Science and Art University, Yazd, Iran.
| | - Elham Arjmandrad
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahsa Kazerani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Rohani
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zohreh Ramazani Karim
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Masoud Ali-Kheyl
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hossein Pourghadamyari
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Ali Zaemi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
24
|
Rasi F, Zarredar H, Amini M, Onsori H, Dadashzadeh K, Khanmohammadi M, Vahedi L, Mokhtarzadeh A, Baradaran B, Bannazadeh Baghi H. Suppression of E6 Oncogene Induces Apoptosis in CaSki Cervical Cancer Cells. Asian Pac J Cancer Prev 2023; 24:3389-3395. [PMID: 37898842 PMCID: PMC10770681 DOI: 10.31557/apjcp.2023.24.10.3389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE The most important casuse of cervical cancer incidence and high mortality rate is infection to the human papillomavirus (HPV). The aim of the present study was to investigate the effect of silencing HPV E6 oncogene on cervical cancer cells using specific siRNAs. MATERIALS AND METHODS CaSki cervical cancer cells, carrying E6 gene, were cultured and then transfected with E6 targeting siRNAs. The cell viability through suppression of E6 expression was explored using MTT assay. Besides, apoptosis induction was investigated by means of flow cytometry using Annexin / PI staining. The changes in the expression of target genes were examined via Real-Time PCR. RESULTS E6 gene silencing caused a significant decrease in the survival rate of CaSki cells through remarkable enhancement of apoptosis induction. Moreover, E6 suppression led to significant upregulation of P53, Bax, Caspase-3, and Caspase-9 mRNA expression while downregulated Bcl-2 expression. Interestingly, it was found that suppression of E6 expression could lead to upregulation of E5 and E7 expression as a compensatory mechanism for E6 deactivation. CONCLUSION According to the results of this study, suppression of E6 expression using specific siRNAs could be considered as a therapeutic approach for cervical cancer.
Collapse
Affiliation(s)
- Farnaz Rasi
- Immunology Research Center,Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Amini
- Immunology Research Center,Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Habib Onsori
- Department of Biology Sciences, Marand Branch, Islamic Azad University, Marand, Iran.
| | - Kianoosh Dadashzadeh
- Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran.
| | - Majid Khanmohammadi
- Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran.
| | - Leila Vahedi
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center,Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center,Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Bannazadeh Baghi
- Immunology Research Center,Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Eslami M, Khazeni S, Khanaghah XM, Asadi MH, Ansari MA, Garjan JH, Lotfalizadeh MH, Bayat M, Taghizadieh M, Taghavi SP, Hamblin MR, Nahand JS. MiRNA-related metastasis in oral cancer: moving and shaking. Cancer Cell Int 2023; 23:182. [PMID: 37635248 PMCID: PMC10463971 DOI: 10.1186/s12935-023-03022-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000-2023 to find reports concerning miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create innovative therapeutic methods for the control of oral cancer metastases.
Collapse
Affiliation(s)
- Meghdad Eslami
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Khazeni
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Xaniar Mohammadi Khanaghah
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asadi
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Amin Ansari
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hayati Garjan
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Rasizadeh R, Aghbash PS, Nahand JS, Entezari-Maleki T, Baghi HB. SARS-CoV-2-associated organs failure and inflammation: a focus on the role of cellular and viral microRNAs. Virol J 2023; 20:179. [PMID: 37559103 PMCID: PMC10413769 DOI: 10.1186/s12985-023-02152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
SARS-CoV-2 has been responsible for the recent pandemic all over the world, which has caused many complications. One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome, acute respiratory distress syndrome and many organs such as lungs, brain, and heart that are affected during the SARS-CoV-2 infection. Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, and cerebrovascular disorders) could affect the severity of the disease. Therefore, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Moreover, a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. In the current study, we investigated modifications in miRNA expression and their influence on COVID-19 disease recovery, which may be employed as a therapy strategy to minimize COVID-19-related disorders.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Haghighi ZMS, Tabatabaei T, Rafigh M, Karampour R, Babaei F, Amjad ZS, Payandeh M, Roozgari M, Bayat M, Doroudian M, Moghoofei M, Nahand JS. Human papillomavirus maybe is a critical player in the regulation of chemoresistance related factors (P53, Rb, TWIST, Bcl-2, Bcl-XL, c-IAP2, cytochrome C, and caspase 3) in breast cancer. Pathol Res Pract 2023; 248:154653. [PMID: 37454490 DOI: 10.1016/j.prp.2023.154653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
As one of the frequent malignancies, breast cancer (BCa) is the foremost reason for cancer-related deaths among women. The role of Human papillomavirus (HPV) in chemoresistance has rarely been investigated in previous studies. The current study sets out to the possible role of HPV in BCa chemoresistance. In this research, 90 BCa tissue and 33 normal breast tissue were collected. We evaluated the presence of the HPV genome along with the viral (E2, E6, E7) and cellular gene expression associated with cell resistance to death. Statically significant differences in the prevalence of HPV between the BCa group (25.2% or 23/90) and the control group (21.8% or 7/32) were not found. HPV-16 and HPV-18 genotypes were the abundant HPV genotypes. Resistance to the Adriamycin-Cyclophosphamide (AC), paclitaxel regimen was elevated in the HPV- group (56/70) in comparison to the HPV+ group (14/70). Nevertheless, there was no significant difference in the prevalence of resistance to AC + paclitaxel + triple-negative breast cancer combination therapy between the HPV+ group (9/20) and in the HPV- group (11/20). In the BCa group in contrast to the control group, the expression level of Bcl-2, BCL-XL, and c-IAP2 demonstrated a significant decrease, while, the expression level of cytochrome C and caspase 3 was significantly increased. This study suggests that HPV infection might contribute to BCa chemoresistance through disrupt cellular genes involved in cell death.
Collapse
Affiliation(s)
| | - Tahere Tabatabaei
- Department of Hematolohy and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Rafigh
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Romina Karampour
- Department of Pathobiology and Basic Science, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Sobhi Amjad
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehrdad Payandeh
- Cancer Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Roozgari
- Radiation Oncology Research Centre (RORC), Cancer Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Gupta J, Tayyib NA, Jalil AT, Hlail SH, Zabibah RS, Vokhidov UN, Alsaikhan F, Ramaiah P, Chinnasamy L, Kadhim MM. Angiogenesis and prostate cancer: MicroRNAs comes into view. Pathol Res Pract 2023; 248:154591. [PMID: 37343381 DOI: 10.1016/j.prp.2023.154591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/23/2023]
Abstract
Angiogenesis, the formation of new blood vessels, is an important stage in the growth of cancer. Extracellular matrix, endothelial cells, and soluble substances must be carefully coordinated during the multistep procedure of angiogenesis. Inducers and inhibitors have been found to control pretty much every phase. In addition to benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and angiogenesis have a critical role in the initiation and progression of prostate cancer. MicroRNA (miRNA) is endogenous, short, non-coding RNA molecules of almost 22 nucleotides play a role in regulating cellular processes and regulating several genes' expression. Through controlling endothelial migration, differentiation, death, and cell proliferation, miRNAs have a significant function in angiogenesis. A number of pathological and physiological processes, particularly prostate cancer's emergence, depend on the regulation of angiogenesis. Investigating the functions played with miRNAs in angiogenesis is crucial because it might result in the creation of novel prostate cancer therapies that entail regulating angiogenesis. The function of several miRNAs and its targeting genes engaged in cancer of the prostate angiogenesis will be reviewed in this review in light of the most recent developments. The potential clinical utility of miRNAs potentially a novel therapeutic targets will also be explored, as well as their capacity to control prostate cancer angiogenesis and the underlying mechanisms.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India.
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla 51001, Babylon, Iraq.
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ulug'bek N Vokhidov
- Department of ENT Diseases, Head of the Department of Quality Education, Tashkent State Dental Institute, Tashkent, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| |
Collapse
|
30
|
He Q, Qiao W, Fang H, Bao Y. Improving the identification of miRNA-disease associations with multi-task learning on gene-disease networks. Brief Bioinform 2023; 24:bbad203. [PMID: 37287133 DOI: 10.1093/bib/bbad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of non-coding RNA molecules with vital roles in regulating gene expression. Although researchers have recognized the importance of miRNAs in the development of human diseases, it is very resource-consuming to use experimental methods for identifying which dysregulated miRNA is associated with a specific disease. To reduce the cost of human effort, a growing body of studies has leveraged computational methods for predicting the potential miRNA-disease associations. However, the extant computational methods usually ignore the crucial mediating role of genes and suffer from the data sparsity problem. To address this limitation, we introduce the multi-task learning technique and develop a new model called MTLMDA (Multi-Task Learning model for predicting potential MicroRNA-Disease Associations). Different from existing models that only learn from the miRNA-disease network, our MTLMDA model exploits both miRNA-disease and gene-disease networks for improving the identification of miRNA-disease associations. To evaluate model performance, we compare our model with competitive baselines on a real-world dataset of experimentally supported miRNA-disease associations. Empirical results show that our model performs best using various performance metrics. We also examine the effectiveness of model components via ablation study and further showcase the predictive power of our model for six types of common cancers. The data and source code are available from https://github.com/qwslle/MTLMDA.
Collapse
Affiliation(s)
- Qiang He
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China
| | - Wei Qiao
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China
| | - Hui Fang
- Research Institute for Interdisciplinary Science and School of Information Management and Engineering, Shanghai University of Finance and Economics, 200434 Shanghai, China
| | - Yang Bao
- Antai College of Economics and Management, Shanghai Jiao Tong University, 200030 Shanghai, China
| |
Collapse
|
31
|
Kasho AKA, Nahand JS, Salmaninejad A, Mirzaei H, Moghoofei M, Bazmani A, Aghbash PS, Rasizadeh R, Farsad-Akhtar N, Baghi HB. PBMC MicroRNAs: Promising Biomarkers for the Differential Diagnosis of COVID-19 Patients with Abnormal Coagulation Indices. Curr Microbiol 2023; 80:248. [PMID: 37341794 DOI: 10.1007/s00284-023-03365-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
MicroRNAs, or miRNAs, may involve in coagulation and inflammation pathways caused by severe Coronavirus disease (COVID-19). Accordingly, this attempt was made to explore the behavior of peripheral blood mononuclear cells (PBMCs) miRNAs as effective biomarkers to diagnose COVID-19 patients with normal and abnormal coagulation indices. We selected the targeted miRNAs (miR-19a-3p, miR-223-3p, miR-143-5p, miR-494-3p and miR-301a-5p) according to previous reports, whose PBMC levels were then determined by real-time PCR. Receiver operating characteristic (ROC) curve was obtained to clarify the diagnostic potency of studied miRNAs. The differentially expressed miRNA profiles and corresponding biological activities were predicted in accordance with bioinformatics data. Targeted miRNAs' expression profiles displayed a significant difference between COVID-19 subjects with normal and abnormal coagulation indices. Moreover, the average miR-223-3p level expressed in COVID-19 cases with normal coagulation indices was significantly lower than that in healthy controls. Based on data from ROC analysis, miR-223-3p and miR-494-3p are promising biomarkers to distinguish the COVID-19 cases with normal or abnormal coagulation indices. Bioinformatics data highlighted the prominent role of selected miRNAs in the inflammation and TGF-beta signaling pathway. The differences existed in the expression profiles of selected miRNAs between the groups introduced miR-494-3p and miR-223-3p as potent biomarkers to prognosis the incidence of COVID-19.
Collapse
Affiliation(s)
- Ammar Khalo Abass Kasho
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Iraqi Ministry of Higher Education and Scientific Research, Tal Afar University, Tal Afar, Iraq
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhtar
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Frisk NLS, Sørensen AE, Pedersen OBV, Dalgaard LT. Circulating microRNAs for Early Diagnosis of Ovarian Cancer: A Systematic Review and Meta-Analysis. Biomolecules 2023; 13:871. [PMID: 37238740 PMCID: PMC10216356 DOI: 10.3390/biom13050871] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we conducted a systematic review and meta-analysis to summarize and evaluate the global research potential of different circulating miRNAs as an early diagnostic biomarker for OC. A systematic literature search for relevant studies was conducted in June 2020 and followed up in November 2021. The search was conducted in English databases (PubMed, ScienceDirect). The primary search resulted in a total of 1887 articles, which were screened according to the prior established inclusion and exclusion criteria. We identified 44 relevant studies, of which 22 were eligible for the quantitative meta-analysis. Statistical analysis was performed using the Meta-package in Rstudio. Standardized mean differences (SMD) of relative levels between control subjects and OC patients were used to evaluate the differential expression. All studies were quality evaluated using a Newcastle-Ottawa Scale. Based on the meta-analysis, nine miRNAs were identified as dysregulated in OC patients compared to controls. Nine were upregulated in OC patients compared to controls (miR-21, -125, -141, -145, -205, -328, -200a, -200b, -200c). Furthermore, miR-26, -93, -106 and -200a were analyzed, but did not present an overall significant difference between OC patients and controls. These observations should be considered when performing future studies of circulating miRNAs in relation to OC: sufficient size of clinical cohorts, development of consensus guidelines for circulating miRNA measurements, and coverage of previously reported miRNAs.
Collapse
Affiliation(s)
- Nanna Lond Skov Frisk
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Ringstedgade 77B, 4700 Næstved, Denmark
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Ringstedgade 77B, 4700 Næstved, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|
33
|
Nezhad Nezhad MT, Rajabi M, Nekooeizadeh P, Sanjari S, Pourvirdi B, Heidari MM, Veradi Esfahani P, Abdoli A, Bagheri S, Tobeiha M. Systemic lupus erythematosus: From non-coding RNAs to exosomal non-coding RNAs. Pathol Res Pract 2023; 247:154508. [PMID: 37224659 DOI: 10.1016/j.prp.2023.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE), as an immunological illness, frequently impacts young females. Both vulnerabilities to SLE and the course of the illness's clinical symptoms have been demonstrated to be affected by individual differences in non-coding RNA expression. Many non-coding RNAs (ncRNAs) are out of whack in patients with SLE. Because of the dysregulation of several ncRNAs in peripheral blood of patients suffering from SLE, these ncRNAs to be showed valuable as biomarkers for medication response, diagnosis, and activity. NcRNAs have also been demonstrated to influence immune cell activity and apoptosis. Altogether, these facts highlight the need of investigating the roles of both families of ncRNAs in the progress of SLE. Being aware of the significance of these transcripts perhaps elucidates the molecular pathogenesis of SLE and could open up promising avenues to create tailored treatments during this condition. In this review we summarized various non-coding RNAs and Exosomal non-coding RNAs in SLE.
Collapse
Affiliation(s)
| | - Mohammadreza Rajabi
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Nekooeizadeh
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sanjari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Pourvirdi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Mehdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Abdoli
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Bagheri
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
34
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
35
|
Gupta J, Kareem Al-Hetty HRA, Aswood MS, Turki Jalil A, Azeez MD, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The key role of microRNA-766 in the cancer development. Front Oncol 2023; 13:1173827. [PMID: 37205191 PMCID: PMC10185842 DOI: 10.3389/fonc.2023.1173827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer is caused by defects in coding and non-coding RNAs. In addition, duplicated biological pathways diminish the efficacy of mono target cancer drugs. MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that regulate many target genes and play a crucial role in physiological processes such as cell division, differentiation, cell cycle, proliferation, and apoptosis, which are frequently disrupted in diseases such as cancer. MiR-766, one of the most adaptable and highly conserved microRNAs, is notably overexpressed in several diseases, including malignant tumors. Variations in miR-766 expression are linked to various pathological and physiological processes. Additionally, miR-766 promotes therapeutic resistance pathways in various types of tumors. Here, we present and discuss evidence implicating miR-766 in the development of cancer and treatment resistance. In addition, we discuss the potential applications of miR-766 as a therapeutic cancer target, diagnostic biomarker, and prognostic indicator. This may shed light on the development of novel therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Hussein Riyadh Abdul Kareem Al-Hetty
- Department of Nursing, Al-Maarif University College, Ramadi, Anbar, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | - Murtadha Sh. Aswood
- Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Azogues, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Hussein Riyadh Abdul Kareem Al-Hetty, ; Abduladheem Turki Jalil, ; Bagher Farhood, ,
| |
Collapse
|
36
|
Abstract
Exosomes are extracellular vesicles, which have the ability to convey various types of cargo between cells. Lately, a great amount of interest has been paid to exosomal microRNAs (miRNAs), since much evidence has suggested that the sorting of miRNAs into exosomes is not an accidental process. It has been shown that exosomal miRNAs (exo-miRNAs) are implicated in a variety of cellular processes including (but not limited to) cell migration, apoptosis, proliferation, and autophagy. Exosomes can play a role in cardiovascular diseases and can be used as diagnostic biomarkers for several diseases, especially cancer. Tremendous advances in technology have led to the development of various platforms for miRNA profiling. Each platform has its own limitations and strengths that need to be understood in order to use them properly. In the current review, we summarize some exo-miRNAs that are relevant to exo-miRNA profiling studies and describe new methods used for the measurement of miRNA profiles in different human bodily fluids.
Collapse
|
37
|
Hu Y, Wang L, Zhong M, Zhao W, Wang Y, Song J, Zhang Y. Comprehensive profiling and characterization of cellular microRNAs in response to coxsackievirus A10 infection in bronchial epithelial cells. Virol J 2022; 19:120. [PMID: 35864512 PMCID: PMC9302563 DOI: 10.1186/s12985-022-01852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Coxsackievirus A10 (CV-A10), the causative agent of hand, foot, and mouth disease (HFMD), caused a series of outbreaks in recent years and often leads to neurological impairment, but a clear understanding of the disease pathogenesis and host response remains elusive. Cellular microRNAs (miRNAs), a large family of non-coding RNA molecules, have been reported to be key regulators in viral pathogenesis and virus-host interactions. However, the role of host cellular miRNAs defensing against CV-A10 infection is still obscure. To address this issue, we systematically analyzed miRNA expression profiles in CV-A10-infected 16HBE cells by high-throughput sequencing methods in this study. It allowed us to successfully identify 312 and 278 miRNAs with differential expression at 12 h and 24 h post-CV-A10 infection, respectively. Among these, 4 miRNAs and their target genes were analyzed by RT-qPCR, which confirmed the sequencing data. Gene target prediction and enrichment analysis revealed that the predicted targets of these miRNAs were significantly enriched in numerous cellular processes, especially in regulation of basic physical process, host immune response and neurological impairment. And the integrated network was built to further indicate the regulatory roles of miRNAs in host-CV-A10 interactions. Consequently, our findings could provide a beneficial basis for further studies on the regulatory roles of miRNAs relevant to the host immune responses and neuropathogenesis caused by CV-A10 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lan Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Mingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yujue Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China. .,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
38
|
Liu T, Huang T, Shang M, Han G. CircRNA ITCH: Insight Into Its Role and Clinical Application Prospect in Tumor and Non-Tumor Diseases. Front Genet 2022; 13:927541. [PMID: 35910224 PMCID: PMC9335290 DOI: 10.3389/fgene.2022.927541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
CircRNA E3 ubiquitin protein ligase (ITCH) (circRNA ITCH, circ-ITCH), a stable closed-loop RNA derived from the 20q11.22 region of chromosome 20, is a new circRNA discovered in the cytoplasm in recent decades. Studies have shown that it does not encode proteins, but regulates proteins expression at different levels. It is down-regulated in tumor diseases and is involved in a number of biological activities, including inhibiting cell proliferation, migration, invasion, and promoting apoptosis. It can also alter disease progression in non-tumor disease by affecting the cell cycle, inflammatory response, and critical proteins. Circ-ITCH also holds a lot of promise in terms of tumor and non-tumor clinical diagnosis, prognosis, and targeted therapy. As a result, in order to aid clinical research in the hunt for a new strategy for diagnosing and treating human diseases, this study describes the mechanism of circ-ITCH as well as its clinical implications.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tao Huang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Mei Shang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Gang Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Karimazar M, Muro A, Nguewa P, Manzano-Román R. miRNAs in the regulation of mTOR signaling and host immune responses: The case of Leishmania infections. Acta Trop 2022; 231:106431. [PMID: 35367408 DOI: 10.1016/j.actatropica.2022.106431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/01/2022]
Abstract
Micro RNAs (miRNAs), as regulators of gene expression at the post-transcriptional level, can respond to/or interact with cell signaling and affect the pathogenesis of different diseases/infections. The interaction/crosstalk of miRNAs with various cellular signaling networks including mTOR (as a master regulator of signaling relevant to different cellular mechanisms) might lead to the initiation, progression or restriction of certain disease processes. There are numerous studies that have identified the crosstalk between regulatory miRNA expression and the mTOR pathway (or mTOR signaling regulated by miRNAs) in different diseases which has a dual function in pathogenesis. However, the corresponding information in parasitic infections remains scarce. miRNAs have been suggested as specific targets for therapeutic strategies in several disorders such as parasitic infections. Thus, the targeting of miRNAs (as the modulators/regulators of mTOR) by small molecules and RNA-based therapeutics and consequently managing and modulating mTOR signaling and the downstream/related cell signaling/pathways might shed some light on the design of new therapeutic strategies against parasitic diseases, including Leishmaniasis. Accordingly, the present study attempts to highlight the importance of the crosstalk between regulatory miRNAs and mTOR signaling, and to review the relevant insights into parasitic infections by focusing specifically on Leishmania.
Collapse
|
41
|
Mousavi SM, Amin Mahdian SM, Ebrahimi MS, Taghizadieh M, Vosough M, Sadri Nahand J, Hosseindoost S, Vousooghi N, Javar HA, Larijani B, Hadjighassem MR, Rahimian N, Hamblin MR, Mirzaei H. Microfluidics for detection of exosomes and microRNAs in cancer: State of the art. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:758-791. [PMID: 35664698 PMCID: PMC9130092 DOI: 10.1016/j.omtn.2022.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exosomes are small extracellular vesicles with sizes ranging from 30-150 nanometers that contain proteins, lipids, mRNAs, microRNAs, and double-stranded DNA derived from the cells of origin. Exosomes can be taken up by target cells, acting as a means of cell-to-cell communication. The discovery of these vesicles in body fluids and their participation in cell communication has led to major breakthroughs in diagnosis, prognosis, and treatment of several conditions (e.g., cancer). However, conventional isolation and evaluation of exosomes and their microRNA content suffers from high cost, lengthy processes, difficult standardization, low purity, and poor yield. The emergence of microfluidics devices with increased efficiency in sieving, trapping, and immunological separation of small volumes could provide improved detection and monitoring of exosomes involved in cancer. Microfluidics techniques hold promise for advances in development of diagnostic and prognostic devices. This review covers ongoing research on microfluidics devices for detection of microRNAs and exosomes as biomarkers and their translation to point-of-care and clinical applications.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeid Ebrahimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
42
|
Kooshkaki O, Asghari A, Mahdavi R, Azarkar G, Parsamanesh N. Potential of MicroRNAs As Biomarkers and Therapeutic Targets in Respiratory Viruses: A Literature Review. DNA Cell Biol 2022; 41:544-563. [PMID: 35699380 DOI: 10.1089/dna.2021.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through recognition of cognate sequences and interference of transcriptional, translational, or epigenetic processes. Hundreds of miRNA genes have been found in diverse viruses, and many of these are phylogenetically conserved. Respiratory viruses are the most frequent causative agents of disease in humans, with a significant impact on morbidity and mortality worldwide. Recently, the role of miRNAs in respiratory viral gene regulation, as well as host gene regulation during disease progression, has become a field of interest. This review highlighted the importance of various miRNAs and their potential role in fighting with respiratory viruses as therapeutic molecules with a focus on COVID-19.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Asghari
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Mahdavi
- Department of Hematology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghodsiyeh Azarkar
- Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Department of Hematology, Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
43
|
Li JJ, Liu ML, Lv JN, Chen RL, Ding K, He JQ. Polysaccharides from Platycodonis Radix ameliorated respiratory syncytial virus-induced epithelial cell apoptosis and inflammation through activation of miR-181a-mediated Hippo and SIRT1 pathways. Int Immunopharmacol 2022; 104:108510. [PMID: 34999393 DOI: 10.1016/j.intimp.2021.108510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in young children, but there are few safe and effective treatments for this disease. Platycodonis Radix is widely used as an antitussive and expectorant drug for preventing various diseases in lower respiratory tract, in which the polysaccharides are one of the main bioactivity constituents. In this study, the protective effects of the P. Radix polysaccharides (PRP) against RSV-induced bronchiolitis in juvenile mice and RSV-induced apoptosis of epithelial HEp-2 cells were investigated. The results showed that PRP obviously decreased the levels of IL-1β, IL-4, IL-6, TNF-α, IFN-γ and TSLP in lung tissues, and reduced the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) of RSV-infected mice. Furthermore, it reduced the apoptosis of RSV-infected HEp-2 cells and remarkably inhibited the mRNA expressions of RSV L gene, which indicated that PRP affected transcription and replication of RSV in host cells. Compared with that in RSV-infected group, miR-181a-5p in the PRP-treated group presented the highest relative abundance and its expression was violently reduced by approximately 30%. Mechanistically, PRP had the similar effects as miR-181a-5p antagomir on RSV-induced apoptosis and inflammation in HEp-2 cells via upregulating BCL2, MLL3 and SIRT1, which could be reversed by miR-181a-5p mimic. Therefore, it demonstrated that PRP not only protected against RSV-induced lung inflammation in mice but also inhibited apoptosis of RSV-infected HEp-2 cells via suppressing miR-181a-5p and transcriptionally activating Hippo and SIRT1 pathways.
Collapse
Affiliation(s)
- Juan-Juan Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Mei-Ling Liu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jia-Ni Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Rui-Lin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China; The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ke Ding
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
44
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
45
|
NEAT1 in bone marrow mesenchymal stem cell-derived extracellular vesicles promotes melanoma by inducing M2 macrophage polarization. Cancer Gene Ther 2022; 29:1228-1239. [PMID: 35115683 DOI: 10.1038/s41417-021-00392-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/23/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs) reportedly play an important role in melanoma pathogenesis. This study aimed to explore the mechanisms of EVs-carried long non-coding RNA (lncRNA) NEAT1 involvement in melanoma. Gain- and loss-of-function experiments were performed to determine biological characteristics of A-375 melanoma cells. Bioinfomatic prediction, RNA immunoprecipitation (RIP), and dual luciferase reporter gene experiments were applied to investigate the roles of NEAT1 and microRNA-374a-5p (miR-374a-5p), and leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4). A subcutaneous tumor model was constructed using nude mice, and in vivo fluorescence imaging was used to observe the effect of NEAT1 on the growth and metastasis of melanoma cells in vivo. The results indicated that BMSC-EVs could be internalized by macrophages to promote the expression of macrophages M2 markers. M2 type macrophages promoted malignancy of melanoma cells. NEAT1 derived from BMSC-EVs promoted the progression of melanoma by promoting M2 polarization of macrophages. NEAT1 inhibits miR-374 expression, while miR-374 could upregulate LGR4-dependent IQGAP1 expression. The tumor-inhibiting effect of NEAT1 silencing was validated in the nude mouse xenograft model. Collectively, the results demonstrated that BMSC-EVs carrying NEAT1 can promote the progression of melanoma by inducing M2 polarization of macrophages, and thus may be considered as a potential target for melanoma therapeutics.
Collapse
|
46
|
Niu L, Yang W, Duan L, Wang X, Li Y, Zhou W, Chen J, Xu C, Zhang Y, Liu J, Hong L, Fan D. Development of a model to predict the prognosis of esophageal carcinoma based on autophagy-related genes. Future Oncol 2022; 18:701-717. [PMID: 35048740 DOI: 10.2217/fon-2021-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: To identify a potential prognostic signature of esophageal carcinoma based on autophagy-related genes (ARGs). Methods: RNA sequencing and clinical data were downloaded from the Cancer Genome Atlas. Significantly different ARGs were identified by Wilcoxon signed-rank test. A prognostic model was established employing Cox regression analysis. The model was evaluated by receiver operating characteristic and Kaplan-Meier curve. Results: A total of 28 significantly different ARGs were identified. Seven ARGs were screened to construct the prognostic model. The efficacy of the model was verified. A nomogram also validated the role of risk score in predicting prognosis. Enrichment analyses showed the possible underlying mechanisms. Conclusion: The seven-ARGs prognostic model was validated to be promising for predicting the prognosis of patients with esophageal carcinoma.
Collapse
Affiliation(s)
- Liaoran Niu
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Junfeng Chen
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Chengchao Xu
- 94719 Military Hospital, Ji'an, Jiangxi Province 343700, China
| | - Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Jinqiang Liu
- Cadre's Sanitarium, Henan Military Region of PLA, 67 Nahu Road, 464000, Xinyang, Henan, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| |
Collapse
|
47
|
Duan X, Yu X, Li Z. Circular RNA hsa_circ_0001658 regulates apoptosis and autophagy in gastric cancer through microRNA-182/Ras-related protein Rab-10 signaling axis. Bioengineered 2022; 13:2387-2397. [PMID: 35030981 PMCID: PMC8974080 DOI: 10.1080/21655979.2021.2024637] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is a tumor with high incidence and lack of early diagnostic markers. The aim of this study was to explore novel regulatory circular RNAs (circRNAs) in GC and their underlying mechanisms. Differentially expressed circRNAs were analyzed using the Gene Expression Omnibus (GEO). mRNA and miRNA expression levels were determined using real-time reverse transcription polymerase chain reaction (RT-qPCR). Protein expression was detected using Western blotting. Cellular functions were evaluated using the cell counting kit-8 (CCK-8) assay and flow cytometry analysis. Immunofluorescence analysis was used to visually identify microtubule-associated protein 1 light chain 3 (LC3) puncta on a per-cell basis. Furthermore, dual-luciferase reporter and RNA pull-down assays were performed to verify the interaction between microRNA (miR)-182 and circ_0001658/Ras-related protein Rab-10 (RAB10). Circ_0001658 was identified to be aberrantly expressed in GC tissues and was demonstrated in GC cell lines (AGS and HGC27) in vitro. MiR-182 bound to circ_0001658 and RAB10. Circ_0001658 and RAB10 were upregulated, whereas miR-182 was suppressed in AGS and HGC27 cells. GC cell viability and autophagy were inhibited and apoptosis was promoted after circ_0001658 knockdown, and the cellular functions were reversed by downregulating miR-182. Moreover, upregulated RAB10 neutralized the effects of miR-182 on cell viability, autophagy, and apoptosis of GC cells. Silencing circ_0001658 restrained cell viability, suppressed autophagy, and promoted apoptosis of GC cells by sponging miR-182 to suppress the expression of RAB10. Therefore, circ_0001658 may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Xinxing Duan
- Department of General Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Xiong Yu
- Department of General Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Jafarzadeh A, Paknahad MH, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Rajabi A, Shojaie L, Mirzaei H. Dysregulated expression and functions of microRNA-330 in cancers: A potential therapeutic target. Biomed Pharmacother 2021; 146:112600. [PMID: 34968919 DOI: 10.1016/j.biopha.2021.112600] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
As small non-coding RNAs, MicroRNAs (miRNAs) bind to the 3' untranslated region (3'-UTR) of mRNA targets to control gene transcription and translation. The gene of miR-330 has two miRNA products, including miR-330-3p and miR-330-5p, which exhibit anti-tumorigenesis and/or pro-tumorigenesis effects in many kinds of malignancies. In cancers, miR-330-3p and miR-330-5p aberrant expression can influence many malignancy-related processes such as cell proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition, as well as angiogenesis and responsiveness to treatment. In many cancer types (such as lung, prostate, gastric, breast, bladder, ovarian, colorectal, and pancreatic cancer, and osteosarcoma), miR-330-5p acts as an anti-tumor agent. These cancers have low levels of miR-330-5p that leads to the upregulation of the tumor promotor target genes leading to tumor progression. Here, overexpression of miR-330-5p using miRNA inducers can prevent tumor development. Dual roles of miR-330-5p have been also indicated in the thyroid, liver and cervical cancers. Moreover, miR-330-3p exhibits pro-tumorigenesis effects in lung cancer, pancreatic cancer, osteosarcoma, bladder cancer, and cervical cancer. Here, downregulation of miR-330-3p using miRNA inhibitors can prevent tumor development. Demonstrated in breast and liver cancers, miR-330-3p also has dual roles. Importantly, the activities of miR-330-3p and/or miR-330-5p are regulated by upstream regulators long non-coding RNAs (lncRNAs), including circular and linear lncRNAs. This review comprehensively explained miR-330-3p and miR-330-5p role in development of cancers, while highlighting their downstream target genes and upstream regulators as well as possible therapeutic strategies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Paknahad
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research center for Liver diseases, Keck school of medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
50
|
MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2021; 229:153701. [PMID: 34872024 DOI: 10.1016/j.prp.2021.153701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Treating cardiovascular diseases with cardiac stem cells (CSCs) is a valid treatment among various stem cell-based therapies. With supplying the physiological need for cardiovascular cells as their main function, under pathological circumstances, CSCs can also reproduce the myocardial cells. Although studies have identified many of CSCs' functions, our knowledge of molecular pathways that regulate these functions is not complete enough. Either physiological or pathological studies have shown, stem cells proliferation and differentiation could be regulated by microRNAs (miRNAs). How miRNAs regulate CSC behavior is an interesting area of research that can help us study and control the function of these cells in vitro; an achievement that may be beneficial for patients with cardiovascular diseases. The secretome of stem and progenitor cells has been studied and it has been determined that exosomes are the main source of their secretion which are very small vesicles at the nanoscale and originate from endosomes, which are secreted into the extracellular space and act as key signaling organelles in intercellular communication. Mesenchymal stem cells, cardiac-derived progenitor cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and iPSC-derived cardiomyocytes release exosomes that have been shown to have cardioprotective, immunomodulatory, and reparative effects. Herein, we summarize the regulation roles of miRNAs and exosomes in cardiac stem cells.
Collapse
|