1
|
Vijayan A, Vogels R, Groppo R, Jin Y, Khan S, Van Kampen M, Jorritsma S, Boedhoe S, Baert M, van Diepen H, Kuipers H, Serroyen J, Del Valle JR, Broman A, Nguyen L, Ray S, Jarai B, Arora J, Lifton M, Mildenberg B, Morton G, Santra S, Grossman TR, Schuitemaker H, Custers J, Zahn R. A self-amplifying RNA RSV prefusion-F vaccine elicits potent immunity in pre-exposed and naïve non-human primates. Nat Commun 2024; 15:9884. [PMID: 39543172 DOI: 10.1038/s41467-024-54289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Newly approved subunit and mRNA vaccines for respiratory syncytial virus (RSV) demonstrate effectiveness in preventing severe disease, with protection exceeding 80% primarily through the generation of antibodies. An alternative vaccine platform called self-amplifying RNA (saRNA) holds promise in eliciting humoral and cellular immune responses. We evaluate the immunogenicity of a lipid nanoparticle (LNP)-formulated saRNA vaccine called SMARRT.RSV.preF, encoding a stabilized form of the RSV fusion protein, in female mice and in non-human primates (NHPs) that are either RSV-naïve or previously infected. Intramuscular vaccination with SMARRT.RSV.preF vaccine induces RSV neutralizing antibodies and cellular responses in naïve mice and NHPs. Importantly, a single dose of the vaccine in RSV pre-exposed NHPs elicits a dose-dependent anamnestic humoral immune response comparable to a subunit RSV preF vaccine. Notably, SMARRT.RSV.preF immunization significantly increases polyfunctional RSV.F specific memory CD4+ and CD8+ T-cells compared to RSV.preF protein vaccine. Twenty-four hours post immunization with SMARRT.RSV.preF, there is a dose-dependent increase in the systemic levels of inflammatory and chemotactic cytokines associated with the type I interferon response in NHPs, which is not observed with the protein vaccine. We identify a cluster of analytes including IL-15, TNFα, CCL4, and CXCL10, whose levels are significantly correlated with each other after SMARRT.RSV.preF immunization. These findings suggest saRNA vaccines have the potential to be developed as a prophylactic RSV vaccine based on innate, cellular, and humoral immune profiles they elicit.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands.
- Artemis Bioservices, Delft, The Netherlands.
| | - Ronald Vogels
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Rachel Groppo
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Yi Jin
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Selina Khan
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
- Oncode Accelerator Foundation, Utrecht, The Netherlands
| | | | - Sytze Jorritsma
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Satish Boedhoe
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Miranda Baert
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
- LUCID research centre, Leiden Medical University, Leiden, The Netherlands
| | | | - Harmjan Kuipers
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | | | - Ann Broman
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Lannie Nguyen
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Sayoni Ray
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Bader Jarai
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Jayant Arora
- Johnson & Johnson Innovative Medicine, La Jolla, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | - Benjamin Mildenberg
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | - Georgeanna Morton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School., Boston, USA
| | | | | | - Jerome Custers
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands.
| |
Collapse
|
2
|
De Lombaerde E, Cui X, Chen Y, Zhong Z, Deckers J, Mencarelli G, Opsomer L, Wang H, De Baere J, Lienenklaus S, Lambrecht BN, Sanders NN, De Geest BG. Amplification of Protein Expression by Self-Amplifying mRNA Delivered in Lipid Nanoparticles Containing a β-Aminoester Ionizable Lipid Correlates with Reduced Innate Immune Activation. ACS NANO 2024; 18:28311-28324. [PMID: 39352021 DOI: 10.1021/acsnano.4c09677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Self-amplifying mRNA (saRNA) is witnessing increased interest as a platform technology for protein replacement therapy, gene editing, immunotherapy, and vaccination. saRNA can replicate itself inside cells, leading to a higher and more sustained production of the desired protein at a lower dose. Controlling innate immune activation, however, is crucial to suppress unwanted inflammation upon delivery and self-replication of RNA in vivo. In this study, we report on a class of β-aminoester lipids (βAELs) synthesized through the Michael addition of an acrylate to diethanolamine, followed by esterification with fatty acids. These lipids possessed one or two ionizable amines, depending on the use of nonionic or amine-containing acrylates. We utilized βAELs for encapsulating saRNA in lipid nanoparticles (LNPs) and evaluated their transfection efficiency in vitro and in vivo in mice, while comparing them to LNPs containing ALC-0315 as an ionizable lipid reference. Among the tested lipids, OC7, which comprises two unsaturated oleoyl alkyl chains and an ionizable azepanyl motif, emerged as a βAEL with low cytotoxicity and immunogenicity relative to ALC-0315. Interestingly, saRNA delivered via the OC7 LNP exhibited a distinct in vivo transfection profile. Initially, intramuscular injection of OC7 LNP resulted in low protein expression shortly after administration, followed by a gradual increase over a period of up to 7 days. This pattern is indicative of successful self-amplification of saRNA. In contrast, saRNA delivered via ALC-0315 LNP demonstrated high protein translation initially, which gradually declined over time and lacked the amplification seen with OC7 LNP. We observed that, in contrast to saRNA OC7 LNP, saRNA ALC-0315 LNP induced potent innate immune activation by triggering cytoplasmic RIG-I-like receptors (RLRs), likely due to the highly efficient endosomal membrane rupturing properties of ALC-0315 LNP. Consequently, the massive production of type I interferons quickly hindered the amplification of the saRNA. Our findings highlight the critical role of the choice of ionizable lipid for saRNA formulation in LNPs, particularly in shaping the qualitative profile of protein expression. For applications where minimizing inflammation is desired, the use of ionizable lipids, such as the βAEL reported in this study, that elicit a low type I interferon response in saRNA LNP is crucial.
Collapse
Affiliation(s)
| | - Xiaole Cui
- Laboratory of Gene Therapy, Ghent University, 9820 Ghent, Belgium
| | | | | | - Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Zwijnaarde, Belgium
| | - Giulia Mencarelli
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Zwijnaarde, Belgium
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Lisa Opsomer
- Laboratory of Gene Therapy, Ghent University, 9820 Ghent, Belgium
| | | | | | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Zwijnaarde, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam 3015, Netherlands
| | - Niek N Sanders
- Laboratory of Gene Therapy, Ghent University, 9820 Ghent, Belgium
| | | |
Collapse
|
3
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
4
|
Bathula NV, Friesen JJ, Casmil IC, Wayne CJ, Liao S, Soriano SKV, Ho CH, Strumpel A, Blakney AK. Delivery vehicle and route of administration influences self-amplifying RNA biodistribution, expression kinetics, and reactogenicity. J Control Release 2024; 374:28-38. [PMID: 39097193 DOI: 10.1016/j.jconrel.2024.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Self-amplifying RNA (saRNA) is a next-generation RNA platform derived from an alphavirus that enables replication in host cytosol, offering a promising shift from traditional messenger RNA (mRNA) therapies by enabling sustained protein production from minimal dosages. The approval of saRNA-based vaccines, such as the ARCT-154 for COVID-19 in Japan, underscores its potential for diverse therapeutic applications, including vaccine development, cancer immunotherapy, and gene therapy. This study investigates the role of delivery vehicle and administration route on saRNA expression kinetics and reactogenicity. Employing ionizable lipid-based nanoparticles (LNPs) and polymeric nanoparticles, we administered saRNA encoding firefly luciferase to BALB/c mice through six routes (intramuscular (IM), intradermal (ID), intraperitoneal (IP), intranasal (IN), intravenous (IV), and subcutaneous (SC)), and observed persistent saRNA expression over a month. Our findings reveal that while LNPs enable broad route applicability and stability, pABOL (poly (cystamine bisacrylamide-co-4-amino-1-butanol)) formulations significantly amplify protein expression via intramuscular delivery. Notably, the disparity between RNA biodistribution and protein expression highlight the nuanced interplay between administration routes, delivery vehicles, and therapeutic outcomes. Additionally, our research unveiled distinct biodistribution profiles and inflammatory responses contingent upon the chosen delivery formulation and route. This research illuminates the intricate dynamics governing saRNA delivery, biodistribution and reactogenicity, offering essential insights for optimizing therapeutic strategies and advancing the clinical and commercial viability of saRNA technologies.
Collapse
Affiliation(s)
- Nuthan Vikas Bathula
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Josh J Friesen
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Irafasha C Casmil
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Christopher J Wayne
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Suiyang Liao
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 2A1, Canada
| | - Shekinah K V Soriano
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Chia Hao Ho
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Anneke Strumpel
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada; RWTH Aachen University, Templergraben 55, Aachen 52062, Germany
| | - Anna K Blakney
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
5
|
Silva-Pilipich N, Beloki U, Salaberry L, Smerdou C. Self-Amplifying RNA: A Second Revolution of mRNA Vaccines against COVID-19. Vaccines (Basel) 2024; 12:318. [PMID: 38543952 PMCID: PMC10974399 DOI: 10.3390/vaccines12030318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
SARS-CoV-2 virus, the causative agent of COVID-19, has produced the largest pandemic in the 21st century, becoming a very serious health problem worldwide. To prevent COVID-19 disease and infection, a large number of vaccines have been developed and approved in record time, including new vaccines based on mRNA encapsulated in lipid nanoparticles. While mRNA-based vaccines have proven to be safe and effective, they are more expensive to produce compared to conventional vaccines. A special type of mRNA vaccine is based on self-amplifying RNA (saRNA) derived from the genome of RNA viruses, mainly alphaviruses. These saRNAs encode a viral replicase in addition to the antigen, usually the SARS-CoV-2 spike protein. The replicase can amplify the saRNA in transfected cells, potentially reducing the amount of RNA needed for vaccination and promoting interferon I responses that can enhance adaptive immunity. Preclinical studies with saRNA-based COVID-19 vaccines in diverse animal models have demonstrated the induction of robust protective immune responses, similar to conventional mRNA but at lower doses. Initial clinical trials have confirmed the safety and immunogenicity of saRNA-based vaccines in individuals that had previously received authorized COVID-19 vaccines. These findings have led to the recent approval of two of these vaccines by the national drug agencies of India and Japan, underscoring the promising potential of this technology.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Uxue Beloki
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Laura Salaberry
- Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo 11100, Uruguay;
- Nanogrow Biotech, Montevideo 11500, Uruguay
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| |
Collapse
|
6
|
Feng S, Rcheulishvili N, Jiang X, Zhu P, Pan X, Wei M, Wang PG, Ji Y, Papukashvili D. A review on Gaucher disease: therapeutic potential of β-glucocerebrosidase-targeted mRNA/saRNA approach. Int J Biol Sci 2024; 20:2111-2129. [PMID: 38617529 PMCID: PMC11008270 DOI: 10.7150/ijbs.87741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
Gaucher disease (GD), a rare hereditary lysosomal storage disorder, occurs due to a deficiency in the enzyme β-glucocerebrosidase (GCase). This deficiency leads to the buildup of substrate glucosylceramide (GlcCer) in macrophages, eventually resulting in various complications. Among its three types, GD2 is particularly severe with neurological involvements. Current treatments, such as enzyme replacement therapy (ERT), are not effective for GD2 and GD3 due to their inability to cross the blood-brain barrier (BBB). Other treatment approaches, such as gene or chaperone therapies are still in experimental stages. Additionally, GD treatments are costly and can have certain side effects. The successful use of messenger RNA (mRNA)-based vaccines for COVID-19 in 2020 has sparked interest in nucleic acid-based therapies. Remarkably, mRNA technology also offers a novel approach for protein replacement purposes. Additionally, self-amplifying RNA (saRNA) technology shows promise, potentially producing more protein at lower doses. This review aims to explore the potential of a cost-effective mRNA/saRNA-based approach for GD therapy. The use of GCase-mRNA/saRNA as a protein replacement therapy could offer a new and promising direction for improving the quality of life and extending the lifespan of individuals with GD.
Collapse
Affiliation(s)
- Shunping Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Pan Zhu
- Cheerland Biomedicine, Shenzhen, China
| | - Xuehua Pan
- Shenzhen Pengbo Biotech Co. Ltd, Shenzhen, China
| | - Meilan Wei
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yang Ji
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Friesen JJ, Blakney AK. Trends in the synthetic polymer delivery of RNA. J Gene Med 2024; 26:e3672. [PMID: 38380796 DOI: 10.1002/jgm.3672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/27/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Ribonucleic acid (RNA) has emerged as one of the most promising therapeutic payloads in the field of gene therapy. There are many unique types of RNA that allow for a range of applications including vaccination, protein replacement therapy, autoimmune disease treatment, gene knockdown and gene editing. However, RNA triggers the host immune system, is vulnerable to degradation and has a low proclivity to enter cells spontaneously. Therefore, a delivery vehicle is required to facilitate the protection and uptake of RNA therapeutics into the desired host cells. Lipid nanoparticles have emerged as one of the only clinically approved vehicles for genetic payloads, including in the COVID-19 messenger RNA vaccines. While lipid nanoparticles have distinct advantages, they also have drawbacks, including strong immune stimulation, complex manufacturing and formulation heterogeneity. In contrast, synthetic polymers are a widely studied group of gene delivery vehicles and boast distinct advantages, including biocompatibility, tunability, inexpensiveness, simple formulation and ease of modification. Some classes of polymers enhance efficient transfection efficiency, and lead to lower stimulation of the host immune system, making them more viable candidates for non-vaccine-related applications of RNA medicines. This review aims to identify the most promising classes of synthetic polymers, summarize recent research aimed at moving them into the clinic and postulate the future steps required for unlocking their full potential.
Collapse
Affiliation(s)
- Josh J Friesen
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Anna K Blakney
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Kachko A, Selvaraj P, Liu S, Kim J, Rotstein D, Stauft CB, Chabot S, Rajasagi N, Zhao Y, Wang T, Major M. Vaccine-associated respiratory pathology correlates with viral clearance and protective immunity after immunization with self-amplifying RNA expressing the spike (S) protein of SARS-CoV-2 in mouse models. Vaccine 2024; 42:608-619. [PMID: 38142216 DOI: 10.1016/j.vaccine.2023.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this study, we evaluated the immunogenicity and protective immunity of in vitro transcribed Venezuelan equine encephalitis virus (VEEV TC-83 strain) self-amplifying RNA (saRNA) encoding the SARS-CoV-2 spike (S) protein in wild type (S-WT) and stabilized pre-fusion conformations (S-PP). Immunization with S-WT and S-PP saRNA induced specific neutralizing antibody responses in both K18-Tg hACE2 (K18) and BALB/c mice, as assessed using SARS-CoV-2 pseudotyped viruses. Protective immunity was assessed in challenge experiments. Two immunizations with S-WT and S-PP induced protective immunity, evidenced by lower mortality, lower weight loss and more than one log10 lower subgenomic virus RNA titers in the upper and lower respiratory tracts in both K18 and BALB/c mice. Histopathologic examination of lungs post-challenge showed that immunization with S-WT and S-PP resulted in a higher degree of immune cell infiltration and inflammatory changes, compared with control mice, characterized by high levels of T- and B-cell infiltration. No substantial differences were found in the presence and localization of eosinophils, macrophages, neutrophils, and natural killer cells. CD4 and CD8 T-cell depletion post immunization resulted in reduced lung inflammation post challenge but also prolonged virus clearance. These data indicate that immunization with saRNA encoding the SARS-CoV-2 S protein induces immune responses that are protective following challenge, that virus clearance is associated with pulmonary changes caused by T-cell and B-cell infiltration in the lungs, but that this T and B-cell infiltration plays an important role in viral clearance.
Collapse
Affiliation(s)
- Alla Kachko
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Prabhuanand Selvaraj
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shufeng Liu
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jaekwan Kim
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David Rotstein
- Division of Food Compliance, Center for Veterinary Medicine, Food and Drug Administration, Rockville, MD, USA
| | - Charles B Stauft
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sylvie Chabot
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Naveen Rajasagi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Yangqing Zhao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tony Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Marian Major
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
9
|
Mochida Y, Uchida S. mRNA vaccine designs for optimal adjuvanticity and delivery. RNA Biol 2024; 21:1-27. [PMID: 38528828 PMCID: PMC10968337 DOI: 10.1080/15476286.2024.2333123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Adjuvanticity and delivery are crucial facets of mRNA vaccine design. In modern mRNA vaccines, adjuvant functions are integrated into mRNA vaccine nanoparticles, allowing the co-delivery of antigen mRNA and adjuvants in a unified, all-in-one formulation. In this formulation, many mRNA vaccines utilize the immunostimulating properties of mRNA and vaccine carrier components, including lipids and polymers, as adjuvants. However, careful design is necessary, as excessive adjuvanticity and activation of improper innate immune signalling can conversely hinder vaccination efficacy and trigger adverse effects. mRNA vaccines also require delivery systems to achieve antigen expression in antigen-presenting cells (APCs) within lymphoid organs. Some vaccines directly target APCs in the lymphoid organs, while others rely on APCs migration to the draining lymph nodes after taking up mRNA vaccines. This review explores the current mechanistic understanding of these processes and the ongoing efforts to improve vaccine safety and efficacy based on this understanding.
Collapse
Affiliation(s)
- Yuki Mochida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| |
Collapse
|
10
|
Chen J, Xu Y, Zhou M, Xu S, Varley AJ, Golubovic A, Lu RXZ, Wang KC, Yeganeh M, Vosoughi D, Li B. Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects. Proc Natl Acad Sci U S A 2023; 120:e2309472120. [PMID: 38060560 PMCID: PMC10723144 DOI: 10.1073/pnas.2309472120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Ionizable lipid nanoparticles (LNPs) pivotal to the success of COVID-19 mRNA (messenger RNA) vaccines hold substantial promise for expanding the landscape of mRNA-based therapies. Nevertheless, the risk of mRNA delivery to off-target tissues highlights the necessity for LNPs with enhanced tissue selectivity. The intricate nature of biological systems and inadequate knowledge of lipid structure-activity relationships emphasize the significance of high-throughput methods to produce chemically diverse lipid libraries for mRNA delivery screening. Here, we introduce a streamlined approach for the rapid design and synthesis of combinatorial libraries of biodegradable ionizable lipids. This led to the identification of iso-A11B5C1, an ionizable lipid uniquely apt for muscle-specific mRNA delivery. It manifested high transfection efficiencies in muscle tissues, while significantly diminishing off-targeting in organs like the liver and spleen. Moreover, iso-A11B5C1 also exhibited reduced mRNA transfection potency in lymph nodes and antigen-presenting cells, prompting investigation into the influence of direct immune cell transfection via LNPs on mRNA vaccine effectiveness. In comparison with SM-102, while iso-A11B5C1's limited immune transfection attenuated its ability to elicit humoral immunity, it remained highly effective in triggering cellular immune responses after intramuscular administration, which is further corroborated by its strong therapeutic performance as cancer vaccine in a melanoma model. Collectively, our study not only enriches the high-throughput toolkit for generating tissue-specific ionizable lipids but also encourages a reassessment of prevailing paradigms in mRNA vaccine design. This study encourages rethinking of mRNA vaccine design principles, suggesting that achieving high immune cell transfection might not be the sole criterion for developing effective mRNA vaccines.
Collapse
Affiliation(s)
- Jingan Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Yue Xu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Muye Zhou
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Shufen Xu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Andrew James Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Alex Golubovic
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Rick Xing Ze Lu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Kevin Chang Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
| | - Mina Yeganeh
- Institute of Medical Science, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Daniel Vosoughi
- Institute of Medical Science, University of Toronto, Toronto, ONM5G 1L7, Canada
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Bowen Li
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ONM5S 3M2, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ONM5G 2C1, Canada
| |
Collapse
|
11
|
Chen P, Paraiso WKD, Cabral H. Revitalizing Cytokine-Based Cancer Immunotherapy through Advanced Delivery Systems. Macromol Biosci 2023; 23:e2300275. [PMID: 37565723 DOI: 10.1002/mabi.202300275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
12
|
Shattock RJ, Andrianaivoarimanana V, McKay PF, Randriantseheno LN, Murugaiah V, Samnuan K, Rogers P, Tregoning JS, Rajerison M, Moore KM, Laws TR, Williamson ED. A self-amplifying RNA vaccine provides protection in a murine model of bubonic plague. Front Microbiol 2023; 14:1247041. [PMID: 38029221 PMCID: PMC10652872 DOI: 10.3389/fmicb.2023.1247041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Mice were immunized with a combination of self-amplifying (sa) RNA constructs for the F1 and V antigens of Yersinia pestis at a dose level of 1 μg or 5 μg or with the respective protein sub-units as a reference vaccine. The immunization of outbred OF1 mice on day 0 and day 28 with the lowest dose used (1 μg) of each of the saRNA constructs in lipid nanoparticles protected 5/7 mice against subsequent sub-cutaneous challenge on day 56 with 180 cfu (2.8 MLD) of a 2021 clinical isolate of Y. pestis termed 10-21/S whilst 5/7 mice were protected against 1800cfu (28MLD) of the same bacteria on day 56. By comparison, only 1/8 or 1/7 negative control mice immunized with 10 μg of irrelevant haemagglutin RNA in lipid nanoparticles (LNP) survived the challenge with 2.8 MLD or 28 MLD Y. pestis 10-21/S, respectively. BALB/c mice were also immunized with the same saRNA constructs and responded with the secretion of specific IgG to F1 and V, neutralizing antibodies for the V antigen and developed a recall response to both F1 and V. These data represent the first report of an RNA vaccine approach using self-amplifying technology and encoding both of the essential virulence antigens, providing efficacy against Y. pestis. This saRNA vaccine for plague has the potential for further development, particularly since its amplifying nature can induce immunity with less boosting. It is also amenable to rapid manufacture with simpler downstream processing than protein sub-units, enabling rapid deployment and surge manufacture during disease outbreaks.
Collapse
Affiliation(s)
- Robin John Shattock
- Dept. of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Paul F. McKay
- Dept. of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | - K. Samnuan
- Dept. of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul Rogers
- Dept. of Infectious Disease, Imperial College London, London, United Kingdom
| | - John S. Tregoning
- Dept. of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Herzog RW, Giangrande PH. The Nobel Prize awarded to pioneers of mRNA vaccines. Mol Ther 2023; 31:3105-3106. [PMID: 37863063 PMCID: PMC10638032 DOI: 10.1016/j.ymthe.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Roland W Herzog
- Editor-in-Chief, Molecular Therapy; Gene and Cell Therapy Program, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, 1044 W. Walnut Street, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
14
|
Perrotta C, Fenizia C, Carnovale C, Pozzi M, Trabattoni D, Cervia D, Clementi E. Updated Considerations for the Immunopharmacological Aspects of the "Talented mRNA Vaccines". Vaccines (Basel) 2023; 11:1481. [PMID: 37766157 PMCID: PMC10534931 DOI: 10.3390/vaccines11091481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) vaccines belong to a new class of medications, RNA therapeutics, including both coding and non-coding RNAs. The use of mRNA as a therapy is based on the biological role of mRNA itself, namely its translation into a functional protein. The goal of mRNA vaccines is to produce a specific antigen in cells to elicit an immune response that might be prophylactic or therapeutic. The potential of mRNA as vaccine has been envisaged for years but its efficacy has been clearly demonstrated with the approval of COVID-19 vaccines in 2021. Since then, mRNA vaccines have been in the pipeline for diseases that are still untreatable. There are many advantages of mRNA vaccines over traditional vaccines, including easy and cost-effective production, high safety, and high-level antigen expression. However, the nature of mRNA itself and some technical issues pose challenges associated with the vaccines' development and use. Here we review the immunological and pharmacological features of mRNA vaccines by discussing their pharmacokinetics, mechanisms of action, and safety, with a particular attention on the advantages and challenges related to their administration. Furthermore, we present an overview of the areas of application and the clinical trials that utilize a mRNA vaccine as a treatment.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milano, Italy;
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| |
Collapse
|
15
|
Tregoning JS. LION: Taming RNA vaccine inflammation. Mol Ther 2023; 31:2557. [PMID: 37541255 PMCID: PMC10492017 DOI: 10.1016/j.ymthe.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Affiliation(s)
- John S Tregoning
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
16
|
Kimura T, Leal JM, Simpson A, Warner NL, Berube BJ, Archer JF, Park S, Kurtz R, Hinkley T, Nicholes K, Sharma S, Duthie MS, Berglund P, Reed SG, Khandhar AP, Erasmus JH. A localizing nanocarrier formulation enables multi-target immune responses to multivalent replicating RNA with limited systemic inflammation. Mol Ther 2023; 31:2360-2375. [PMID: 37403357 PMCID: PMC10422015 DOI: 10.1016/j.ymthe.2023.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
RNA vaccines possess significant clinical promise in counteracting human diseases caused by infectious or cancerous threats. Self-amplifying replicon RNA (repRNA) has been thought to offer the potential for enhanced potency and dose sparing. However, repRNA is a potent trigger of innate immune responses in vivo, which can cause reduced transgene expression and dose-limiting reactogenicity, as highlighted by recent clinical trials. Here, we report that multivalent repRNA vaccination, necessitating higher doses of total RNA, could be safely achieved in mice by delivering multiple repRNAs with a localizing cationic nanocarrier formulation (LION). Intramuscular delivery of multivalent repRNA by LION resulted in localized biodistribution accompanied by significantly upregulated local innate immune responses and the induction of antigen-specific adaptive immune responses in the absence of systemic inflammatory responses. In contrast, repRNA delivered by lipid nanoparticles (LNPs) showed generalized biodistribution, a systemic inflammatory state, an increased body weight loss, and failed to induce neutralizing antibody responses in a multivalent composition. These findings suggest that in vivo delivery of repRNA by LION is a platform technology for safe and effective multivalent vaccination through mechanisms distinct from LNP-formulated repRNA vaccines.
Collapse
Affiliation(s)
- Taishi Kimura
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA.
| | - Joseph M Leal
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Adrian Simpson
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Nikole L Warner
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Bryan J Berube
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Jacob F Archer
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Stephanie Park
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Ryan Kurtz
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Troy Hinkley
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | | | - Shibbu Sharma
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | | | - Peter Berglund
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Steven G Reed
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Amit P Khandhar
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Jesse H Erasmus
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA; Department of Microbiology, University of Washington, 750 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
17
|
Korzun T, Moses AS, Diba P, Sattler AL, Taratula OR, Sahay G, Taratula O, Marks DL. From Bench to Bedside: Implications of Lipid Nanoparticle Carrier Reactogenicity for Advancing Nucleic Acid Therapeutics. Pharmaceuticals (Basel) 2023; 16:1088. [PMID: 37631003 PMCID: PMC10459564 DOI: 10.3390/ph16081088] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In biomedical applications, nanomaterial-based delivery vehicles, such as lipid nanoparticles, have emerged as promising instruments for improving the solubility, stability, and encapsulation of various payloads. This article provides a formal review focusing on the reactogenicity of empty lipid nanoparticles used as delivery vehicles, specifically emphasizing their application in mRNA-based therapies. Reactogenicity refers to the adverse immune responses triggered by xenobiotics, including administered lipid nanoparticles, which can lead to undesirable therapeutic outcomes. The key components of lipid nanoparticles, which include ionizable lipids and PEG-lipids, have been identified as significant contributors to their reactogenicity. Therefore, understanding the relationship between lipid nanoparticles, their structural constituents, cytokine production, and resultant reactogenic outcomes is essential to ensure the safe and effective application of lipid nanoparticles in mRNA-based therapies. Although efforts have been made to minimize these adverse reactions, further research and standardization are imperative. By closely monitoring cytokine profiles and assessing reactogenic manifestations through preclinical and clinical studies, researchers can gain valuable insights into the reactogenic effects of lipid nanoparticles and develop strategies to mitigate undesirable reactions. This comprehensive review underscores the importance of investigating lipid nanoparticle reactogenicity and its implications for the development of mRNA-lipid nanoparticle therapeutics in various applications beyond vaccine development.
Collapse
Affiliation(s)
- Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Ariana L. Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA
| | - Olena R. Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA
| |
Collapse
|