1
|
Bagheri-Mohammadi S, Karamivandishi A, Mahdavi SA, Siahposht-Khachaki A. New sights on long non-coding RNAs in glioblastoma: A review of molecular mechanism. Heliyon 2024; 10:e39744. [PMID: 39553554 PMCID: PMC11564028 DOI: 10.1016/j.heliyon.2024.e39744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Glioma or glioblastoma (GBM) is one of the aggressive and fatal primary cerebral malignancies, with the highest mortality rate among all brain-related tumors. Also, glioma mainly progresses as a more invasive phenotype after primary treatment. Cumulative evidence suggested that dysregulation of noncoding RNAs (ncRNAs) such as long non-coding RNAs (LncRNAs) and microRNAs (miRNAs) are associated with tumor initiation, progression, and drug resistance, through epigenetic modifications, transcriptional, and post-transcriptional processes in the cells. Many scientific investigations have revealed that LncRNAs play important roles in various biological procedures linked with the development and progression of GBM. In recent years, it has been shown that dysregulation of molecular mechanisms in many LncRNAs such as MIR22HG, HULC, AGAP2-AS1, MALAT1, PVT1, TTTY14, HOTAIRM1, PTAR, LPP-AS2, LINC00336, and TINCR are connected with the GBM. Therefore, this scientific review paper focused on the molecular mechanisms of these LncRNAs in the context of GBM.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seif Ali Mahdavi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Leili FR, Shali N, Sheibani M, Jafarian MJ, Pashizeh F, Gerami R, Iraj F, Lashkarshekan AA. Detailed pathological role of non-coding RNAs (ncRNAs) in regulating drug resistance of glioblastoma, and update. Pathol Res Pract 2024; 263:155590. [PMID: 39326365 DOI: 10.1016/j.prp.2024.155590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Glioma is a kind of brain tumor that develops in the central nervous system and is classified based on its histology and molecular genetic features. The lifespan of patients does not exceed 22 months. One of the motives for the low effectiveness of glioma treatment is its radioresistance and chemoresistance. Noncoding RNAs (ncRNAs) are a diverse set of transcripts that do not undergo translation to become proteins in glioma. The ncRNAs have been identified as significant regulators of several biological processes in different cell types and tissues, and their abnormal function has been linked to glioma. They are known to impact important occurrences, including carcinogenesis, progression, and enhanced treatment resistance in glioma cells. The ncRNAs control cell proliferation, migration, epithelial-to-mesenchymal transition (EMT), invasion, and drug resistance in glioma cells. The main focus of this study is to inspect the involvement of ncRNAs in the drug resistance of glioma.
Collapse
Affiliation(s)
- Foad Rahmanpour Leili
- Department of Neurology Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Niloofar Shali
- Department of Clinical Biochemistry, School of Medicine, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Tabriz, Tabriz, Iran
| | | | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd 8916188635, Iran
| | - Reza Gerami
- Department of Radiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran.
| | | | | |
Collapse
|
3
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
4
|
Liu Y, Zou SH, Gao X. Bioinformatics analysis and experimental validation reveal that CDC20 overexpression promotes bladder cancer progression and potential underlying mechanisms. Genes Genomics 2024; 46:437-449. [PMID: 38438666 DOI: 10.1007/s13258-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Bladder cancer is a prevalent malignancy. CDC20, a pivotal cell cycle regulator gene, plays a significant role in tumour cell proliferation, but its role in bladder cancer remains unclear. OBJECTIVE This study aimed to analyse CDC20 expression in bladder cancer and explore its roles in tumour progression, treatment response, patient prognosis, and cellular proliferation mechanisms. METHODS We systematically analysed CDC20 expression in bladder cancer using bioinformatics. Our study investigated the impact of CDC20 on chemotherapy and radiotherapy sensitivity, patient prognosis, and changes in CDC20 methylation levels. We also explored the role and potential underlying mechanisms of CDC20 in bladder cancer cell growth. We used lentiviral transfection to downregulate CDC20 expression in 5637 and T24 cells, followed by CCK-8, colony formation, scratch, invasion, apoptosis, and cell cycle analyses. RESULTS CDC20 is highly expressed in bladder cancer and is significantly correlated with poor prognosis. Moreover, CDC20 demonstrated high diagnostic potential for bladder cancer (AUC > 0.9). The tumour methylation levels of CDC20 in tumour tissues markedly decreased compared with those in normal tissues, and lower methylation levels were associated with a worse prognosis. Elevated CDC20 expression is linked to increased mutation burden. Our findings suggested a potential association between high CDC20 expression and resistance to chemotherapy and radiotherapy, as CDC20 expression may impact immune cell infiltration levels. Mechanistic analysis revealed the influence of CDC20 on bladder cancer cell proliferation through cell cycle-related pathways. According to the cell experiments, CDC20 downregulation significantly impedes bladder cancer cell proliferation and invasion, leading to G1 phase arrest. CONCLUSION Aberrantly high CDC20 expression promotes tumour progression in bladder cancer, resulting in a poor prognosis, and may also constitute a promising therapeutic target.
Collapse
Affiliation(s)
- Yuan Liu
- Clinical Laboratory, Hunan University of Medicine General Hospital, Huaihua, Hunan, 418000, China
| | - Shao-Hui Zou
- Clinical Laboratory, Hunan University of Medicine General Hospital, Huaihua, Hunan, 418000, China
| | - Xin Gao
- Clinical Laboratory, Hunan University of Medicine General Hospital, Huaihua, Hunan, 418000, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100010, China.
| |
Collapse
|
5
|
Sadida HQ, Abdulla A, Marzooqi SA, Hashem S, Macha MA, Akil ASAS, Bhat AA. Epigenetic modifications: Key players in cancer heterogeneity and drug resistance. Transl Oncol 2024; 39:101821. [PMID: 37931371 PMCID: PMC10654239 DOI: 10.1016/j.tranon.2023.101821] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Cancer heterogeneity and drug resistance remain pivotal obstacles in effective cancer treatment and management. One major contributor to these challenges is epigenetic modifications - gene regulation that does not involve changes to the DNA sequence itself but significantly impacts gene expression. As we elucidate these phenomena, we underscore the pivotal role of epigenetic modifications in regulating gene expression, contributing to cellular diversity, and driving adaptive changes that can instigate therapeutic resistance. This review dissects essential epigenetic modifications - DNA methylation, histone modifications, and chromatin remodeling - illustrating their significant yet complex contributions to cancer biology. While these changes offer potential avenues for therapeutic intervention due to their reversible nature, the interplay of epigenetic and genetic changes in cancer cells presents unique challenges that must be addressed to harness their full potential. By critically analyzing the current research landscape, we identify knowledge gaps and propose future research directions, exploring the potential of epigenetic therapies and discussing the obstacles in translating these concepts into effective treatments. This comprehensive review aims to stimulate further research and aid in developing innovative, patient-centered cancer therapies. Understanding the role of epigenetic modifications in cancer heterogeneity and drug resistance is critical for scientific advancement and paves the way towards improving patient outcomes in the fight against this formidable disease.
Collapse
Affiliation(s)
- Hana Q Sadida
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Alanoud Abdulla
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sara Al Marzooqi
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Laboratory of Genomic Medicine, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu & Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| | - Ajaz A Bhat
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
6
|
Cheng C, Liu D, Liu Z, Li M, Wang Y, Sun B, Kong R, Chen H, Wang G, Li L, Hu J, Li Y, Chen H, Zhao Z, Zhang T, Zhu S, Pan S. Positive feedback regulation of lncRNA TPT1-AS1 and ITGB3 promotes cell growth and metastasis in pancreatic cancer. Cancer Sci 2022; 113:2986-3001. [PMID: 35534983 PMCID: PMC9459417 DOI: 10.1111/cas.15388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Emerging evidence has indicated that long noncoding RNAs (lncRNAs) are potential biomarkers and play crucial roles in cancer development. However, the functions and underlying mechanisms of lncRNA TPT1-AS1 in pancreatic ductal adenocarcinoma (PDAC) remain elusive. RNAseq data of PDAC tissues and normal tissues were analyzed, and lncRNAs which were associated with PDAC prognosis were identified. The clinical relevance of TPT1-AS1 for PDAC patients was explored, and the effects of TPT1-AS1 in PDAC progression were investigated in vitro and in vivo. LncRNA TPT1-AS1 was highly expressed in PDAC, and high TPT1-AS1 levels predicted a poor prognosis. Moreover, functional experiments revealed that TPT1-AS1 promoted pancreatic cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) process in vitro and in vivo. Mechanistically, TPT1-AS1 functioned as an endogenous sponge for miR-30a-5p, which increased integrin β3 (ITGB3) level in pancreatic cancer cells. Conversely, our data revealed that ITGB3 could activate the transcription factor signal transducer and activator of transcription 3 (STAT3), which in turn bound directly to the TPT1-AS1 promoter and affected the expression of TPT1-AS1, thus forming a positive feedback loop with TPT1-AS1. Taken together, our results uncovered a reciprocal loop of TPT1-AS1 and ITGB3 which contributed to pancreatic cancer growth and development, and indicated that TPT1-AS1 might serve as a novel potential diagnostic biomarker and therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Chundong Cheng
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Danxi Liu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Zonglin Liu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Mengyang Li
- Department of Medical OncologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yongwei Wang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Bei Sun
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Rui Kong
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Hua Chen
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Gang Wang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Le Li
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Jisheng Hu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Yilong Li
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Hongze Chen
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Tao Zhang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Siqiang Zhu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Shangha Pan
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| |
Collapse
|
7
|
Tamtaji OR, Derakhshan M, Rashidi Noshabad FZ, Razaviyan J, Hadavi R, Jafarpour H, Jafari A, Rajabi A, Hamblin MR, Mahabady MK, Taghizadieh M, Mirzaei H. Non-Coding RNAs and Brain Tumors: Insights Into Their Roles in Apoptosis. Front Cell Dev Biol 2022; 9:792185. [PMID: 35111757 PMCID: PMC8801811 DOI: 10.3389/fcell.2021.792185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
A major terrifying ailment afflicting the humans throughout the world is brain tumor, which causes a lot of mortality among pediatric and adult solid tumors. Several major barriers to the treatment and diagnosis of the brain tumors are the specific micro-environmental and cell-intrinsic features of neural tissues. Absence of the nutrients and hypoxia trigger the cells' mortality in the core of the tumors of humans' brains: however, type of the cells' mortality, including apoptosis or necrosis, has been not found obviously. Current studies have emphasized the non-coding RNAs (ncRNAs) since their crucial impacts on carcinogenesis have been discovered. Several investigations suggest the essential contribution of such molecules in the development of brain tumors and the respective roles in apoptosis. Herein, we summarize the apoptosis-related non-coding RNAs in brain tumors.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Javad Razaviyan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razie Hadavi
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Jafarpour
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rajabi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Guo H, Liao Y, Lin A, Lin H, Huang X, Ruan J, Yuan L, Zhuo Z. Association Between LIN28A Gene Polymorphisms and Glioma Susceptibility in Chinese Children. Cancer Control 2021; 28:10732748211040009. [PMID: 34468231 PMCID: PMC8414609 DOI: 10.1177/10732748211040009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gliomas are the most prevalent brain tumors among children and adolescents. The
occurrence and development of various malignant tumors is closely related with
LIN28A gene, but its relationship with glioma
susceptibility has not been widely discovered. In this case-control study, we
conducted four single nucleotide polymorphisms (SNPs) (rs3811464 G>A,
rs3811463 T>C, rs34787247 G>A, and rs11247957 G>A) of
LIN28A gene to investigate whether they increase the risk
of glioma. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to
evaluate their relationship. There was no significant correlation between four
SNPs and glioma risk in single polymorphism and conjoint analysis. However, in
stratification analysis, we found that rs3811463 TC/CC may add to the risk of
glioma with clinical stage III (adjusted OR = 3.16, 95% CI = 1.15-8.70, P =
.026) or stage III+IV patients (adjusted OR = 2.05, 95% CI = 1.02-4.13, P =
.044). Our research suggested that four SNPs of LIN28A gene
have a weak relationship with the risk of glioma in Chinese children.
LIN28A rs3811463 TC/CC may increase the possibility of
glioma in clinical stage III or stage III+IV patients which need larger samples
and further confirmation.
Collapse
Affiliation(s)
- Huiqin Guo
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, 159390Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Yuxiang Liao
- Department of Neurosurgery, 159374Xiangya Hospital, Central South University, Changsha, Changsha, China
| | - Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, 159390Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, 58816Macau University of Science and Technology, Macau, China
| | - Xiaokai Huang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jichen Ruan
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Yuan
- Department of Pathology, 159390Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, 159390Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Barik GK, Sahay O, Behera A, Naik D, Kalita B. Keep your eyes peeled for long noncoding RNAs: Explaining their boundless role in cancer metastasis, drug resistance, and clinical application. Biochim Biophys Acta Rev Cancer 2021; 1876:188612. [PMID: 34391844 DOI: 10.1016/j.bbcan.2021.188612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer metastasis and drug resistance are two major obstacles in the treatment of cancer and therefore, the leading cause of cancer-associated mortalities worldwide. Hence, an in-depth understanding of these processes and identification of the underlying key players could help design a better therapeutic regimen to treat cancer. Earlier thought to be merely transcriptional junk and having passive or secondary function, recent advances in the genomic research have unravelled that long noncoding RNAs (lncRNAs) play pivotal roles in diverse physiological as well as pathological processes including cancer metastasis and drug resistance. LncRNAs can regulate various steps of the complex metastatic cascade such as epithelial-mesenchymal transition (EMT), invasion, migration and metastatic colonization, and also affect the sensitivity of cancer cells to various chemotherapeutic drugs. A substantial body of literature for more than a decade of research evince that lncRNAs can regulate gene expression at different levels such as epigenetic, transcriptional, posttranscriptional, translational and posttranslational levels, depending on their subcellular localization and through their ability to interact with DNA, RNA and proteins. In this review, we mainly focus on how lncRNAs affect cancer metastasis by modulating expression of key metastasis-associated genes at various levels of gene regulation. We also discuss how lncRNAs confer cancer cells either sensitivity or resistance to various chemo-therapeutic drugs via different mechanisms. Finally, we highlight the immense potential of lncRNAs as prognostic and diagnostic biomarkers as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Debasmita Naik
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bhargab Kalita
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
10
|
Exosomal noncoding RNAs: key players in glioblastoma drug resistance. Mol Cell Biochem 2021; 476:4081-4092. [PMID: 34273059 DOI: 10.1007/s11010-021-04221-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Glioma, as one of the most severe human malignancies, is defined as the Central Nervous System's (CNS) tumors. Glioblastoma (GBM) in this regard, is the most malignant type of gliomas. There are multiple therapeutic strategies to cure GBM, for which chemotherapy is often the first-line treatment. Still, various cellular processes, such as uncontrolled proliferation, invasion and metastasis, may disturb the treatment efficacy. Drug resistance is another process in this way, which can also cause undesirable effects. Thereupon, identifying the mechanisms, involved in developing drug resistance and the relevant mechanisms can be very helpful in GBM management. The discovery of exosomal non-coding RNAs (ncRNAs), RNA molecules that can be transferred between the cells and different tissues using the exosomes, was a milestone in this regard. It has been revealed that the key exosomal ncRNAs, including circular RNAs, microRNAs, and long ncRNAs, are able to modulate GBM drug resistance through different signaling pathways or by affecting regulatory proteins and their corresponding genes. Nowadays, researchers are trying to overcome the limitations of chemotherapy by targeting these RNA molecules. Accordingly, this review aims to clarify the substantial roles of exosomal ncRNAs in GBM drug resistance and involved mechanisms.
Collapse
|
11
|
Ma YS, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Wang HM, Wang PY, Lin QL, Li W, Fu D. Basic approaches, challenges and opportunities for the discovery of small molecule anti-tumor drugs. Am J Cancer Res 2021; 11:2386-2400. [PMID: 34249406 PMCID: PMC8263657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Chemotherapy is one of the main treatments for cancer, especially for advanced cancer patients. In the past decade, significant progress has been made with the research into the molecular mechanisms of cancer cells and the precision medicine. The treatment on cancer patients has gradually changed from cytotoxic chemotherapy to precise treatment strategy. Research into anticancer drugs has also changed from killing effects on all cells to targeting drugs for target genes. Besides, researchers have developed the understanding of the abnormal physiological function, related genomics, epigenetics, and proteomics of cancer cells with cancer genome sequencing, epigenetic research, and proteomic research. These technologies and related research have accelerated the development of related cancer drugs. In this review, we summarize the research progress of anticancer drugs, the current challenges, and future opportunities.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|
12
|
Ghafouri-Fard S, Agabalazadeh A, Abak A, Shoorei H, Hassanzadeh Taheri MM, Taheri M, Sharifi G. Role of Long Non-Coding RNAs in Conferring Resistance in Tumors of the Nervous System. Front Oncol 2021; 11:670917. [PMID: 34178658 PMCID: PMC8219921 DOI: 10.3389/fonc.2021.670917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 01/11/2023] Open
Abstract
Tumors of the nervous system can be originated from several locations. They mostly have high mortality and morbidity rate. The emergence of resistance to chemotherapeutic agents is a hurdle in the treatment of patients. Long non-coding RNAs (lncRNAs) have been shown to influence the response of glioblastoma/glioma and neuroblastoma to chemotherapeutic agents. MALAT1, NEAT1, and H19 are among lncRNAs that affect the response of glioma/glioblastoma to chemotherapy. As well as that, NORAD, SNHG7, and SNHG16 have been shown to be involved in conferring this phenotype in neuroblastoma. Prior identification of expression amounts of certain lncRNAs would help in the better design of therapeutic regimens. In the current manuscript, we summarize the impact of lncRNAs on chemoresistance in glioma/glioblastoma and neuroblastoma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Agabalazadeh
- Department of Pharmacology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Li J, Dong W, Jiang Q, Zhang F, Dong H. LINC00668 cooperated with HuR dependent upregulation of PKN2 to facilitate gastric cancer metastasis. Cancer Biol Ther 2021; 22:311-323. [PMID: 33879018 DOI: 10.1080/15384047.2021.1905138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In China, gastric cancer (GC) ranks first in the incidence of all malignant tumors. With high recurrence and distant metastasis, GC has caused considerable mortalities. LncRNA long intergenic non-protein-coding RNA 668 (LINC00668) has been reported to be upregulated in GC cells and predict poor prognosis of GC patients. However, the mechanism of LINC00668 has not been fully investigated in GC. This study aimed to investigate the role of LINC00668 in GC. We found that LINC00668 level was upregulated in GC tissue and cells and predicted poor prognosis. Functionally, LINC00668 knockdown suppressed GC cell migration and invasion. Additionally, LINC00668 knockdown inhibited epithelial to mesenchymal transition (EMT) process. PKN2 exerts similar effects with LINC00668 in GC cells. LINC00668 knockdown suppressed tumor growth and metastasis in vivo. Mechanistically, HuR was predicted to bind with LINC00668 and protein kinase N2 (PKN2). RNA pull-down assays validated the binding between HuR and LINC00668 (or PKN2). Moreover, either silencing of LINC00668 or HuR could decrease PKN2 mRNA stability or reduce PKN2 mRNA and protein levels. Furthermore, PKN2 expression was positively correlated with LINC00668 expression and HuR expression in GC tissues, and HuR expression was positively associated with LINC00668 expression in GC tissues. Finally, rescue assays confirmed that the suppressive effect of LINC00668 silencing on cell migration, invasion, and EMT process was reversed by PKN2 overexpression or HuR upregulation. In conclusion, LINC00668 cooperated with HuR-dependent upregulation of PKN2 to facilitate gastric cancer metastasis, which may provide a potential novel insight for GC treatment.
Collapse
Affiliation(s)
- Jutang Li
- Hongqiao International Research Institution, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Wei Dong
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China.,Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qixia Jiang
- Department of Cardiology, Tong Ren Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Fenglian Zhang
- Department of Hematology, Tong Ren Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Hui Dong
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China.,Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
14
|
Non-coding RNA in cancer. Essays Biochem 2021; 65:625-639. [PMID: 33860799 PMCID: PMC8564738 DOI: 10.1042/ebc20200032] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Majority of the human genome is transcribed to RNAs that do not encode proteins. These non-coding RNAs (ncRNAs) play crucial roles in regulating the initiation and progression of various cancers. Given the importance of the ncRNAs, the roles of ncRNAs in cancers have been reviewed elsewhere. Thus, in this review, we mainly focus on the recent studies of the function, regulatory mechanism and therapeutic potential of the ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA), in different type of cancers.
Collapse
|
15
|
Noncoding RNAs in Glioblastoma: Emerging Biological Concepts and Potential Therapeutic Implications. Cancers (Basel) 2021; 13:cancers13071555. [PMID: 33800703 PMCID: PMC8037102 DOI: 10.3390/cancers13071555] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Since the completion of the Human Genome Project, noncoding RNAs (ncRNAs) have emerged as an important class of genetic regulators. Several classes of ncRNAs, which include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs), have been shown to play important roles in controlling developmental and disease processes. In this article, we discuss the potential roles of ncRNAs in regulating glioblastoma (GBM) formation and progression as well as potential strategies to exploit the diagnostic and therapeutic potential of ncRNAs in GBM. Abstract Noncoding RNAs (ncRNAs) have emerged as a novel class of genomic regulators, ushering in a new era in molecular biology. With the advent of advanced genetic sequencing technology, several different classes of ncRNAs have been uncovered, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs), which have been linked to many important developmental and disease processes and are being pursued as clinical and therapeutic targets. Molecular phenotyping studies of glioblastoma (GBM), the most common and lethal cancer of the adult brain, revealed that several ncRNAs are frequently dysregulated in its pathogenesis. Additionally, ncRNAs regulate many important aspects of glioma biology including tumour cell proliferation, migration, invasion, apoptosis, angiogenesis, and self-renewal. Here, we present an overview of the biogenesis of the different classes of ncRNAs, discuss their biological roles, as well as their relevance to gliomagenesis. We conclude by discussing potential approaches to therapeutically target the ncRNAs in clinic.
Collapse
|
16
|
Mahinfar P, Baradaran B, Davoudian S, Vahidian F, Cho WCS, Mansoori B. Long Non-Coding RNAs in Multidrug Resistance of Glioblastoma. Genes (Basel) 2021; 12:455. [PMID: 33806782 PMCID: PMC8004794 DOI: 10.3390/genes12030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme, is the most aggressive brain tumor in adults. Despite the huge advance in developing novel therapeutic strategies for patients with glioblastoma, the appearance of multidrug resistance (MDR) against the common chemotherapeutic agents, including temozolomide, is considered as one of the important causes for the failure of glioblastoma treatment. On the other hand, recent studies have demonstrated the critical roles of long non-coding RNAs (lncRNAs), particularly in the development of MDR in glioblastoma. Therefore, this article aimed to review lncRNA's contribution to the regulation of MDR and elucidate the underlying mechanisms in glioblastoma, which will open up new lines of inquiry in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | - Sadaf Davoudian
- Humanitas Clinical and Research Center—IRCCS, 20089 Milan, Italy;
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | | | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
17
|
Huang Z, Xiao C, Zhang F, Zhou Z, Yu L, Ye C, Huang W, Li N. A Novel Framework to Predict Breast Cancer Prognosis Using Immune-Associated LncRNAs. Front Genet 2021; 11:634195. [PMID: 33584821 PMCID: PMC7873981 DOI: 10.3389/fgene.2020.634195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer (BC) is one of the most frequently diagnosed malignancies among females. As a huge heterogeneity of malignant tumor, it is important to seek reliable molecular biomarkers to carry out the stratification for patients with BC. We surveyed immune- associated lncRNAs that may be used as potential therapeutic targets in BC. Methods: LncRNA expression data and clinical information of BC patients were downloaded from the TCGA database for a comprehensive analysis of candidate genes. A model consisting of immune-related lncRNAs enriched in BC cancerous tissues was established using the univariate Cox regression analysis and the iterative Lasso Cox regression analysis. The prognostic performance of this model was validated in two independent cohorts (GSE21653 and BC-KR), and compared with known prognostic biomarkers. A nomogram that integrated the immune-related lncRNA signature and clinicopathological factors was constructed to accurately assess the prognostic value of this signature. The correlation between the signature and immune cell infiltration in BC was also analyzed. Results: The Kaplan-Meier analysis showed that the OS of Patients in the low-risk group had significantly better survival than those in the high-risk group, Clinical subgroup analysis showed that the predictive ability was independent of clinicopathological factors. Univariate/multivariate Cox regression analysis showed immune lncRNA signature is an important prognostic factor and an independent prognostic marker. In addition, GSEA and GSVA analysis as well as comprehensive analysis of immune cells showed that the signature was significantly correlated with the infiltration of immune cells. Conclusion: We successfully constructed an immune-associated lncRNA signature that can accurately predict BC prognosis.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China.,Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Xiao
- Department of Gastroenterology, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Fushou Zhang
- Department of General Surgery, The Hospital of Changle District, Fuzhou, China
| | - Zhifeng Zhou
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Liang Yu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changsheng Ye
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Nani Li
- Department of Medical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
18
|
Tan X, Jiang H, Fang Y, Han D, Guo Y, Wang X, Gong X, Hong W, Tu J, Wei W. The essential role of long non-coding RNA GAS5 in glioma: interaction with microRNAs, chemosensitivity and potential as a biomarker. J Cancer 2021; 12:224-231. [PMID: 33391419 PMCID: PMC7738835 DOI: 10.7150/jca.49203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Glioma is a malignant brain tumor with a generally poor prognosis. Dysregulation of a long non-coding RNA, GAS5, has been detected in numerous cancers, including glioma. Previous studies have suggested that GAS5 plays a significant functional role in glioma, affecting proliferation, metastasis, invasion, and apoptosis. In this review, we describe the roles and mechanisms of GAS5 in glioma. GAS5 may be a biomarker for diagnosis and prognosis, and even a potential target for glioma treatment, and therefore warrants further investigation.
Collapse
Affiliation(s)
- Xuewen Tan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yawei Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xinming Wang
- The First Affiliated Hospital of Anhui Medical University
| | - Xun Gong
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wenming Hong
- The First Affiliated Hospital of Anhui Medical University
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
19
|
Hou Y, Jia H, Cao Y, Zhang S, Zhang X, Wei P, Xie J, Dong W, Wang B. LncRNA EPIC1 promotes tumor angiogenesis via activating the Ang2/Tie2 axis in non-small cell lung cancer. Life Sci 2020; 267:118933. [PMID: 33359744 DOI: 10.1016/j.lfs.2020.118933] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
AIMS Non-small cell lung cancer (NSCLC) is considered a highly fatal tumor. Importantly, angiogenesis is critical for tumor progression. Long non-coding RNAs (lncRNAs), which are untranslatable, control cell functions through different pathways. lncRNA EPIC1 has been reported to promote cell viability, cell cycle progression, and invasion. However, the relationship between EPIC1 and tumor angiogenesis remains an enigma. We explored the role of EPIC1 in tumor angiogenesis in NSCLC. MATERIALS AND METHODS First, EPIC1 expression was analyzed using the GEPIA database and was further verified using qPCR in tumor tissues from patients with NSCLC and NSCLC cell lines. Next, EPIC1 function was detected using loss-of-function and gain-of-function assays. Moreover, EdU staining, flow cytometry, and channel formation assays were performed to assess HUVEC proliferation and channel the formation in the NSCLC-HUVEC transwell co-culture system. KEY FINDINGS EPIC1 expression was significantly upregulated in NSCLC tissues and cell lines. Furthermore, the overexpression of EPIC1 in NSCLC cells stimulated HUVEC channel formation and proliferation by activating Ang2/Tie2 signaling, and the opposite results were obtained when EPIC1 was silenced in NSCLC cells. The density of new blood vessels was simultaneously increased by EPIC1 overexpression in vivo, using CAM angiogenesis model and a nude mouse tumor model. Finally, all these experimental findings could be established in the samples from patients with NSCLC. We postulate that EPIC1 promotes tumor angiogenesis by activating the Ang2/Tie2 axis in NSCLC. SIGNIFICANCE Elucidating the molecular and cellular mechanisms of EPIC1 in tumor angiogenesis provides a novel perspective on NSCLC clinical therapy.
Collapse
MESH Headings
- Angiopoietin-2/genetics
- Angiopoietin-2/metabolism
- Animals
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Proliferation/physiology
- Cell Survival/physiology
- Chick Embryo
- Databases, Genetic
- Disease Models, Animal
- Heterografts
- Human Umbilical Vein Endothelial Cells
- Humans
- Lung Neoplasms/blood supply
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Yanjiao Hou
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Clinical Laboratory, Dezhou People's Hospital, 1166 Dongfanghong Road, Decheng District, Dezhou, Shandong 253000, China
| | - Hengmin Jia
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yanhong Cao
- Department of Clinical Laboratory, the Affliated Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Shuang Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaolei Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Pingping Wei
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jun Xie
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wenqian Dong
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Baolong Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|