1
|
Burgas-Pau A, Gardela J, Aranda C, Verdún M, Rivas R, Pujol N, Figuerola J, Busquets N. Laboratory evidence on the vector competence of European field-captured Culex theileri for circulating West Nile virus lineages 1 and 2. Parasit Vectors 2025; 18:132. [PMID: 40188104 DOI: 10.1186/s13071-025-06763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Culex theileri (Theobald, 1903) is distributed in Afrotropical, Paleartic, and Oriental regions. It is a mainly mammophilic floodwater mosquito that is involved in the transmission of West Nile virus (WNV, renamed as Orthoflavivirus nilense by the International Committee on Taxonomy of Viruses [ICTV]) in Africa. This virus is a mosquito-borne flavivirus that is kept in an enzootic cycle mainly between birds and mosquitoes of the Culex genus. Occasionally, it affects mammals including humans and equines causing encephalopathies. The main purpose of the present study was to evaluate the vector competence of a European field-captured Cx. theileri population for circulating WNV lineages (1 and 2). METHODS Field-collected Cx. theileri larvae from Sevilla province (Spain) were reared in the laboratory under summer environmental conditions. To assess the vector competence for WNV transmission, 10-12 day old Cx. theileri females were fed with blood doped with WNV lineages 1 and 2 (7 log10 TCID50/mL). Females were sacrificed at 14- and 21- days post exposure (dpe), and their head, body, and saliva were extracted to assess infection, dissemination, and transmission rates, as well as transmission efficiency. RESULTS A Culex theileri population was experimentally confirmed as a highly competent vector for WNV (both lineages 1 and 2). The virus successfully infected and disseminated within Cx. theileri mosquitoes, and infectious virus isolated from their saliva indicated their potential to transmit the virus. Transmission efficiency was 50% for lineage 1 (for both 14 and 21 dpe), while it was 24% and 37.5% for lineage 2, respectively. There was barely any effect of the midgut infection barrier for lineage 1 and a moderate effect for lineage 2. The main barrier which limited the virus infection within the mosquito was the midgut escape barrier. CONCLUSIONS In the present study, the high transmission efficiency supports that Cx. theileri is competent to transmit WNV. However, vector density and feeding patterns of Cx. theileri mosquitoes must be considered when estimating their vectorial capacity for WNV in the field.
Collapse
Affiliation(s)
- Albert Burgas-Pau
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Jaume Gardela
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Carles Aranda
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Servei de Control de Mosquits del Consell Comarcal del Baix Llobregat, El Prat de Llobregat, Spain
| | - Marta Verdún
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Raquel Rivas
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Núria Pujol
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica Doñana, Seville, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Núria Busquets
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| |
Collapse
|
2
|
Byers NM, Ledermann JP, Hughes HR, Powers AM. Evidence of Limited Laboratory Infection of Culex Tarsalis (Diptera: Culicidae) by Usutu Virus. Vector Borne Zoonotic Dis 2025; 25:71-73. [PMID: 39377133 DOI: 10.1089/vbz.2024.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Background: Usutu virus (USUV) is an emerging flavivirus, closely related to West Nile virus (WNV), that has spread into Europe from Africa. Since Culex tarsalis Coquillett is an important vector for WNV transmission in the United States, we tested the ability of USUV to replicate in and be transmitted by these mosquitoes. Materials and Methods: USUV was used to infect 3-4 day-old Cx. tarsalis with 5.6 to 7.5 log10 pfu/ml in goose bloodmeals. Saliva, heads, and bodies were collected on day 13 or 14 and analyzed by RT-qPCR for detection for USUV vRNA. Blotting paper punches were also collected daily to assess viral transmissibility. Results: The low and high dose blood meal resulted in 0% and 19.6% of the mosquitoes having established infections, respectively. All of the high dose had a dissemination of USUV RNA to the heads and none of the filter papers had detectable USUV RNA, but five of the capillary saliva collections were positive, representing 45.5% of the infected mosquitoes. Conclusions: Limited infection of Cx. tarsalis was observed when exposed to bloodmeals with greater than 107 pfu/mL of USUV, indicating this vector is not likely to have a key role in transmission of the virus.
Collapse
Affiliation(s)
- Nathaniel M Byers
- Division of Vector-Borne Diseases, CDC, Fort Collins, Colorado, USA
- Current affiliation: the Salt Lake City Mosquito Abatement District, Salt Lake City, Utah, USA
| | | | - Holly R Hughes
- Division of Vector-Borne Diseases, CDC, Fort Collins, Colorado, USA
| | - Ann M Powers
- Division of Vector-Borne Diseases, CDC, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Nelson AN, Ploss A. Emerging mosquito-borne flaviviruses. mBio 2024; 15:e0294624. [PMID: 39480108 PMCID: PMC11633211 DOI: 10.1128/mbio.02946-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Flaviviruses comprise a genus of enveloped, positive-sense, single-stranded RNA viruses typically transmitted between susceptible and permissive hosts by arthropod vectors. Established flavivirus threats include dengue viruses (DENV), yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), which continue to cause over 400 million infections annually and are significant global health and economic burdens. Additionally, numerous closely related but largely understudied viruses circulate in animals and can conceivably emerge in human populations. Previous flaviviruses that were recognized to have this potential include ZIKV and WNV, which only became extensively studied after causing major outbreaks in humans. More than 50 species exist within the flavivirus genus, which can be further classified as mosquito-borne, tick-borne, insect-specific, or with no known vector. Historically, many of these flaviviruses originated in Africa and have mainly affected tropical and subtropical regions due to the ecological niche of mosquitoes. However, climate change, as well as vector and host migration, has contributed to geographical expansion, thereby posing a potential risk to global populations. For the purposes of this minireview, we focus on the mosquito-borne subgroup and highlight viruses that cause significant pathology or lethality in at least one animal species and/or have demonstrated an ability to infect humans. We discuss current knowledge of these viruses, existing animal models to study their pathogenesis, and potential future directions. Emerging viruses discussed include Usutu virus (USUV), Wesselsbron virus (WSLV), Spondweni virus (SPOV), Ilheus virus (ILHV), Rocio virus (ROCV), Murray Valley encephalitis virus (MVEV), and Alfuy virus (ALFV).
Collapse
Affiliation(s)
- Amy N. Nelson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
4
|
Pilgrim J, Metelmann S, Widlake E, Seechurn N, Vaux A, Mansfield KL, Tanianis-Hughes J, Sherlock K, Johnson N, Medlock J, Baylis M, Blagrove MS. UK mosquitoes are competent to transmit Usutu virus at native temperatures. One Health 2024; 19:100916. [PMID: 39497950 PMCID: PMC11532274 DOI: 10.1016/j.onehlt.2024.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Usutu virus (USUV) is an emerging zoonotic virus transmitted primarily by Culex mosquitoes. Since its introduction into Europe from Africa during the late 20th century, it has caused mortality within populations of passerine birds and captive owls, and can on occasion lead to disease in humans. USUV was first detected in the UK in 2020 and has become endemic, having been detected in either birds and/or mosquitoes every subsequent year. Importantly, the vector competence of indigenous mosquitoes for the circulating UK (London) USUV strain at representative regional temperatures is still to be elucidated. This study assessed the vector competence of five field-collected mosquito species/biotypes, Culex pipiens biotype molestus, Culex pipiens biotype pipiens, Culex torrentium, Culiseta annulata and Aedes detritus for the London USUV strain, with infection rates (IR) and transmission rates (TR) evaluated between 7 and 28 days post-infection. Infection and transmission were observed in all species/biotypes aside from Ae. detritus and Cx. torrentium. For Cx. pipiens biotype molestus, transmission potential suggests these populations should be monitored further for their role in transmission to humans. Furthermore, both Cx. pipiens biotype pipiens and Cs. annulata were shown to be competent vectors at 19 °C indicating the potential for geographical spread of the virus to other UK regions.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Soeren Metelmann
- North West Field Service, UK Health Security Agency, Liverpool L3 1EL, UK
| | - Emma Widlake
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Nicola Seechurn
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Alexander Vaux
- Medical Entomology and Zoonoses Ecology group, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Karen L. Mansfield
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Jola Tanianis-Hughes
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Ken Sherlock
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Nicholas Johnson
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Jolyon Medlock
- Medical Entomology and Zoonoses Ecology group, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Marcus S.C. Blagrove
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
5
|
Boubidi SC, Mousson L, Kernif T, Khardine F, Hachid A, Beck C, Lecollinet S, Moraes RA, Moutailler S, Dauga C, Failloux AB. First evidence of circulation of multiple arboviruses in Algeria. PLoS Negl Trop Dis 2024; 18:e0012651. [PMID: 39509466 PMCID: PMC11575824 DOI: 10.1371/journal.pntd.0012651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Algeria like other North African countries is experiencing recurrent episodes of West Nile Virus (WNV) emergences and new health threats associated with the introduction of Aedes albopictus in 2010 are to be feared. To improve the surveillance of mosquito-borne pathogens, we performed a study using innovative tools based on multiplex molecular methods. METHODS We combined two approaches: a high-throughput chip based on the BioMark Dynamic array system to detect arboviruses in mosquitoes, and a set of immunologic methods (ELISA, microsphere immunoassays (MIA) and virus microneutralization tests (MNT)) for serological surveys in animal hosts. We investigated two distinct regions: a first zone located in the coastal humid region and a second one in the Saharan desert region. PRINCIPAL FINDINGS We collected a total of 1,658 mosquitoes belonging to nine different species and found predominantly Culex pipienss. l. (56.5%) and Cx. perexiguus (27.5%). From 180 pools of 10 mosquitoes, we detected four arboviruses: Banna virus (BAV), chikungunya virus (CHIKV), Sindbis virus (SINV), and Usutu virus (USUV). Moreover, we examined 389 blood samples from equids and poultry and found that 52.4% were positive for flavivirus antibodies in ELISA, while 30.8% were positive for WNV and two chickens and two equids were positive for USUV by MNT and MIA respectively. CONCLUSIONS To our knowledge, this is the first report of five arboviruses circulating in Algeria, with three reported for the first time (CHIKV, BAV, and USUV). Our study brings evidence that reinforcing surveillance using more discriminant tools may help in anticipating future emergences and propose adapted control measures.
Collapse
Affiliation(s)
- Saïd C Boubidi
- Institut Pasteur d'Alger, Eco-Epidémiologie Parasitaire et Génétique des Populations, Alger, Algeria
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and InsectVectors, Paris, France
| | - Tahar Kernif
- Institut Pasteur d'Alger, Eco-Epidémiologie Parasitaire et Génétique des Populations, Alger, Algeria
| | - Fayez Khardine
- Laboratoire des Arbovirus et Virus Emergents, Institut Pasteur d'Algérie, Algiers, Algeria
| | - Aïssam Hachid
- Laboratoire des Arbovirus et Virus Emergents, Institut Pasteur d'Algérie, Algiers, Algeria
- Faculté de Pharmacie, Université d'Alger1, Algiers, Algeria
| | - Cécile Beck
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sylvie Lecollinet
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Rayane A Moraes
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Catherine Dauga
- Institut Pasteur, Université Paris Cité, Arboviruses and InsectVectors, Paris, France
| | - Anna Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and InsectVectors, Paris, France
| |
Collapse
|
6
|
Kuchinsky SC, Duggal NK. Usutu virus, an emerging arbovirus with One Health importance. Adv Virus Res 2024; 120:39-75. [PMID: 39455168 DOI: 10.1016/bs.aivir.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Usutu virus (USUV, Flaviviridae) is an emerging arbovirus that has led to epizootic outbreaks in birds and numerous human neuroinvasive disease cases in Europe. It is maintained in an enzootic cycle with Culex mosquitoes and passerine birds, a transmission cycle that is shared by West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), two flaviviruses that are endemic in the United States. USUV and WNV co-circulate in Africa and Europe, and SLEV and WNV co-circulate in North America. These three viruses are prime examples of One Health issues, in which the interactions between humans, animals, and the environments they reside in can have important health impacts. The three facets of One Health are interwoven throughout this article as we discuss the mechanisms of flavivirus transmission and emergence. We explore the possibility of USUV emergence in the United States by analyzing the shared characteristics among USUV, WNV, and SLEV, including the role that flavivirus co-infections and sequential exposures may play in viral emergence. Finally, we provide insights on the importance of integrated surveillance programs as One Health tools that can be used to mitigate USUV emergence and spread.
Collapse
Affiliation(s)
- Sarah C Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
7
|
Wehmeyer ML, Jaworski L, Jöst H, Șuleșco T, Rauhöft L, Afonso SMM, Neumann M, Kliemke K, Lange U, Kiel E, Schmidt-Chanasit J, Sauer FG, Lühken R. Host attraction and host feeding patterns indicate generalist feeding of Culex pipiens s.s. and Cx. torrentium. Parasit Vectors 2024; 17:369. [PMID: 39215365 PMCID: PMC11363403 DOI: 10.1186/s13071-024-06439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Mosquito host feeding patterns are an important factor of the species-specific vector capacity determining pathogen transmission routes. Culex pipiens s.s./Cx. torrentium are competent vectors of several arboviruses, such as West Nile virus and Usutu virus. However, studies on host feeding patterns rarely differentiate the morphologically indistinguishable females. METHODS We analyzed the host feeding attraction of Cx. pipiens and Cx. torrentium in host-choice studies for bird, mouse, and a human lure. In addition, we summarized published and unpublished data on host feeding patterns of field-collected specimens from Germany, Iran, and Moldova from 2012 to 2022, genetically identified as Cx. pipiens biotype pipiens, Cx. pipiens biotype molestus, Cx. pipiens hybrid biotype pipiens × molestus, and Cx. torrentium, and finally put the data in context with similar data found in a systematic literature search. RESULTS In the host-choice experiments, we did not find a significant attraction to bird, mouse, and human lure for Cx. pipiens pipiens and Cx. torrentium. Hosts of 992 field-collected specimens were identified for Germany, Iran, and Moldova, with the majority determined as Cx. pipiens pipiens, increasing the data available from studies known from the literature by two-thirds. All four Culex pipiens s.s./Cx. torrentium taxa had fed with significant proportions on birds, humans, and nonhuman mammals. Merged with the data from the literature from 23 different studies showing a high prevalence of blood meals from birds, more than 50% of the blood meals of Cx. pipiens s.s. were identified as birds, while up to 39% were human and nonhuman mammalian hosts. Culex torrentium fed half on birds and half on mammals. However, there were considerable geographical differences in the host feeding patterns. CONCLUSIONS In the light of these results, the clear characterization of the Cx. pipiens s.s./Cx. torrentium taxa as ornithophilic/-phagic or mammalophilic/-phagic needs to be reconsidered. Given their broad host ranges, all four Culex taxa could potentially serve as enzootic and bridge vectors.
Collapse
Affiliation(s)
| | - Linda Jaworski
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Carl Von Ossietzky University, Oldenburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tatiana Șuleșco
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Leif Rauhöft
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Markus Neumann
- Ministry of Social Affairs, Health and Sports Mecklenburg-Vorpommern, Werderstraße 124, 19055, Schwerin, Germany
| | | | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ellen Kiel
- Carl Von Ossietzky University, Oldenburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 22609, Hamburg, Germany
| | | | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
8
|
Bakker JW, Münger E, Esser HJ, Sikkema RS, de Boer WF, Sprong H, Reusken CBEM, de Vries A, Kohl R, van der Linden A, Stroo A, van der Jeugd H, Pijlman GP, Koopmans MPG, Munnink BBO, Koenraadt CJM. Ixodes ricinus as potential vector for Usutu virus. PLoS Negl Trop Dis 2024; 18:e0012172. [PMID: 38985837 PMCID: PMC11236205 DOI: 10.1371/journal.pntd.0012172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Usutu virus (USUV) is an emerging flavivirus that is maintained in an enzootic cycle with mosquitoes as vectors and birds as amplifying hosts. In Europe, the virus has caused mass mortality of wild birds, mainly among Common Blackbird (Turdus merula) populations. While mosquitoes are the primary vectors for USUV, Common Blackbirds and other avian species are exposed to other arthropod ectoparasites, such as ticks. It is unknown, however, if ticks can maintain and transmit USUV. We addressed this question using in vitro and in vivo experiments and field collected data. USUV replicated in IRE/CTVM19 Ixodes ricinus tick cells and in injected ticks. Moreover, I. ricinus nymphs acquired the virus via artificial membrane blood-feeding and maintained the virus for at least 70 days. Transstadial transmission of USUV from nymphs to adults was confirmed in 4.9% of the ticks. USUV disseminated from the midgut to the haemocoel, and was transmitted via the saliva of the tick during artificial membrane blood-feeding. We further explored the role of ticks by monitoring USUV in questing ticks and in ticks feeding on wild birds in the Netherlands between 2016 and 2019. In total, 622 wild birds and the Ixodes ticks they carried were tested for USUV RNA. Of these birds, 48 (7.7%) carried USUV-positive ticks. The presence of negative-sense USUV RNA in ticks, as confirmed via small RNA-sequencing, showed active virus replication. In contrast, we did not detect USUV in 15,381 questing ticks collected in 2017 and 2019. We conclude that I. ricinus can be infected with USUV and can transstadially and horizontally transmit USUV. However, in comparison to mosquito-borne transmission, the role of I. ricinus ticks in the epidemiology of USUV is expected to be minor.
Collapse
Affiliation(s)
- Julian W Bakker
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Hein Sprong
- National Institute of Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- National Institute of Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Ankje de Vries
- National Institute of Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Robert Kohl
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Arjan Stroo
- Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | | |
Collapse
|
9
|
Linthout C, Martins AD, de Wit M, Delecroix C, Abbo SR, Pijlman GP, Koenraadt CJM. The potential role of the Asian bush mosquito Aedes japonicus as spillover vector for West Nile virus in the Netherlands. Parasit Vectors 2024; 17:262. [PMID: 38886805 PMCID: PMC11181672 DOI: 10.1186/s13071-024-06279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND In recent years the Asian bush mosquito Aedes japonicus has invaded Europe, including the Netherlands. This species is a known vector for a range of arboviruses, possibly including West Nile virus (WNV). As WNV emerged in the Netherlands in 2020, it is important to investigate the vectorial capacity of mosquito species present in the Netherlands to estimate the risk of future outbreaks and further spread of the virus. Therefore, this study evaluates the potential role of Ae. japonicus in WNV transmission and spillover from birds to dead-end hosts in the Netherlands. METHODS We conducted human landing collections in allotment gardens (Lelystad, the Netherlands) in June, August and September 2021 to study the diurnal and seasonal host-seeking behaviour of Ae. japonicus. Furthermore, their host preference in relation to birds using live chicken-baited traps was investigated. Vector competence of field-collected Ae. japonicus mosquitoes for two isolates of WNV at two different temperatures was determined. Based on the data generated from these studies, we developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model to calculate the risk of WNV spillover from birds to humans via Ae. japonicus, under the condition that the virus is introduced and circulates in an enzootic cycle in a given area. RESULTS Our results show that Ae. japonicus mosquitoes are actively host seeking throughout the day, with peaks in activity in the morning and evening. Their abundance in August was higher than in June and September. For the host-preference experiment, we documented a small number of mosquitoes feeding on birds: only six blood-fed females were caught over 4 full days of sampling. Finally, our vector competence experiments with Ae. japonicus compared to its natural vector Culex pipiens showed a higher infection and transmission rate when infected with a local, Dutch, WNV isolate compared to a Greek isolate of the virus. Interestingly, we also found a small number of infected Cx. pipiens males with virus-positive leg and saliva samples. CONCLUSIONS Combining the field and laboratory derived data, our model predicts that Ae. japonicus could act as a spillover vector for WNV and could be responsible for a high initial invasion risk of WNV when present in large numbers.
Collapse
Affiliation(s)
- Charlotte Linthout
- Department of Entomology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Afonso Dimas Martins
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mariken de Wit
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Clara Delecroix
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, the Netherlands
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Department of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Gorben P Pijlman
- Department of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | |
Collapse
|
10
|
Krambrich J, Bole-Feysot E, Höller P, Lundkvist Å, Hesson JC. Vector competence of Swedish Culex pipiens mosquitoes for Usutu virus. One Health 2024; 18:100707. [PMID: 38500563 PMCID: PMC10945277 DOI: 10.1016/j.onehlt.2024.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Usutu virus (USUV) is an emerging mosquito-borne flavivirus with increasing prevalence in Europe. Understanding the role of mosquito species in USUV transmission is crucial for predicting and controlling potential outbreaks. This study aimed to assess the vector competence of Swedish Culex pipiens for USUV. The mosquitoes were orally infected with an Italian strain of USUV (Bologna 2009) and infection rates (IR), dissemination rates (DR), and transmission rates (TR) were evaluated over 7 to 28 days post-infection. The study revealed that Swedish Cx. pipiens are susceptible to USUV infection, with a gradual decrease in IR over time. However, the percentage of mosquitoes with the ability to transmit the virus remained consistent across all time points, indicating a relatively short extrinsic incubation period. Overall, this research highlights the potential of Swedish Cx. pipiens as vectors for USUV and emphasizes the importance of surveillance and monitoring to prevent future outbreaks of mosquito-borne diseases.
Collapse
Affiliation(s)
- Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Emma Bole-Feysot
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Patrick Höller
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny C. Hesson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Biologisk Myggkontroll, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
| |
Collapse
|
11
|
Jawień P, Pfitzner WP, Schaffner F, Kiewra D. Mosquitoes (Diptera: Culicidae) of Poland: An Update of Species Diversity and Current Challenges. INSECTS 2024; 15:353. [PMID: 38786909 PMCID: PMC11122502 DOI: 10.3390/insects15050353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
This article presents the current state of knowledge of mosquito species (Diptera: Culicidae) occurring in Poland. In comparison to the most recently published checklists (1999 and 2007), which listed 47 mosquito species, four species (Aedes japonicus, Anopheles daciae, Anopheles hyrcanus, and Anopheles petragnani) are added to the Polish fauna. Our new checklist of Polish mosquito fauna includes 51 species of mosquitoes from five genera: Aedes (30), Anopheles (8), Coquillettidia (1), Culiseta (7), and Culex (5). Aspects of the ecology and biology of the Polish mosquito fauna, with particular emphasis on newly recorded species, are discussed.
Collapse
Affiliation(s)
- Piotr Jawień
- Department of Microbial Ecology and Acaroentomology, University of Wroclaw, Przybyszewskiego Str. 63, 51-148 Wrocław, Poland;
| | | | - Francis Schaffner
- Francis Schaffner Consultancy, Lörracherstrasse 50, 4125 Riehen, Switzerland;
| | - Dorota Kiewra
- Department of Microbial Ecology and Acaroentomology, University of Wroclaw, Przybyszewskiego Str. 63, 51-148 Wrocław, Poland;
| |
Collapse
|
12
|
Krambrich J, Akaberi D, Lindahl JF, Lundkvist Å, Hesson JC. Vector competence of Swedish Culex pipiens mosquitoes for Japanese encephalitis virus. Parasit Vectors 2024; 17:220. [PMID: 38741172 PMCID: PMC11092019 DOI: 10.1186/s13071-024-06269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.
Collapse
Affiliation(s)
- Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden.
| | - Dario Akaberi
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
| | - Johanna F Lindahl
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Animal Health and Antibiotic Strategies, Swedish National Veterinary Institute, Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
| | - Jenny C Hesson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- Biologisk Myggkontroll, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
| |
Collapse
|
13
|
Simonin Y. Circulation of West Nile Virus and Usutu Virus in Europe: Overview and Challenges. Viruses 2024; 16:599. [PMID: 38675940 PMCID: PMC11055060 DOI: 10.3390/v16040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.
Collapse
Affiliation(s)
- Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France
| |
Collapse
|
14
|
Bergmann S, Graf E, Hoffmann P, Becker SC, Stern M. Localization of nitric oxide-producing hemocytes in Aedes and Culex mosquitoes infected with bacteria. Cell Tissue Res 2024; 395:313-326. [PMID: 38240845 PMCID: PMC10904431 DOI: 10.1007/s00441-024-03862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 03/01/2024]
Abstract
Mosquitoes are significant vectors of various pathogens. Unlike vertebrates, insects rely solely on innate immunity. Hemocytes play a crucial role in the cellular part of the innate immune system. The gaseous radical nitric oxide (NO) produced by hemocytes acts against pathogens and also functions as a versatile transmitter in both the immune and nervous systems, utilizing cyclic guanosine monophosphate (cGMP) as a second messenger. This study conducted a parallel comparison of NO synthase (NOS) expression and NO production in hemocytes during Escherichia coli K12 infection in four vector species: Aedes aegypti, Aedes albopictus, Culex pipiens molestus, and Culex pipiens quinquefasciatus. Increased NOS expression by NADPH diaphorase (NADPHd) staining and NO production by immunofluorescence against the by-product L-citrulline were observed in infected mosquito hemocytes distributed throughout the abdomens. NADPHd activity and citrulline labeling were particularly found in periostial hemocytes near the heart, but also on the ventral nerve chord (VNC). Pericardial cells of Ae. aegypti and Cx. p. molestus showed increased citrulline immunofluorescence, suggesting their involvement in the immune response. Oenocytes displayed strong NADPHd and citrulline labeling independent of infection status. This comparative study, consistent with findings in other species, suggests a widespread phenomenon of NO's role in hemocyte responses during E. coli infection. Found differences within and between genera highlight the importance of species-specific investigations.
Collapse
Affiliation(s)
- Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Emily Graf
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Pascal Hoffmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Stefanie C Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany.
| |
Collapse
|
15
|
Blom R, Krol L, Langezaal M, Schrama M, Trimbos KB, Wassenaar D, Koenraadt CJM. Blood-feeding patterns of Culex pipiens biotype pipiens and pipiens/molestus hybrids in relation to avian community composition in urban habitats. Parasit Vectors 2024; 17:95. [PMID: 38424573 PMCID: PMC10902945 DOI: 10.1186/s13071-024-06186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Culex pipiens sensu stricto (s.s.) is considered the primary vector of Usutu virus and West Nile virus, and consists of two morphologically identical but behaviourally distinct biotypes (Cx. pipiens biotype pipiens and Cx. pipiens biotype molestus) and their hybrids. Both biotypes are expected to differ in their feeding behaviour, and pipiens/molestus hybrids are presumed to display intermediate feeding behaviour. However, the evidence for distinct feeding patterns is scarce, and to date no studies have related differences in feeding patterns to differences in host abundance. METHODS Mosquitoes were collected using CO2-baited traps. We collected blood-engorged Cx. pipiens/torrentium specimens from 12 contrasting urban sites, namely six city parks and six residential areas. Blood engorged Cx. pipiens/torrentium mosquitoes were identified to the species and biotype/hybrid level via real-time polymerase chain reaction (PCR). We performed blood meal analysis via PCR and Sanger sequencing. Additionally, avian host communities were surveyed via vocal sounds and/or visual observation. RESULTS We selected 64 blood-engorged Cx. pipiens/torrentium mosquitoes of which we successfully determined the host origin of 55 specimens. Of these, 38 belonged to biotype pipiens, 14 were pipiens/molestus hybrids and the identity of three specimens could not be determined. No blood-engorged biotype molestus or Cx. torrentium specimens were collected. We observed no differences in feeding patterns between biotype pipiens and pipiens/molestus hybrids across different habitats. Avian community composition differed between city parks and residential areas, whereas overall avian abundance did not differ between the two habitat types. CONCLUSIONS Our results show the following: (1) Cx. pipiens s.s. feeding patterns did not differ between city parks and residential areas, regardless of whether individuals were identified as biotype pipiens or pipiens/molestus hybrids. (2) We detected differences in host availability between city parks and residential areas. (3) We show that in both urban habitat types, biotype pipiens and pipiens/molestus hybrids fed on both mammalian and avian hosts. This underscores the potential role in arbovirus transmission of biotype pipiens and pipiens/molestus hybrids.
Collapse
Affiliation(s)
- Rody Blom
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Louie Krol
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Deltares, Utrecht, The Netherlands
| | - Melissa Langezaal
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Krijn B Trimbos
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Daan Wassenaar
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
16
|
Arich S, Assaid N, Weill M, Tmimi FZ, Taki H, Sarih M, Labbé P. Human activities and densities shape insecticide resistance distribution and dynamics in the virus-vector Culex pipiens mosquitoes from Morocco. Parasit Vectors 2024; 17:72. [PMID: 38374110 PMCID: PMC10877764 DOI: 10.1186/s13071-024-06164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Mosquitoes of the Culex pipiens complex are widely distributed vectors for several arboviruses affecting humans. Consequently, their populations have long been controlled using insecticides, in response to which different resistance mechanisms have been selected. Moreover, their ecological preferences and broad adaptability allow C. pipiens mosquitoes to breed in highly polluted water bodies where they are exposed to many residuals from anthropogenic activities. It has been observed for several mosquito species that anthropization (in particular urbanization and agricultural lands) can lead to increased exposure to insecticides and thus to increased resistance. The main objective of the present study was to investigate whether and how urbanization and/or agricultural lands had a similar impact on C. pipiens resistance to insecticides in Morocco. METHODS Breeding sites were sampled along several transects in four regions around major Moroccan cities, following gradients of decreasing anthropization. The imprint of anthropogenic activities was evaluated around each site as the percentage of areas classified in three categories: urban, agricultural and natural. We then assessed the frequencies of four known resistance alleles in these samples and followed their dynamics in five urban breeding sites over 4 years. RESULTS The distribution of resistance alleles revealed a strong impact of anthropization, in both agricultural and urbanized lands, although different between resistance mutations and between Moroccan regions; we did not find any clear trend in the dynamics of these resistance alleles during the survey. CONCLUSIONS Our study provides further evidence for the role of anthropic activities in the selection and maintenance of mutations selected for resistance to insecticides in mosquitoes. The consequences are worrying as this could decrease vector control capacities and thus result in epizootic and epidemic outbreaks. Consequently, concerted and integrated disease control strategies must be designed that include better management regarding the consequences of our activities.
Collapse
Affiliation(s)
- Soukaina Arich
- Institut des Sciences de l'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD- EPHE), Université de Montpellier, Cedex 5, Montpellier, France
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC34, Hassan II University of Casablanca, Casablanca, Morocco
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Najlaa Assaid
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mylène Weill
- Institut des Sciences de l'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD- EPHE), Université de Montpellier, Cedex 5, Montpellier, France
| | - Fatim-Zohra Tmimi
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Taki
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC34, Hassan II University of Casablanca, Casablanca, Morocco
| | - M'hammed Sarih
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Pierrick Labbé
- Institut des Sciences de l'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD- EPHE), Université de Montpellier, Cedex 5, Montpellier, France.
- Institut Universitaire de France, 1 rue Descartes, 75231, Cedex 05 Paris, France.
| |
Collapse
|
17
|
Poungou N, Sevidzem SL, Koumba AA, Koumba CRZ, Mbehang P, Onanga R, Zahouli JZB, Maganga GD, Djogbénou LS, Borrmann S, Adegnika AA, Becker SC, Mavoungou JF, Nguéma RM. Mosquito-Borne Arboviruses Occurrence and Distribution in the Last Three Decades in Central Africa: A Systematic Literature Review. Microorganisms 2023; 12:4. [PMID: 38276174 PMCID: PMC10819313 DOI: 10.3390/microorganisms12010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 01/27/2024] Open
Abstract
Arboviruses represent a real public health problem globally and in the Central African subregion in particular, which represents a high-risk zone for the emergence and re-emergence of arbovirus outbreaks. Furthermore, an updated review on the current arbovirus burden and associated mosquito vectors is lacking for this region. To contribute to filling this knowledge gap, the current study was designed with the following objectives: (i) to systematically review data on the occurrence and distribution of arboviruses and mosquito fauna; and (ii) to identify potential spillover mosquito species in the Central African region in the last 30 years. A web search enabled the documentation of 2454 articles from different online databases. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the quality of reporting of meta-analyses (QUORUM) steps for a systematic review enabled the selection of 164 articles that fulfilled our selection criteria. Of the six arboviruses (dengue virus (DENV), chikungunya virus (CHIKV), yellow fever virus (YFV), Zika virus (ZIKV), Rift Valley fever virus (RVFV), and West Nile virus (WNV)) of public health concern studied, the most frequently reported were chikungunya and dengue. The entomological records showed >248 species of mosquitoes regrouped under 15 genera, with Anopheles (n = 100 species), Culex (n = 56 species), and Aedes (n = 52 species) having high species diversity. Three genera were rarely represented, with only one species included, namely, Orthopodomyia, Lutzia, and Verrallina, but individuals of the genera Toxorhinchites and Finlayas were not identified at the species level. We found that two Aedes species (Ae. aegypti and Ae. albopictus) colonised the same microhabitat and were involved in major epidemics of the six medically important arboviruses, and other less-frequently identified mosquito genera consisted of competent species and were associated with outbreaks of medical and zoonotic arboviruses. The present study reveals a high species richness of competent mosquito vectors that could lead to the spillover of medically important arboviruses in the region. Although epidemiological studies were found, they were not regularly documented, and this also applies to vector competence and transmission studies. Future studies will consider unpublished information in dissertations and technical reports from different countries to allow their information to be more consistent. A regional project, entitled "Ecology of Arboviruses" (EcoVir), is underway in three countries (Gabon, Benin, and Cote d'Ivoire) to generate a more comprehensive epidemiological and entomological data on this topic.
Collapse
Affiliation(s)
- Natacha Poungou
- Ecole Doctorale Regionale en Infectiologie Tropical de Franceville (EDR), University of Science and Technique of Masuku (USTM), Franceville P.O. Box 943, Gabon;
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
| | - Silas Lendzele Sevidzem
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
| | - Aubin Armel Koumba
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Christophe Roland Zinga Koumba
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Phillipe Mbehang
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Richard Onanga
- Center of Interdisciplinary Medical Analysis of Franceville (CIRMF), Franceville P.O. Box 769, Gabon
| | - Julien Zahouli Bi Zahouli
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké 01 BPV 18, Côte d’Ivoire
| | - Gael Darren Maganga
- Center of Interdisciplinary Medical Analysis of Franceville (CIRMF), Franceville P.O. Box 769, Gabon
| | - Luc Salako Djogbénou
- Université d’Abomey-Calavi, Institut Régional de Santé Publique, Ouidah P.O. Box 384, Benin
| | - Steffen Borrmann
- Institute for Tropical Medicine (ITM), University of Tübingen, 72074 Tübingen, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné P.O. Box 242, Gabon
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Jacques François Mavoungou
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Rodrigue Mintsa Nguéma
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| |
Collapse
|
18
|
Körsten C, Reemtsma H, Ziegler U, Fischer S, Tews BA, Groschup MH, Silaghi C, Vasic A, Holicki CM. Cellular co-infections of West Nile virus and Usutu virus influence virus growth kinetics. Virol J 2023; 20:234. [PMID: 37833787 PMCID: PMC10576383 DOI: 10.1186/s12985-023-02206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The mosquito-borne flaviviruses West Nile virus (WNV) and Usutu virus (USUV) pose a significant threat to the health of humans and animals. Both viruses co-circulate in numerous European countries including Germany. Due to their overlapping host and vector ranges, there is a high risk of co-infections. However, it is largely unknown if WNV and USUV interact and how this might influence their epidemiology. Therefore, in-vitro infection experiments in mammalian (Vero B4), goose (GN-R) and mosquito cell lines (C6/36, CT) were performed to investigate potential effects of co-infections in vectors and vertebrate hosts. The growth kinetics of German and other European WNV and USUV strains were determined and compared. Subsequently, simultaneous co-infections were performed with selected WNV and USUV strains. The results show that the growth of USUV was suppressed by WNV in all cell lines. This effect was independent of the virus lineage but depended on the set WNV titre. The replication of WNV also decreased in co-infection scenarios on vertebrate cells. Overall, co-infections might lead to a decreased growth of USUV in mosquitoes and of both viruses in vertebrate hosts. These interactions can strongly affect the epidemiology of USUV and WNV in areas where they co-circulate.
Collapse
Affiliation(s)
- Christin Körsten
- Federal Research Institute for Animal Health, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Hannah Reemtsma
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Susanne Fischer
- Federal Research Institute for Animal Health, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Birke A Tews
- Federal Research Institute for Animal Health, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Cornelia Silaghi
- Federal Research Institute for Animal Health, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Ana Vasic
- Federal Research Institute for Animal Health, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
- Scientific Institute of Veterinary Medicine of Serbia, Belgrade, Serbia
| | - Cora M Holicki
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
19
|
Soto A, De Coninck L, Devlies AS, Van De Wiele C, Rosales Rosas AL, Wang L, Matthijnssens J, Delang L. Belgian Culex pipiens pipiens are competent vectors for West Nile virus while Culex modestus are competent vectors for Usutu virus. PLoS Negl Trop Dis 2023; 17:e0011649. [PMID: 37729233 PMCID: PMC10545110 DOI: 10.1371/journal.pntd.0011649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/02/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND West Nile virus (WNV) and Usutu virus (USUV) are emerging arthropod-borne viruses (arboviruses) in Europe transmitted by Culex mosquitoes. In Belgium, it is currently unknown which Culex species are competent vectors for WNV or USUV and if these mosquitoes carry Wolbachia, an endosymbiotic bacterium that can block arbovirus transmission. The aims of our study were to measure the vector competence of Belgian Culex mosquitoes to WNV and USUV and determine if a naturally acquired Wolbachia infection can influence virus transmission. METHODOLOGY/PRINCIPAL FINDINGS Female Culex mosquitoes were captured from urban and peri-urban sites in Leuven, Belgium and offered an infectious bloodmeal containing WNV lineage 2, USUV European (EU) lineage 3, or USUV African (AF) lineage 3. Blood-fed females were incubated for 14 days at 25°C after which the body, head, and saliva were collected to measure infection, dissemination, and transmission rates as well as transmission efficiency. Mosquito species were identified by qRT-PCR or Sanger sequencing, the presence of infectious virus in mosquitoes was confirmed by plaque assays, and viral genome copies were quantified by qRT-PCR. Culex pipiens pipiens were able to transmit WNV (4.3% transmission efficiency, n = 2/47) but not USUV (EU lineage: n = 0/56; AF lineage: n = 0/37). In contrast, Culex modestus were able to transmit USUV (AF lineage: 20% transmission efficiency, n = 1/5) but not WNV (n = 0/6). We found that the presence or absence of Wolbachia was species-dependent and did not associate with virus transmission. CONCLUSIONS/SIGNIFICANCE This is the first report that Belgian Culex mosquitoes can transmit both WNV and USUV, forewarning the risk of human transmission. More research is needed to understand the potential influence of Wolbachia on arbovirus transmission in Culex modestus mosquitoes.
Collapse
Affiliation(s)
- Alina Soto
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lander De Coninck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Ann-Sophie Devlies
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Celine Van De Wiele
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lanjiao Wang
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Leen Delang
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Yüksel E, Yıldırım A, İmren M, Canhilal R, Dababat AA. Xenorhabdus and Photorhabdus Bacteria as Potential Candidates for the Control of Culex pipiens L. (Diptera: Culicidae), the Principal Vector of West Nile Virus and Lymphatic Filariasis. Pathogens 2023; 12:1095. [PMID: 37764903 PMCID: PMC10537861 DOI: 10.3390/pathogens12091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have been the prime control method for many years to suppress Cx. pipiens populations. However, recently, the use of insecticides has begun to be questioned due to the detrimental impact on human health and the natural environment. Therefore, many authorities urge the development of eco-friendly control methods that are nontoxic to humans. The bacterial associates [Xenorhabdus and Photorhabdus spp. (Enterobacterales: Morganellaceae)] of entomopathogenic nematodes (EPNs) (Sterinernema spp. and Heterorhabditis spp.) (Rhabditida: Heterorhabditidae and Steinernematidae) are one of the green approaches to combat a variety of insect pests. In the present study, the mosquitocidal activity of the cell-free supernatants and cell suspension (4 × 107 cells mL-1) of four different symbiotic bacteria (Xenorhabdus nematophila, X. bovienii, X. budapestensis, and P. luminescens subsp. kayaii) was assessed against different development stages of Cx. pipiens (The 1st/2nd and 3rd/4th instar larvae and pupa) under laboratory conditions. The bacterial symbionts were able to kill all the development stages with varying levels of mortality. The 1st/2nd instar larvae exhibited the highest susceptibility to the cell-free supernatants and cell suspensions of symbiotic bacteria and the efficacy of the cell-free supernatants and cell suspensions gradually declined with increasing phases of growth. The highest effectiveness was achieved by the X. bovienii KCS-4S strain inducing 95% mortality to the 1st/2nd instar larvae. The results indicate that tested bacterial symbionts have great potential as an eco-friendly alternative to insecticides.
Collapse
Affiliation(s)
- Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye;
| | - Alparslan Yıldırım
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Türkiye;
| | - Mustafa İmren
- Department of Plant Protection, Faculty of Agriculture, Abant Izzet Baysal University, Bolu 14030, Türkiye;
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye;
| | | |
Collapse
|
21
|
Rosales Rosas AL, Wang L, Goossens S, Cuvry A, Li LH, Santos-Ferreira N, Soto A, Dallmeier K, Rocha-Pereira J, Delang L. Ex vivo gut cultures of Aedes aegypti are efficiently infected by mosquito-borne alpha- and flaviviruses. Microbiol Spectr 2023; 11:e0519522. [PMID: 37540021 PMCID: PMC10580962 DOI: 10.1128/spectrum.05195-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Aedes aegypti mosquitoes can transmit several arboviruses, including chikungunya virus (CHIKV), dengue virus (DENV), and Zika virus (ZIKV). When blood-feeding on a virus-infected human, the mosquito ingests the virus into the midgut (stomach), where it replicates and must overcome the midgut barrier to disseminate to other organs and ultimately be transmitted via the saliva. Current tools to study mosquito-borne viruses (MBVs) include 2D-cell culture systems and in vivo mosquito infection models, which offer great advantages, yet have some limitations. Here, we describe a long-term ex vivo culture of Ae. aegypti guts. Cultured guts were metabolically active for 7 d in a 96-well plate at 28°C and were permissive to ZIKV, DENV, Ross River virus, and CHIKV. Ex vivo guts from Culex pipiens mosquitoes were found to be permissive to Usutu virus. Immunofluorescence staining confirmed viral protein synthesis in CHIKV-infected guts of Ae. aegypti. Furthermore, fluorescence microscopy revealed replication and spread of a reporter DENV in specific regions of the midgut. In addition, two known antiviral molecules, β-d-N4-hydroxycytidine and 7-deaza-2'-C-methyladenosine, were able to inhibit CHIKV and ZIKV replication, respectively, in the ex vivo model. Together, our results show that ex vivo guts can be efficiently infected with mosquito-borne alpha- and flaviviruses and employed to evaluate antiviral drugs. Furthermore, the setup can be extended to other mosquito species. Ex vivo gut cultures could thus be a new model to study MBVs, offering the advantage of reduced biosafety measures compared to infecting living mosquitoes. IMPORTANCE Mosquito-borne viruses (MBVs) are a significant global health threat since they can cause severe diseases in humans, such as hemorrhagic fever, encephalitis, and chronic arthritis. MBVs rely on the mosquito vector to infect new hosts and perpetuate virus transmission. No therapeutics are currently available. The study of arbovirus infection in the mosquito vector can greatly contribute to elucidating strategies for controlling arbovirus transmission. This work investigated the infection of guts from Aedes aegypti mosquitoes in an ex vivo platform. We found several MBVs capable of replicating in the gut tissue, including viruses of major health importance, such as dengue, chikungunya, and Zika viruses. In addition, antiviral compounds reduced arbovirus infection in the cultured gut tissue. Overall, the gut model emerges as a useful tool for diverse applications such as studying tissue-specific responses to virus infection and screening potential anti-arboviral molecules.
Collapse
Affiliation(s)
- Ana Lucia Rosales Rosas
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Lanjiao Wang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Sara Goossens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Arno Cuvry
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Li-Hsin Li
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Nanci Santos-Ferreira
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Alina Soto
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Joana Rocha-Pereira
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Leen Delang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
22
|
Llorente F, Gutiérrez-López R, Pérez-Ramirez E, Sánchez-Seco MP, Herrero L, Jiménez-Clavero MÁ, Vázquez A. Experimental infections in red-legged partridges reveal differences in host competence between West Nile and Usutu virus strains from Southern Spain. Front Cell Infect Microbiol 2023; 13:1163467. [PMID: 37396301 PMCID: PMC10308050 DOI: 10.3389/fcimb.2023.1163467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonotic arboviruses sharing the same life cycle with mosquitoes as vectors and wild birds as reservoir hosts. The main objective of this study was to characterize the pathogenicity and course of infection of two viral strains (WNV/08 and USUV/09) co-circulating in Southern Spain in a natural host, the red-legged partridge (Alectoris rufa), and to compare the results with those obtained with the reference strain WNV/NY99. Methods WNV inoculated birds were monitored for clinical and analytical parameters (viral load, viremia, and antibodies) for 15 days post-inoculation. Results and discussion Partridges inoculated with WNV/NY99 and WNV/08 strains showed clinical signs such as weight loss, ruffled feathers, and lethargy, which were not observed in USUV/09-inoculated individuals. Although statistically significant differences in mortality were not observed, partridges inoculated with WNV strains developed significantly higher viremia and viral loads in blood than those inoculated with USUV. In addition, the viral genome was detected in organs and feathers of WNV-inoculated partridges, while it was almost undetectable in USUV-inoculated ones. These experimental results indicate that red-legged partridges are susceptible to the assayed Spanish WNV with pathogenicity similar to that observed for the prototype WNV/NY99 strain. By contrast, the USUV/09 strain was not pathogenic for this bird species and elicited extremely low viremia levels, demonstrating that red-legged partridges are not a competent host for the transmission of this USUV strain.
Collapse
Affiliation(s)
- Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Rafael Gutiérrez-López
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Elisa Pérez-Ramirez
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - María Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
23
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
24
|
van Bree JWM, Linthout C, van Dijk T, Abbo SR, Fros JJ, Koenraadt CJM, Pijlman GP, Wang H. Competition between two Usutu virus isolates in cell culture and in the common house mosquito Culex pipiens. Front Microbiol 2023; 14:1195621. [PMID: 37293213 PMCID: PMC10244747 DOI: 10.3389/fmicb.2023.1195621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 06/10/2023] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus of African origin. Over the past decades, USUV has spread through Europe causing mass die-offs among multiple bird species. The natural transmission cycle of USUV involves Culex spp. mosquitoes as vectors and birds as amplifying hosts. Next to birds and mosquitoes, USUV has also been isolated from multiple mammalian species, including humans, which are considered dead-end hosts. USUV isolates are phylogenetically classified into an African and European branch, subdivided into eight genetic lineages (Africa 1, 2, and 3 and Europe 1, 2, 3, 4, and 5 lineages). Currently, multiple African and European lineages are co-circulating in Europe. Despite increased knowledge of the epidemiology and pathogenicity of the different lineages, the effects of co-infection and transmission efficacy of the co-circulating USUV strains remain unclear. In this study, we report a comparative study between two USUV isolates as follows: a Dutch isolate (USUV-NL, Africa lineage 3) and an Italian isolate (USUV-IT, Europe lineage 2). Upon co-infection, USUV-NL was consistently outcompeted by USUV-IT in mosquito, mammalian, and avian cell lines. In mosquito cells, the fitness advantage of USUV-IT was most prominently observed in comparison to the mammalian or avian cell lines. When Culex pipiens mosquitoes were orally infected with the different isolates, no overall differences in vector competence for USUV-IT and USUV-NL were observed. However, during the in vivo co-infection assay, it was observed that USUV-NL infectivity and transmission were negatively affected by USUV-IT but not vice versa.
Collapse
Affiliation(s)
- Joyce W. M. van Bree
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Charlotte Linthout
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands
| | - Teije van Dijk
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Sandra R. Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Haidong Wang
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
25
|
Körsten C, Al-Hosary AA, Holicki CM, Schäfer M, Tews BA, Vasić A, Ziegler U, Groschup MH, Silaghi C. Simultaneous Coinfections with West Nile Virus and Usutu Virus in Culex pipiens and Aedes vexans Mosquitoes. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/6305484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The mosquito-borne zoonotic flaviviruses West Nile virus (WNV) and Usutu virus (USUV) are endemic in many European countries and emerged in Germany in recent years. Due to the increasing overlap of their distribution areas and their similar epidemiology, coinfections of WNV and USUV are possible. Indeed, coinfections in vertebrate hosts as a rare event have already been reported from some countries including Germany. However, it is largely unknown whether and to what extent coinfections could affect the vector competence of mosquitoes for WNV and USUV. For this purpose, the mosquito species Culex pipiens biotype pipiens, Culex pipiens biotype molestus, and Aedes vexans were orally infected in mono- and simultaneous coinfections with German strains of WNV and USUV. Mosquitoes were incubated for 14 days at 26°C, 85% relative humidity, and a 16 : 8 light-dark photocycle, before they were dissected and forced to salivate. The results showed a decrease in USUV susceptibility in Culex pipiens biotype pipiens, an increase in USUV susceptibility in Aedes vexans, and no obvious interaction between both viruses in Culex pipiens biotype molestus. Vector competence for WNV appeared to be unaffected by a simultaneous occurrence of USUV in all tested mosquito species. Coinfections with both viruses were only found in Culex mosquitoes, and cotransmission of WNV and USUV was observed in Culex pipiens biotype molestus. Overall, our results show that viral interactions between WNV and USUV vary between mosquito species, and that the interaction mainly occurs during infection and replication in the mosquito midgut. The results of this study confirm that to fully understand the interaction between WNV and USUV, studies with various mosquito species are necessary. In addition, we found that even mosquito species with a low susceptibility to both viruses, such as Ae. vexans, can play a role in their transmission in areas with cocirculation.
Collapse
|
26
|
Prioteasa FL, Dinu S, Tiron GV, Stancu IG, Fălcuță E, Ceianu CS, Cotar AI. First Detection and Molecular Characterization of Usutu Virus in Culex pipiens Mosquitoes Collected in Romania. Microorganisms 2023; 11:microorganisms11030684. [PMID: 36985256 PMCID: PMC10054730 DOI: 10.3390/microorganisms11030684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Usutu virus (USUV) is an emergent arbovirus in Europe causing mortality in bird populations. Similar to West Nile virus (WNV), USUV is maintained in sylvatic cycles between mosquito vectors and bird reservoirs. Spillover events may result in human neurological infection cases. Apart from indirect evidence provided by a recent serological study in wild birds, the circulation of USUV in Romania was not assessed. We aimed to detect and molecular characterize USUV circulating in mosquito vectors collected in South-Eastern Romania-a well-known WNV endemic region-during four transmission seasons. Mosquitoes were collected from Bucharest metropolitan area and Danube Delta, pooled, and screened by real-time RT-PCR for USUV. Partial genomic sequences were obtained and used for phylogeny. USUV was detected in Culex pipiens s.l. female mosquitoes collected in Bucharest, in 2019. The virus belonged to Europe 2 lineage, sub-lineage EU2-A. Phylogenetic analysis revealed high similarity with isolates infecting mosquito vectors, birds, and humans in Europe starting with 2009, all sharing common origin in Northern Italy. To our knowledge, this is the first study characterizing a strain of USUV circulating in Romania.
Collapse
Affiliation(s)
- Florian Liviu Prioteasa
- Medical Entomology Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Sorin Dinu
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Georgiana Victorița Tiron
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Ioana Georgeta Stancu
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
- Department of Genetics, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Elena Fălcuță
- Medical Entomology Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Cornelia Svetlana Ceianu
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| | - Ani Ioana Cotar
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania
| |
Collapse
|
27
|
Abstract
Usutu virus (USUV, Flaviviridae) is an emerging mosquito-borne virus that has been implicated in neuroinvasive disease in humans and epizootic deaths in wild birds. USUV is maintained in an enzootic cycle between ornithophilic mosquitoes, primarily Culex spp., and wild birds, predominantly passerine species. However, limited experimental data exist on the species competent for USUV transmission. Here, we demonstrate that house sparrows are susceptible to multiple USUV strains. Our study also revealed that Culex quinquefasciatus mosquitoes are susceptible to USUV, with a significantly higher infection rate for the Netherlands 2016 USUV strain compared to the Uganda 2012 USUV strain at 50% and 19%, respectively. To assess transmission between avian host and mosquito vector, we allowed mosquitoes to feed on either juvenile chickens or house sparrows inoculated with USUV. Both bird models transmitted USUV to C. quinquefasciatus mosquitoes. Linear regression analyses indicated that C. quinquefasciatus infection rates were positively correlated with avian viremia levels, with 3 to 4 log10 PFU/mL representing the minimum avian viremia threshold for transmission to mosquitoes. Based on the viremia required for transmission, house sparrows were estimated to more readily transmit the Netherlands 2016 strain compared to the Uganda 2012 strain. These studies provide insights on a competent reservoir host of USUV. IMPORTANCE Usutu virus (USUV) is a zoonotic mosquito-borne virus that can cause neuroinvasive disease, including meningitis and encephalitis, in humans and has resulted in hundreds of thousands of deaths in wild birds. The perpetuation of USUV in nature is dependent on transmission between Culex spp. mosquitoes and various avian species. To date, few experimental data exist for determining which bird species are important for the maintenance of USUV. Our studies showed that house sparrows can transmit infectious Usutu virus, indicating their role as a competent host species. By identifying reservoir species of USUV, we can predict areas of USUV emergence and mitigate its impacts on global human and wildlife health.
Collapse
|
28
|
Vector Competence of German Aedes punctor (Kirby, 1837) for West Nile Virus Lineages 1 and 2. Viruses 2022; 14:v14122787. [PMID: 36560791 PMCID: PMC9787774 DOI: 10.3390/v14122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
West Nile virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes as a biological vector. Because of its biting behavior, the widespread snow-melt mosquito Aedes punctor could be a potential bridge vector for WNV to humans and nonhuman mammals. However, little is known on its role in transmission of WNV. The aim of this study was to determine the vector competence of German Ae. punctor for WNV lineages 1 and 2. Field-collected larvae and pupae were reared to adults and offered infectious blood containing either an Italian WNV lineage 1 or a German WNV lineage 2 strain via cotton stick feeding. Engorged females were incubated for 14/15 or 21 days at 18 °C. After incubation; surviving mosquitoes were dissected and forced to salivate. Mosquito bodies with abdomens, thoraces and heads, legs plus wings and saliva samples were investigated for WNV RNA by RT-qPCR. Altogether, 2/70 (2.86%) and 5/85 (5.88%) mosquito bodies were found infected with WNV lineage 1 or 2, respectively. In two mosquitoes, viral RNA was also detected in legs and wings. No saliva sample contained viral RNA. Based on these results, we conclude that Ae. punctor does not play an important role in WNV transmission in Germany.
Collapse
|
29
|
Molchanova EV, Luchinin DN, Machneva AY, Gerasimova AD, Nesgovorova AV, Boroday NV, Plehanova NG, Baturin AА. Competence of mosquitoes <i>Culex pipiens f.</i> molestus as carriers of West Nile virus under various temperature conditions. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction. The Culex pipiens mosquito is one of the proven vectors of the West Nile virus (WNV). Culex pipiens f. molestus (Cx. p. f. molestus) is a synanthropic, autogenous, widespread form of the species that can feed on a broad range of hosts, including humans. The temperature of the habitat of insects affects the potential for virus transmission, which determines the likelihood of them carrying the pathogen of West Nile fever.
The goal is an experimental study of the temperature of the habitat of larvae on the competence of mosquitoes Cx. p. f. molestus as carriers of WNV.
Materials and methods. We used a strain of the WNV (WNV_Volg601/18 genotype 2) and a laboratory culture of mosquitoes Cx. p. f. molestus. The concentration of the virus was detected by plaque formation using Vero cells. Insects were infected orally at the larval stage, with subsequent incubation at 20, 22 or 28C. 72 hours after the emergence of all adults from the pupae, the mosquitoes were immobilized by cold, the sex of imago was determined, the salivary glands were isolated from the females, and the presence of WNV in glandes and its titer were detected.
Results. The titer of WNV sufficient to transmit the pathogen through the insect biting was observed in the salivary glands of insects kept at a temperature of 22 and 28C, with the virus titer rising with the temperature increasing. No virus was detected in the salivary glands of female insects kept at a temperature of 20C.
Conclusion. Thus, it appears that the habitat temperature is an important factor limiting the replication and content of WNV in the salivary glands of Cx. p. f. molestus.
Collapse
|
30
|
Blom R, Schrama M, Spitzen J, Weller B, van der Linden A, Sikkema R, Koopmans M, Koenraadt C. Arbovirus persistence in North-Western Europe: Are mosquitoes the only overwintering pathway? One Health 2022; 16:100467. [DOI: 10.1016/j.onehlt.2022.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
|
31
|
Wang L, Soto A, Remue L, Rosales Rosas AL, De Coninck L, Verwimp S, Bouckaert J, Vanwinkel M, Matthijnssens J, Delang L. First Report of Mutations Associated With Pyrethroid (L1014F) and Organophosphate (G119S) Resistance in Belgian Culex (Diptera: Culicidae) Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2072-2079. [PMID: 36130161 DOI: 10.1093/jme/tjac138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The emergence of West Nile virus and Usutu virus in Europe poses a significant risk to public health. In the absence of efficient antiviral therapy or vaccine candidates, the only strategy to control these arboviruses is to target the Culex (Diptera: Culicidae) mosquito vector. However, the selection pressure caused by exposure to insecticides for vector control or agricultural pest control can lead to insecticide resistance, thereby reducing the efficacy of insecticide-based vector control interventions. In Culex mosquitoes, two of the most common amino acid substitutions associated with insecticide resistance are the kdr L1014F in voltage gated sodium channels and G119S in acetylcholinesterase. In this study, Culex pipiens biotype pipiens, Culex torrentium, and Culex modestus were sampled from 2019 to 2021 in three distinct environmental habitats (urban, peri-urban, and agricultural) in and around the city of Leuven, Belgium. Individual mosquitoes were screened for two mutations resulting in L1014F and G119S amino acid substitutions. Both mutations were observed in Cx. pipiens and Cx. modestus but not in Cx. torrentium mosquitoes across the four collection sites. Furthermore, multi-resistance or cross-resistance in Cx. pipiens could be a threat in these areas, as both mutations were observed at low frequencies. These results provide the first report of kdr L1014F and ace-1 G119S resistance mutations in Cx. pipiens and Cx. modestus mosquitoes from Belgium, highlighting the importance of mosquito surveillance to design effective arbovirus outbreak control strategies.
Collapse
Affiliation(s)
- Lanjiao Wang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Alina Soto
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Laure Remue
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Sam Verwimp
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Johanna Bouckaert
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Mathias Vanwinkel
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Leen Delang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
32
|
Antiviral RNAi Mechanisms to Arboviruses in Mosquitoes: microRNA Profile of Aedes aegypti and Culex quinquefasciatus from Grenada, West Indies. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mosquito-borne arboviruses, such as dengue virus, West Nile virus, Zika virus and yellow fever virus, impose a tremendous cost on the health of populations around the world. As a result, much effort has gone into the study of the impact of these viruses on human infections. Comparatively less effort, however, has been made to study the way these viruses interact with mosquitoes themselves. As ingested arboviruses infect their midgut and subsequently other tissue, the mosquito mounts a multifaceted innate immune response. RNA interference, the central intracellular antiviral defense mechanism in mosquitoes and other invertebrates can be induced and modulated through outside triggers (small RNAs) and treatments (transgenesis or viral-vector delivery). Accordingly, modulation of this facet of the mosquito’s immune system would thereby suggest a practical strategy for vector control. However, this requires a detailed understanding of mosquitoes’ endogenous small RNAs and their effects on the mosquito and viral proliferation. This paper provides an up-to-date overview of the mosquito’s immune system along with novel data describing miRNA profiles for Aedes aegypti and Culex quinquefasiatus in Grenada, West Indies.
Collapse
|
33
|
Južnič-Zonta Ž, Sanpera-Calbet I, Eritja R, Palmer JR, Escobar A, Garriga J, Oltra A, Richter-Boix A, Schaffner F, della Torre A, Miranda MÁ, Koopmans M, Barzon L, Bartumeus Ferre F. Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence dataset. GIGABYTE 2022; 2022:gigabyte54. [PMID: 36824520 PMCID: PMC9930537 DOI: 10.46471/gigabyte.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
The Mosquito Alert dataset includes occurrence records of adult mosquitoes collected worldwide in 2014-2020 through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Records are linked to citizen science-submitted photographs and validated by entomologists to determine the presence of five targeted European mosquito vectors: Aedes albopictus, Ae. aegypti, Ae. japonicus, Ae. koreicus, and Culex pipiens. Most records are from Spain, reflecting Spanish national and regional funding, but since autumn 2020 substantial records from other European countries are included, thanks to volunteer entomologists coordinated by the AIM-COST Action, and to technological developments to increase scalability. Among other applications, the Mosquito Alert dataset will help develop citizen science-based early warning systems for mosquito-borne disease risk. It can also be reused for modelling vector exposure risk, or to train machine-learning detection and classification routines on the linked images, to assist with data validation and establishing automated alert systems.
Collapse
Affiliation(s)
- Živko Južnič-Zonta
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), C/d’accés a la Cala St. Francesc 14, 17300 Blanes, Girona, Spain
| | - Isis Sanpera-Calbet
- Departament de Ciències Polítiques i Socials, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Roger Eritja
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Edifici C Campus de, 08193 Bellaterra, Barcelona, Spain
| | - John R.B. Palmer
- Departament de Ciències Polítiques i Socials, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Agustí Escobar
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Edifici C Campus de, 08193 Bellaterra, Barcelona, Spain
| | - Joan Garriga
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), C/d’accés a la Cala St. Francesc 14, 17300 Blanes, Girona, Spain
| | - Aitana Oltra
- Departament de Ciències Polítiques i Socials, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Alex Richter-Boix
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Edifici C Campus de, 08193 Bellaterra, Barcelona, Spain
| | - Francis Schaffner
- Francis Schaffner Consultancy (FSC), Lörracherstrasse 50, 4125 Riehen, Switzerland
| | - Alessandra della Torre
- Department Public Health and Infectious Diseases (UNIROMA1), Sapienza University, 00185 Rome, Italy
| | - Miguel Ángel Miranda
- University Balearic Islands, Applied Zoology and Animal Conservation Research Group (UIB), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Marion Koopmans
- Erasmus University Medical Center (Erasmus MC), Doctor Molewaterplein 40, 3015 GD Rotterdam, Netherlands
| | - Luisa Barzon
- Department of Molecular Medicine (UNIPV), Università degli Studi di Padova, 63 Via Gabelli, 35121 Padova, Italy
| | - Frederic Bartumeus Ferre
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), C/d’accés a la Cala St. Francesc 14, 17300 Blanes, Girona, Spain,Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Edifici C Campus de, 08193 Bellaterra, Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig de Lluís Companys, 08010 Barcelona, Spain, Corresponding author. E-mail:
| | - Mosquito Alert Digital Entomology Network
https://orcid.org/0000-0001-5319-4257Alarcón-ElbalPedro María32https://orcid.org/0000-0002-5754-862XAlexander GonzálezMikel15https://orcid.org/0000-0003-0997-3055Angeles PuigMaria31https://orcid.org/0000-0001-8818-2483Bakran-LeblKarin523https://orcid.org/0000-0002-3973-068XBalatsosGeorgios27https://orcid.org/0000-0002-8345-3229BarcelóCarlos16https://orcid.org/0000-0002-6399-4765Bengoa PaulisMikel3https://orcid.org/0000-0002-6697-302XBisiaMarina27Blanco-SierraLaura1https://orcid.org/0000-0003-3481-7310Bravo-BarrigaDaniel20https://orcid.org/0000-0002-5650-8773CaputoBeniamino14https://orcid.org/0000-0002-8085-6399CollantesFrancisco25https://orcid.org/0000-0001-6704-740XCosta OsórioHugo12Curman PosavecMarcela2https://orcid.org/0000-0002-6582-7020CvetkovikjAleksandar29https://orcid.org/0000-0001-7268-8965DeblauweIsra30https://orcid.org/0000-0001-7046-2997DelacourSarah10Escartin PeñaSanti4https://orcid.org/0000-0001-7481-4355FerragutiMartina18https://orcid.org/0000-0001-8267-6503FlacioEleonora19https://orcid.org/000-0002-4178-0133FuehrerHans-Peter23https://orcid.org/0000-0001-5236-9537GewehrSandra9https://orcid.org/0000-0002-2583-6264GunayFiliz35https://orcid.org/0000-0003-0107-5357Gutiérrez-LópezRafael16https://orcid.org/0000-0002-9582-6635HorváthCintia17https://orcid.org/0000-0002-0768-2011Ibanez-JusticiaAdolfo8https://orcid.org/0000-0002-1819-5278KadriajPerparim24https://orcid.org/0000-0001-8969-7382KalanKatja34https://orcid.org/0000-0001-5210-9727KavranMihaela21https://orcid.org/0000-0001-9775-3065KemenesiGábor22https://orcid.org/0000-0003-3464-6830KlobucarAna2https://orcid.org/0000-0001-6190-1265KuruczKornélia22https://orcid.org/0000-0001-5719-5994LongoEleonora14https://orcid.org/0000-0002-6748-9547MagallanesSergio36https://orcid.org/0000-0003-0903-8657MarianiSimone31https://orcid.org/0000-0003-2892-8583MartinouAngeliki F.6https://orcid.org/0000-0001-9945-6283Melero-AlcíbarRosario37https://orcid.org/0000-0002-3075-5020MichaelakisAntonios27https://orcid.org/0000-0002-8886-3315MicheluttiAlice11https://orcid.org/0000-0002-6003-0434MikovOgnyan28MontalvoTomas1https://orcid.org/0000-0002-5004-5763MontarsiFabrizio11PaoliFrancesca39Parrondo MontónDiego19https://orcid.org/0000-0003-1757-1822RogoziElton24https://orcid.org/0000-0001-8198-8118Ruiz-ArrondoIgnacio7https://orcid.org/0000-0002-0179-5277SeveriniFrancesco38https://orcid.org/0000-0002-7912-5791SokolovskaNikolina13https://orcid.org/0000-0003-2947-1423Sophia UnterköflerMaria23StrooArjan8https://orcid.org/0000-0003-2624-230XTeekemaSteffanie8ValsecchiAndrea1https://orcid.org/0000-0003-2463-5660VauxAlexander G. C.33https://orcid.org/0000-0001-7283-2541VeloEnkelejda24https://orcid.org/0000-0002-8963-6421ZittraCarina26Agencia de Salud Pública de Barcelona (ASPB), Plaça Lesseps 8 entresol, 08023, Barcelona, SpainAndrija Stampar Teaching Institute of Public Health (ASTIPH), Mirogojska c. 16, 10 000, Zagreb, CroatiaAnticimex Spain (Anticimex), C/ Jesús Serra Santamans, 5, Planta 3, 08174, Sant Cugat del Vallès, Barcelona, SpainAssociació Mediambiental Xatrac (Xatrac), C/ Pius Font i Quer, S/N, 17310, Lloret de Mar, Girona, SpainAustrian Agency for Health and Food Safety, Division for Public Health (AGES), Währinger Strasse 25a, 1090, Vienna, AustriaBritish Forces Cyprus, Joint Services Health Unit (JSHU), CyprusCenter for Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR (CRETAV-CIBIR), C/Piqueras 98, 3° planta, 26006, La Rioja, SpainCentre for Monitoring of Vectors, National Reference Centre, Netherlands Food and Consumer Product Safety Authority (CMV-NVWA), Geertjesweg 15, 6706 EA, Wageningen, NetherlandsEcodevelopment S.A. (ECODEV), Thesi Mezaria, PO Box 2420, 57010 Filyro, GreeceUniversity of Zaragoza, Faculty of Veterinary Medicine of Zaragoza, Animal Health Department (UNIZAR), C/ Miguel Servet 177, 50013, Zaragoza, SpainIstituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020, Legnaro (Padua), ItalyNational Institute of Health, Centre for Vectors and Infectious Diseases Research (INSA-CEVDI), Avenida Padre Cruz, 1649-016, Lisboa, PortugalPHI Center for Public Health-Skopje (CPH), blv.3rd Macedonian brigade, no.18, Skopje, North MacedoniaSapienza University, Department Public Health and Infectious Diseases (UNIROMA1), Piazzale Aldo Moro 5, 00198, Rome, ItalyUniversidad Iberoamericana (UNIBE), Avenida Francia 129, 10203, Santo Domingo, Dominican RepublicUniversity Balearic Islands, Applied Zoology and Animal Conservation Research Group (UIB), Ctra. Valldemossa km 7.5, 07122, Palma, SpainUniversity of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca (USAMV-CN), Calea Mănăştur 3-5, Cluj-Napoca, 400372, RomaniaUniversity of Amsterdam, Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (UvA), Science Park 904, 1098XH, Amsterdam, NetherlandsUniversity of Applied Scieces and Arts of Southern Switzerland, Institute of Microbiology (SUPSI), Via Flora Ruchat-Roncati 15, 6850, Mendrisio Switzerland, SwitzerlandUniversity of Extremadura, Veterinary Faculty, Department of Animal Health (Uex), Av/ Universidad S/N 10003 Cáceres,
SpainUniversity of Novi Sad, Faculty of Agriculture, Laboratory for Medical and Veterinary Entomology (UNSFA), Trg Dositeja Obradovića 8, 21000, Novi Sad, SerbiaUniversity of Pécs (UP), Ifúság útja 6, 7624, Pécs, HungaryUniversity of Veterinary Medicine Vienna, Institute of Parasitology (Vetmeduni), Veterinärplatz 1, 1210, Vienna, AustriaInstitute of Public Health, Department of Epidemiology and Control of Infectious Diseases, Vectors’ Control Unit (IPH), Str: “Aleksander Moisiu”, No. 80, Tirana, AlbaniaUniversidad de Murcia, Departamento de Zoología y Antropología Física (UM), Campus de Espinardo, 30100 Murcia, SpainUniversity of Vienna, Department of Functional and Evolutionary Ecology (UNIVIE), Djerassiplatz 1, 1030, Vienna, AustriaBenaki Phytopathological Institute, Laboratory of Insects and Parasites of Medical Importance (BPI), 8, Stefanou Delta str., 14561 Kifissia, Athens, GreeceNational Centre of Infectious and Parasitic Diseases (NCIPD), 26, Yanko Sakazov blvd., 1504, Sofia, BulgariaSs. Cyril and Methodius University in Skopje, Faculty of Veterinary Medicine-Skopje (FVMS), Lazar Pop-Trajkov 5-7, 1000, Skopje, North MacedoniaInstitute of Tropical Medicine, Department of Biomedical Sciences, Unit of Entomology (ITM), Nationalestraat 155, 2000, Antwerp, BelgiumCentre d’Estudis Avançats de Blanes (CEAB-CSIC), C/ d’accés a la Cala St. Francesc 14, 17300 Blanes, Girona, SpainUniversidad Cardenal Herrera CEU-CEU Universities, Facultad de Veterinaria, Veterinary Public Health and Food Science and Technology, Department of Animal Production and Health (PASAPTA), C/ Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, SpainMedical Entomology, UK Health Security Agency (UKHSA), Porton Down, Salisbury, SP4 0JG, United KingdomUniversity of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies (UP FAMNIT), Glagoljaška ulica 8, 6000, Koper, SloveniaHacettepe University, Department of Biology, Ecology Section, Vector Ecology Research Group (HU-VERG), Hacettepe University, Beytepe Campus, 06800, Ankara, TurkeyEstación Biológica de Doñana, Departamento de Ecología de los Humedales (EBD-CSIC), Avda. Américo Vespucio 26, 41092, Sevilla, SpainCentro de Educación Superior Hygiea (HYGIEA), Av. de Pablo VI, 9, 28223, Pozuelo de Alarcón, Madrid, SpainIstituto Superiore di Sanità, Department of Infectious Diseases (ISS), Viale Regina Elena, 299, 00161, Roma, ItalyMuseo di Scienze di Trento (MUSE), Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy
| | | |
Collapse
|
34
|
Snoeck CJ, Sausy A, Losch S, Wildschutz F, Bourg M, Hübschen JM. Usutu Virus Africa 3 Lineage, Luxembourg, 2020. Emerg Infect Dis 2022; 28:1076-1079. [PMID: 35447065 PMCID: PMC9045450 DOI: 10.3201/eid2805.212012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We detected Usutu virus in a dead Eurasian blackbird (Turdus merula) in Luxembourg in September 2020. The strain clustered within the Africa 3.1 lineage identified in Western Europe since 2016. Our results suggest maintenance of the virus in Europe despite little reporting during 2019–2020, rather than a new introduction.
Collapse
|
35
|
Gregor KM, Becker SC, Hellhammer F, Schön K, Baumgärtner W, Puff C. Histochemical staining techniques in Culex pipiens and Drosophila melanogaster (Diptera) with a comparison to mammals. Vet Pathol 2022; 59:836-849. [DOI: 10.1177/03009858221088786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insects play an important role in ecosystems. Changes in their abundance and biodiversity are of paramount interest, as there has not only been an alarming decline of insects important for ecosystem health throughout the past decades, but also an increase in insects detrimental for biomes. Furthermore, insects pose a threat to modern society as arbovirus-transmitting vectors. Therefore, detailed knowledge of insect staining characteristics could be beneficial as a basis for further studies, whether in the context of species conservation or control of insect pests. Thus, this study compared 14 histochemical stains for their usefulness in insects regarding nervous tissue, connective tissue components, mucins and polysaccharides, mineralization, and microorganisms. The study used formalin-fixed paraffin-embedded tissue sections of mammals ( Equus caballus) and 2 dipterans ( Culex pipiens biotype molestus, Drosophila melanogaster). Several histochemical stains were suitable for tissue assessment in insects and mammals, in particular for nervous tissue (Bielschowsky silver stain, luxol fast blue–cresyl violet) and polysaccharides (alcian blue, periodic acid–Schiff with and without diastase treatment, toluidine blue). Other stains proved useful for visualization of insect-specific organ characteristics such as Gomori’s reticulin stain for tracheoles in both dipteran species, Heidenhain’s azan for midgut-associated connective tissue, and von Kossa for mineral deposition in Malpighian tubules of C. pipiens biotype molestus. In summary, this study provides comparable insights into histochemical procedures in mammals and insects and their usefulness for histological assessment of C. pipiens biotype molestus and D. melanogaster.
Collapse
Affiliation(s)
- Katharina M. Gregor
- University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Stefanie C. Becker
- University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | | | - Kathleen Schön
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Christina Puff
- University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
36
|
Gregor KM, Becker SC, Hellhammer F, Baumgärtner W, Puff C. Immunohistochemical Characterization of the Nervous System of Culex pipiens (Diptera, Culicidae). BIOLOGY 2022; 11:57. [PMID: 35053056 PMCID: PMC8772823 DOI: 10.3390/biology11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022]
Abstract
Arthropod-borne diseases represent one of the greatest infection-related threats as a result of climate change and globalization. Repeatedly, arbovirus-infected mosquitoes show behavioral changes whose underlying mechanisms are still largely unknown, but might help to develop control strategies. However, in contrast to well-characterized insects such as fruit flies, little is known about neuroanatomy and neurotransmission in mosquitoes. To overcome this limitation, the study focuses on the immunohistochemical characterization of the nervous system of Culex pipiens biotype molestus in comparison to Drosophila melanogaster using 13 antibodies labeling nervous tissue, neurotransmitters or neurotransmitter-related enzymes. Antibodies directed against γ-aminobutyric acid, serotonin, tyrosine-hydroxylase and glutamine synthetase were suitable for investigations in Culex pipiens and Drosophila melanogaster, albeit species-specific spatial differences were observed. Likewise, similar staining results were achieved for neuronal glycoproteins, axons, dendrites and synaptic zones in both species. Interestingly, anti-phosphosynapsin and anti-gephyrin appear to represent novel markers for synapses and glial cells, respectively. In contrast, antibodies directed against acetylcholine, choline acetyltransferase, elav and repo failed to produce a signal in Culex pipiens comparable to that in Drosophila melanogaster. In summary, present results enable a detailed investigation of the nervous system of mosquitoes, facilitating further studies of behavioral mechanisms associated with arboviruses in the course of vector research.
Collapse
Affiliation(s)
- Katharina M. Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| |
Collapse
|
37
|
Störk T, de le Roi M, Haverkamp AK, Jesse ST, Peters M, Fast C, Gregor KM, Könenkamp L, Steffen I, Ludlow M, Beineke A, Hansmann F, Wohlsein P, Osterhaus ADME, Baumgärtner W. Analysis of avian Usutu virus infections in Germany from 2011 to 2018 with focus on dsRNA detection to demonstrate viral infections. Sci Rep 2021; 11:24191. [PMID: 34921222 PMCID: PMC8683490 DOI: 10.1038/s41598-021-03638-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
Usutu virus (USUV) is a zoonotic arbovirus causing avian mass mortalities. The first outbreak in North-Western Germany occurred in 2018. This retrospective analysis focused on combining virological and pathological findings in birds and immunohistochemistry. 25 common blackbirds, one great grey owl, and one kingfisher collected from 2011 to 2018 and positive for USUV by qRT-PCR were investigated. Macroscopically, most USUV infected birds showed splenomegaly and hepatomegaly. Histopathological lesions included necrosis and lymphohistiocytic inflammation within spleen, Bursa fabricii, liver, heart, brain, lung and intestine. Immunohistochemistry revealed USUV antigen positive cells in heart, spleen, pancreas, lung, brain, proventriculus/gizzard, Bursa fabricii, kidney, intestine, skeletal muscle, and liver. Analysis of viral genome allocated the virus to Europe 3 or Africa 2 lineage. This study investigated whether immunohistochemical detection of double-stranded ribonucleic acid (dsRNA) serves as an alternative tool to detect viral intermediates. Tissue samples of six animals with confirmed USUV infection by qRT-PCR but lacking viral antigen in liver and spleen, were further examined immunohistochemically. Two animals exhibited a positive signal for dsRNA. This could indicate either an early state of infection without sufficient formation of virus translation products, occurrence of another concurrent virus infection or endogenous dsRNA not related to infectious pathogens and should be investigated in more detail in future studies.
Collapse
|
38
|
Napp S, Llorente F, Beck C, Jose-Cunilleras E, Soler M, Pailler-García L, Amaral R, Aguilera-Sepúlveda P, Pifarré M, Molina-López R, Obón E, Nicolás O, Lecollinet S, Jiménez-Clavero MÁ, Busquets N. Widespread Circulation of Flaviviruses in Horses and Birds in Northeastern Spain (Catalonia) between 2010 and 2019. Viruses 2021; 13:v13122404. [PMID: 34960673 PMCID: PMC8708358 DOI: 10.3390/v13122404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The surveillance for West Nile virus (WNV) in Catalonia (northeastern Spain) has consistently detected flaviviruses not identified as WNV. With the aim of characterizing the flaviviruses circulating in Catalonia, serum samples from birds and horses collected between 2010 and 2019 and positive by panflavivirus competition ELISA (cELISA) were analyzed by microneutralization test (MNT) against different flaviviruses. A third of the samples tested were inconclusive by MNT, highlighting the limitations of current diagnostic techniques. Our results evidenced the widespread circulation of flaviviruses, in particular WNV, but also Usutu virus (USUV), and suggest that chicken and horses could serve as sentinels for both viruses. In several regions, WNV and USUV overlapped, but no significant geographical aggregation was observed. Bagaza virus (BAGV) was not detected in birds, while positivity to tick-borne encephalitis virus (TBEV) was sporadically detected in horses although no endemic foci were observed. So far, no human infections by WNV, USUV, or TBEV have been reported in Catalonia. However, these zoonotic flaviviruses need to be kept under surveillance, ideally within a One Health framework.
Collapse
Affiliation(s)
- Sebastian Napp
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
- Correspondence: (S.N.); (N.B.)
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Eduard Jose-Cunilleras
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Servei Medicina Interna Equina, Fundació Hospital Clínic Veterinari (UAB), 08193 Bellaterra, Spain
| | - Mercè Soler
- Servei de Prevenció en Salut Animal, Departament d’Acció Climàtica, Alimentació i Agenda Rural (DACC), 08007 Barcelona, Spain;
| | - Lola Pailler-García
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
| | - Rayane Amaral
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
| | - Maria Pifarré
- Centre de Fauna dels Aiguamolls de l’Empordà, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 17486 Castelló d’Empúries, Spain;
| | - Rafael Molina-López
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Elena Obón
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Olga Nicolás
- Centre de Fauna de Vallcalent, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25199 Lleida, Spain;
- Parc Natural de l’Alt Pirineu, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25595 Llavorsí, Spain
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (C.B.); (R.A.); (S.L.)
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (F.L.); (P.A.-S.); (M.Á.J.-C.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Núria Busquets
- IRTA, Animal Health Research Centre (CReSA IRTA-UAB), 08193 Bellaterra, Spain;
- Correspondence: (S.N.); (N.B.)
| |
Collapse
|
39
|
Seasonal Phenological Patterns and Flavivirus Vectorial Capacity of Medically Important Mosquito Species in a Wetland and an Urban Area of Attica, Greece. Trop Med Infect Dis 2021; 6:tropicalmed6040176. [PMID: 34698285 PMCID: PMC8544675 DOI: 10.3390/tropicalmed6040176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Seasonal patterns of mosquito population density and their vectorial capacity constitute major elements to understand the epidemiology of mosquito-borne diseases. Using adult mosquito traps, we compared the population dynamics of major mosquito species (Culex pipiens, Aedes albopictus, Anopheles spp.) in an urban and a wetland rural area of Attica Greece. Pools of the captured Cx. pipiens were analyzed to determine infection rates of the West Nile virus (WNV) and the Usutu virus (USUV). The data provided were collected under the frame of the surveillance program carried out in two regional units (RUs) of the Attica region (East Attica and South Sector of Attica), during the period 2017-2018. The entomological surveillance of adult mosquitoes was performed on a weekly basis using a network of BG-sentinel traps (BGs), baited with CO2 and BG-Lure, in selected, fixed sampling sites. A total of 46,726 adult mosquitoes were collected, with larger variety and number of species in East Attica (n = 37,810), followed by the South Sector of Attica (n = 8916). The collected mosquitoes were morphologically identified to species level and evaluated for their public health importance. Collected Cx. pipiens adults were pooled and tested for West Nile virus (WNV) and Usutu virus (USUV) presence by implementation of a targeted molecular methodology (real-time PCR). A total of 366 mosquito pools were analyzed for WNV and USUV, respectively, and 38 (10.4%) positive samples were recorded for WNV, while no positive pool was detected for USUV. The majority of positive samples for WNV were detected in the East Attica region, followed by the South Sector of Attica, respectively. The findings of the current study highlight the WNV circulation in the region of Attica and the concomitant risk for the country, rendering mosquito surveillance actions and integrated mosquito management programs as imperative public health interventions.
Collapse
|
40
|
Wolbachia prevalence in the vector species Culex pipiens and Culex torrentium in a Sindbis virus-endemic region of Sweden. Parasit Vectors 2021; 14:428. [PMID: 34446060 PMCID: PMC8390198 DOI: 10.1186/s13071-021-04937-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Wolbachia pipientis are endosymbiotic bacteria present in a large proportion of terrestrial arthropods. The species is known to sometimes affect the ability of its host to transmit vector-borne pathogens. Central Sweden is endemic for Sindbis virus (SINV), where it is mainly transmitted by the vector species Culex pipiens and Culex torrentium, with the latter established as the main vector. In this study we investigated the Wolbachia prevalence in these two vector species in a region highly endemic for SINV. Methods Culex mosquitoes were collected using CDC light traps baited with carbon dioxide over 9 years at 50 collection sites across the River Dalälven floodplains in central Sweden. Mosquito genus was determined morphologically, while a molecular method was used for reliable species determination. The presence of Wolbachia was determined through PCR using general primers targeting the wsp gene and sequencing of selected samples. Results In total, 676 Cx. pipiens and 293 Cx. torrentium were tested for Wolbachia. The prevalence of Wolbachia in Cx. pipiens was 97% (95% CI 94.8–97.6%), while only 0.7% (95% CI 0.19–2.45%) in Cx. torrentium. The two Cx. torrentium mosquitoes that were infected with Wolbachia carried different types of the bacteria. Conclusions The main vector of SINV in the investigated endemic region, Cx. torrentium, was seldom infected with Wolbachia, while it was highly prevalent in the secondary vector, Cx. pipiens. The presence of Wolbachia could potentially have an impact on the vector competence of these two species. Furthermore, the detection of Wolbachia in Cx. torrentium could indicate horizontal transmission of the endosymbiont between arthropods of different species. Graphical abstract ![]()
Collapse
|
41
|
Kuchinsky SC, Frere F, Heitzman-Breen N, Golden J, Vázquez A, Honaker CF, Siegel PB, Ciupe SM, LeRoith T, Duggal NK. Pathogenesis and shedding of Usutu virus in juvenile chickens. Emerg Microbes Infect 2021; 10:725-738. [PMID: 33769213 PMCID: PMC8043533 DOI: 10.1080/22221751.2021.1908850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Usutu virus (USUV; family: Flaviviridae, genus: Flavivirus), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), both neuroinvasive arboviruses endemic in wild bird populations in the United States. An avian model for USUV is essential to understanding zoonotic transmission. Here we describe the first avian models of USUV infection with the development of viremia. Juvenile commercial ISA Brown chickens were susceptible to infection by multiple USUV strains with evidence of cardiac lesions. Juvenile chickens from two chicken lines selected for high (HAS) or low (LAS) antibody production against sheep red blood cells showed markedly different responses to USUV infection. Morbidity and mortality were observed in the LAS chickens, but not HAS chickens. LAS chickens had significantly higher viral titers in blood and other tissues, as well as oral secretions, and significantly lower development of neutralizing antibody responses compared to HAS chickens. Mathematical modelling of virus-host interactions showed that the viral clearance rate is a stronger mitigating factor for USUV viremia than neutralizing antibody response in this avian model. These chicken models provide a tool for further understanding USUV pathogenesis in birds and evaluating transmission dynamics between avian hosts and mosquito vectors.
Collapse
Affiliation(s)
- Sarah C Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Francesca Frere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nora Heitzman-Breen
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jacob Golden
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ana Vázquez
- National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Epidemiology and Public Health Network of Biomedical Research Centre (CIBERESP), Madrid, Spain
| | - Christa F Honaker
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Stanca M Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
42
|
Schmidt V, Cramer K, Böttcher D, Heenemann K, Rückner A, Harzer M, Ziegler U, Vahlenkamp T, Sieg M. Usutu virus infection in aviary birds during the cold season. Avian Pathol 2021; 50:427-435. [PMID: 34351827 DOI: 10.1080/03079457.2021.1962003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mosquito-borne flavivirus Usutu virus (USUV) is responsible for countless deaths in both resident populations and birds kept in outdoor aviaries. Since 2001, USUV outbreaks attract increased attention due to the rapid geographical spread of the virus and its close relation to West Nile virus (WNV), an emerging pathogen in humans and animals. Similar to WNV, the USUV enzootic transmission cycle predominantly involves Culex spp. as vectors, whereas birds serve as amplifying reservoir hosts. In Europe, USUV-associated disease outbreaks in birds are nearly exclusively described during late spring and early autumn (early April to late October). Contagiousness of virus particles excreted by infected animals has not yet been proven, so that the role of non-vector-borne transmission, as it is known for the closely related WNV, remains unclear. Here we report the diagnosis of USUV infection in 15 of 24 birds from mortality outbreaks in eight different aviaries located in Germany, that occured during the cold season between late October 2018 and early April 2019. Detection of USUV was performed using standardized molecular biological methods and immunohistochemistry for verification of the infection. USUV infection in a parrot species, a tropical finch and two estrildid finches are reported for the first time. Further research on the occurrence of USUV infection during the cold season is key to understanding the dynamics of viral transmission as well as for a profound health risk assessment for aviary birds as well as humans.
Collapse
Affiliation(s)
- Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 17, D-04103 Leipzig, Germany
| | - Kerstin Cramer
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 17, D-04103 Leipzig, Germany
| | - Denny Böttcher
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, D-04103 Leipzig, Germany
| | - Kristin Heenemann
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Antje Rückner
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Maxi Harzer
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, D-04103 Leipzig, Germany
| |
Collapse
|
43
|
Wang H, Abbo SR, Visser TM, Westenberg M, Geertsema C, Fros JJ, Koenraadt CJM, Pijlman GP. Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes. Emerg Microbes Infect 2021; 9:2642-2652. [PMID: 33215969 PMCID: PMC7738303 DOI: 10.1080/22221751.2020.1854623] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are closely related mosquito-borne flaviviruses that are mainly transmitted between bird hosts by vector mosquitoes. Infections in humans are incidental but can cause severe disease. USUV is endemic in large parts of Europe, while WNV mainly circulates in Southern Europe. In recent years, WNV is also frequently detected in Northern Europe, thereby expanding the area where both viruses co-circulate. However, it remains unclear how USUV may affect the future spread of WNV and the likelihood of human co-infection. Here we investigated whether co-infections with both viruses in cell lines and their primary mosquito vector, Culex pipiens, affect virus replication and transmission dynamics. We show that USUV is outcompeted by WNV in mammalian, avian and mosquito cells during co-infection. Mosquitoes that were exposed to both viruses simultaneously via infectious blood meal displayed significantly reduced USUV transmission compared to mosquitoes that were only exposed to USUV (from 15% to 3%), while the infection and transmission of WNV was unaffected. In contrast, when mosquitoes were pre-infected with USUV via infectious blood meal, WNV transmission was significantly reduced (from 44% to 17%). Injection experiments established the involvement of the midgut in the observed USUV-mediated WNV inhibition. The competition between USUV and WNV during co-infection clearly indicates that the chance of concurrent USUV and WNV transmission via a single mosquito bite is low. The competitive relation between USUV and WNV may impact virus transmission dynamics in the field and affect the epidemiology of WNV in Europe.
Collapse
Affiliation(s)
- Haidong Wang
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Tessa M Visser
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Marcel Westenberg
- Dutch National Plant Protection Organization (NPPO-NL), Wageningen, Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
44
|
Bakran-Lebl K, Camp JV, Kolodziejek J, Weidinger P, Hufnagl P, Cabal Rosel A, Zwickelstorfer A, Allerberger F, Nowotny N. Diversity of West Nile and Usutu virus strains in mosquitoes at an international airport in Austria. Transbound Emerg Dis 2021; 69:2096-2109. [PMID: 34169666 PMCID: PMC9540796 DOI: 10.1111/tbed.14198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Increased globalization and international transportation have resulted in the inadvertent introduction of exotic mosquitoes and new mosquito‐borne diseases. International airports are among the possible points of entry for mosquitoes and their pathogens. We established a mosquito and mosquito‐borne diseases monitoring programme at the largest international airport in Austria and report the results for the first two years, 2018 and 2019. This included weekly monitoring and sampling of adult mosquitoes, and screening them for the presence of viral nucleic acids by standard molecular diagnostic techniques. Additionally, we surveyed the avian community at the airport, as birds are potentially amplifying hosts. In 2018, West Nile virus (WNV) was detected in 14 pools and Usutu virus (USUV) was detected in another 14 pools of mosquitoes (minimum infection rate [MIR] of 6.8 for each virus). Of these 28 pools, 26 consisted of female Culex pipiens/torrentium, and two contained male Culex sp. mosquitoes. Cx. pipiens/torrentium mosquitoes were the most frequently captured mosquito species at the airport. The detected WNV strains belonged to five sub‐clusters within the sub‐lineage 2d‐1, and all detected USUV strains were grouped to at least seven sub‐clusters among the cluster Europe 2; all strains were previously shown to be endemic in Austria. In 2019, all mosquito pools were negative for any viral nucleic acids tested. Our study suggests that airports may serve as foci of arbovirus activity, particularly during epidemic years, and should be considered when designing mosquito control and arbovirus monitoring programmes.
Collapse
Affiliation(s)
- Karin Bakran-Lebl
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pia Weidinger
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Hufnagl
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Adriana Cabal Rosel
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| |
Collapse
|
45
|
Abbo SR, Visser TM, Koenraadt CJM, Pijlman GP, Wang H. Effect of blood source on vector competence of Culex pipiens biotypes for Usutu virus. Parasit Vectors 2021; 14:194. [PMID: 33832527 PMCID: PMC8028107 DOI: 10.1186/s13071-021-04686-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background Infectious blood meal experiments have been frequently performed with different virus-vector combinations to assess the transmission potential of arthropod-borne (arbo)viruses. A wide variety of host blood sources have been used to deliver arboviruses to their arthropod vectors in laboratory studies. The type of blood used during vector competence experiments does not always reflect the blood from the viremic vertebrate hosts in the field, but little is known about the effect of blood source on the experimental outcome of vector competence studies. Here we investigated the effect of avian versus human blood on the infection and transmission rates of the zoonotic Usutu virus (USUV) in its primary mosquito vector Culex pipiens. Methods Cx. pipiens biotypes (pipiens and molestus) were orally infected with USUV through infectious blood meals containing either chicken or human whole blood. The USUV infection and transmission rates were determined by checking mosquito bodies and saliva for USUV presence after 14 days of incubation at 28 °C. In addition, viral titers were determined for USUV-positive mosquito bodies and saliva. Results Human and chicken blood lead to similar USUV transmission rates for Cx. pipiens biotype pipiens (18% and 15%, respectively), while human blood moderately but not significantly increased the transmission rate (30%) compared to chicken blood (17%) for biotype molestus. USUV infection rates with human blood were consistently higher in both Cx. pipiens biotypes compared to chicken blood. In virus-positive mosquitoes, USUV body and saliva titers did not differ between mosquitoes taking either human or chicken blood. Importantly, biotype molestus had much lower USUV saliva titers compared to biotype pipiens, regardless of which blood was offered. Conclusions Infection of mosquitoes with human blood led to higher USUV infection rates as compared to chicken blood. However, the blood source had no effect on the vector competence for USUV. Interestingly, biotype molestus is less likely to transmit USUV compared to biotype pipiens due to very low virus titers in the saliva. ![]()
Collapse
Affiliation(s)
- Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Tessa M Visser
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Haidong Wang
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
46
|
Screening of Mosquitoes for West Nile Virus and Usutu Virus in Croatia, 2015-2020. Trop Med Infect Dis 2021; 6:tropicalmed6020045. [PMID: 33918386 PMCID: PMC8167590 DOI: 10.3390/tropicalmed6020045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/20/2023] Open
Abstract
In the period from 2015 to 2020, an entomological survey for the presence of West Nile virus (WNV) and Usutu virus (USUV) in mosquitoes was performed in northwestern Croatia. A total of 20,363 mosquitoes were sampled in the City of Zagreb and Međimurje county, grouped in 899 pools and tested by real-time RT-PCR for WNV and USUV RNA. All pools were negative for WNV while one pool each from 2016 (Aedes albopictus), 2017 (Culex pipiens complex), 2018 (Cx. pipiens complex), and 2019 (Cx. pipiens complex), respectively, was positive for USUV. The 2018 and 2019 positive pools shared 99.31% nucleotide homology within the USUV NS5 gene and both clustered within USUV Europe 2 lineage. The next-generation sequencing of one mosquito pool (Cx. pipiens complex) collected in 2018 in Zagreb confirmed the presence of USUV and revealed several dsDNA and ssRNA viruses of insect, bacterial and mammalian origin.
Collapse
|
47
|
Bates TA, Chuong C, Rai P, Marano J, Waldman A, Klinger A, Reinhold JM, Lahondère C, Weger-Lucarelli J. American Aedes japonicus japonicus, Culex pipiens pipiens, and Culex restuans mosquitoes have limited transmission capacity for a recent isolate of Usutu virus. Virology 2021; 555:64-70. [PMID: 33454558 DOI: 10.1016/j.virol.2020.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Usutu virus (USUV; Flavivirus) has caused massive die-offs in birds across Europe since the 1950s. Although rare, severe neurologic disease in humans has been reported. USUV is genetically related to West Nile virus (WNV) and shares an ecological niche, suggesting it could spread from Europe to the Americas. USUV's risk of transmission within the United States is currently unknown. To this end, we exposed field-caught Aedes japonicus, Culex pipiens pipiens, and Culex restuans-competent vectors for WNV-to a recent European isolate of USUV. While infection rates for each species varied from 7%-21%, no dissemination or transmission was observed. These results differed from a 2018 report by Cook and colleagues, who found high dissemination rates and evidence of transmission potential using a different USUV strain, U.S. mosquito populations, temperature, and extrinsic incubation period. Future studies should evaluate the impact of these experimental conditions on USUV transmission by North American mosquitoes.
Collapse
Affiliation(s)
- Tyler A Bates
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Christina Chuong
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Jeffrey Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Aaron Waldman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Amy Klinger
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Joanna M Reinhold
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA; The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
48
|
Holicki CM, Scheuch DE, Ziegler U, Lettow J, Kampen H, Werner D, Groschup MH. German Culex pipiens biotype molestus and Culex torrentium are vector-competent for Usutu virus. Parasit Vectors 2020; 13:625. [PMID: 33380339 PMCID: PMC7774236 DOI: 10.1186/s13071-020-04532-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Usutu virus (USUV) is a rapidly spreading zoonotic arbovirus (arthropod-borne virus) and a considerable threat to the global avifauna and in isolated cases to human health. It is maintained in an enzootic cycle involving ornithophilic mosquitoes as vectors and birds as reservoir hosts. Despite massive die-offs in wild bird populations and the detection of severe neurological symptoms in infected humans, little is known about which mosquito species are involved in the propagation of USUV. METHODS In the present study, the vector competence of a German (i.e. "Central European") and a Serbian (i.e. "Southern European") Culex pipiens biotype molestus laboratory colony was experimentally evaluated. For comparative purposes, Culex torrentium, a frequent species in Northern Europe, and Aedes aegypti, a primarily tropical species, were also tested. Adult female mosquitoes were exposed to bovine blood spiked with USUV Africa 2 and subsequently incubated at 25 °C. After 2 to 3 weeks saliva was collected from each individual mosquito to assess the ability of a mosquito species to transmit USUV. RESULTS Culex pipiens biotype molestus mosquitoes originating from Germany and the Republic of Serbia and Cx. torrentium mosquitoes from Germany proved competent for USUV, as indicated by harboring viable virus in their saliva 21 days post infection. By contrast, Ae. aegypti mosquitoes were relatively refractory to an USUV infection, exhibiting low infection rates and lacking virus in their saliva. CONCLUSIONS Consistent with the high prevalences and abundances of Cx. pipiens biotype molestus and Cx. torrentium in Central and Northern Europe, these two species have most likely played a historic role in the spread, maintenance, and introduction of USUV into Germany. Identification of the key USUV vectors enables the establishment and implementation of rigorous entomological surveillance programs and the development of effective, evidence-based vector control interventions.
Collapse
Affiliation(s)
- Cora M Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Dorothee E Scheuch
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Julia Lettow
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Helge Kampen
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Doreen Werner
- Biodiversity of Aquatic and Semiaquatic Landscape Features, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
49
|
Kuchinsky SC, Hawks SA, Mossel EC, Coutermarsh-Ott S, Duggal NK. Differential pathogenesis of Usutu virus isolates in mice. PLoS Negl Trop Dis 2020; 14:e0008765. [PMID: 33044987 PMCID: PMC7580916 DOI: 10.1371/journal.pntd.0008765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/22/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022] Open
Abstract
Usutu virus (USUV; Flavivirus), a close phylogenetic and ecological relative of West Nile virus, is a zoonotic virus that can cause neuroinvasive disease in humans. USUV is maintained in an enzootic cycle between Culex mosquitoes and birds. Since the first isolation in 1959 in South Africa, USUV has spread throughout Africa and Europe. Reported human cases have increased over the last few decades, primarily in Europe, with symptoms ranging from mild febrile illness to severe neurological effects. In this study, we investigated whether USUV has become more pathogenic during emergence in Europe. Interferon α/β receptor knockout (Ifnar1-/-) mice were inoculated with recent USUV isolates from Africa and Europe, as well as the historic 1959 South African strain. The three tested African strains and one European strain from Spain caused 100% mortality in inoculated mice, with similar survival times and histopathology in tissues. Unexpectedly, a European strain from the Netherlands caused only 12% mortality and significantly less histopathology in tissues from mice compared to mice inoculated with the other strains. Viremia was highest in mice inoculated with the recent African strains and lowest in mice inoculated with the Netherlands strain. Based on phylogenetics, the USUV isolates from Spain and the Netherlands were derived from separate introductions into Europe, suggesting that disease outcomes may differ for USUV strains circulating in Europe. These results also suggest that while more human USUV disease cases have been reported in Europe recently, circulating African USUV strains are still a potential major health concern.
Collapse
Affiliation(s)
- Sarah C. Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States of America
| | - Seth A. Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States of America
| | - Eric C. Mossel
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States of America
- * E-mail: (SCO); (NKD)
| | - Nisha K. Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States of America
- * E-mail: (SCO); (NKD)
| |
Collapse
|
50
|
Josephine Schoenenwald AK, Pletzer M, Skern T. Structural and antigenic investigation of Usutu virus envelope protein domain III. Virology 2020; 551:46-57. [PMID: 33011522 DOI: 10.1016/j.virol.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
The mosquito-borne flavivirus Usutu virus (USUV) has recently emerged in birds and humans in Europe. Symptoms of a USUV infection resemble those of West Nile virus (WNV); further, the close antigenic relationship of domain III (DIII) of the USUV and WNV envelope (E) proteins has prevented the development of a reliable serological test to distinguish USUV from WNV. To begin to address this deficiency, we identified ten different sequence groups of DIII from 253 complete and 80 partial USUV genome sequences. We solved the DIII structures of four groups, including that of the outlying CAR-1969 strain, which shows an atypical DIII structure. Structural comparisons of the USUV DIII groups and the DIII of WNV bound to the neutralizing antibody E16 revealed why the E16 failed to neutralize all USUV strains tested except for USUV CAR-1969. The analyses allowed predictions to be made to engineer an antibody specific for USUV CAR-1969.
Collapse
Affiliation(s)
| | - Marina Pletzer
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria
| | - Tim Skern
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|