1
|
Rey LMR, Delai RM, Batista ACCA, Ferreira L, Santos ICD, Del Vecchio MAC, Andrade ACS, Teles P, Pereira UDP, Gerber AL, Guimarães APDC, Almeida LGPD, Lamarca AP, Vasconcelos ATRD, Gonçalves DD. SARS-CoV-2 Research in Dogs ( Canis lupus familiaris) and Felines ( Felis silvestris catus) Domiciled in an International Border Region (Paraguay and Brazil). Vector Borne Zoonotic Dis 2024; 24:625-631. [PMID: 38829161 DOI: 10.1089/vbz.2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Introduction: COVID-19 is an infectious disease caused by SARS-CoV-2 that has become a serious threat to public health owing to its rapid spread from aerosols from infected people. Despite being considered a strictly human disease, there are reports in the literature about animals with confirmed presence of the virus. Aim: Owing to the scarcity of scientific literature on the potential for infection of animals and their importance for One Health, the objective of this work was to research SARS-CoV-2 RNA in felines (Felis silvestris catus) and dogs (Canis lupus familiaris) domiciled. Materials and Methods: Oropharyngeal swabs were collected from domestic dogs and cats belonging to patients diagnosed with COVID-19 from August to October 2021 and residents of the northwest and west regions of Paraná, Brazil. Results: Of the 34 samples collected, 14 were from dogs and 20 from cats. Three of these samples tested positive in real-time PCR, and two of them were also positive in the immunochromatographic test. After testing positive in real-time PCR, the samples underwent genetic sequencing using the Illumina COVIDSeq test. Of the 34 samples collected, three (9%), all of them female and from the feline species, tested positive in real-time PCR, with two of these (67%) also testing positive in the immunochromatographic test. Regarding sequencing, it was possible to sequence the three samples aligned with the AY.101 lineage, corresponding to the Delta variant. Conclusion: The occurrence of SARS-CoV-2 infection in dogs and cats is seen as an unintended event with significant implications for public health, including its potential transmission to other animal species. Further research is required to enhance our understanding of how this disease spreads among these animals and its broader impact on One Health initiatives.
Collapse
Affiliation(s)
- Laisa Marina Rosa Rey
- Pós-Graduandos do Programa de Pós-Graduação em Ciência Animal com Ênfase em Produtos Bioativos, Universidade Paranaense (UNIPAR), Umuarama, Brasil
| | - Robson Michael Delai
- Pós-Graduandos do Programa de Pós-Graduação em Ciência Animal com Ênfase em Produtos Bioativos, Universidade Paranaense (UNIPAR), Umuarama, Brasil
- Centro de Medicina Tropical da Fundação de Saúde Itaiguapy, Foz do Iguaçu, Brasil
| | - Aline Cristiane Cechinel Assing Batista
- Pós-Graduandos do Programa de Pós-Graduação em Ciência Animal com Ênfase em Produtos Bioativos, Universidade Paranaense (UNIPAR), Umuarama, Brasil
- Centro de Medicina Tropical da Fundação de Saúde Itaiguapy, Foz do Iguaçu, Brasil
| | - Leonardo Ferreira
- Centro de Medicina Tropical da Fundação de Saúde Itaiguapy, Foz do Iguaçu, Brasil
| | - Isabela Carvalho Dos Santos
- Pós-Graduandos do Programa de Pós-Graduação em Ciência Animal com Ênfase em Produtos Bioativos, Universidade Paranaense (UNIPAR), Umuarama, Brasil
| | - Marco Aurélio Cunha Del Vecchio
- Pós-Graduandos do Programa de Pós-Graduação em Ciência Animal com Ênfase em Produtos Bioativos, Universidade Paranaense (UNIPAR), Umuarama, Brasil
| | - Ana Cláudia Souza Andrade
- Pós-Graduandos do Programa de Pós-Graduação em Ciência Animal com Ênfase em Produtos Bioativos, Universidade Paranaense (UNIPAR), Umuarama, Brasil
| | - Pedro Teles
- Médico Veterinário autônomo, Self-employed veterinarian, Cascavel, Paraná, Brasil
| | - Ulisses de Pádua Pereira
- Docente do Programa de Pós-Graduação em Ciência Animal, Universidade Estadual de Londrina (UEL), Londrina, Brasil
| | | | | | | | - Alessandra Pavan Lamarca
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brasil
| | | | - Daniela Dib Gonçalves
- Docente do Programa de Pós-Graduação em Ciência Animal com Ênfase em Produtos Bioativos, Universidade Paranaense (UNIPAR), Umuarama, Brasil
| |
Collapse
|
2
|
Ferrara G, Pagnini U, Montagnaro S. SARS-CoV-2 exposure in hunting and stray dogs of southern Italy. Vet Res Commun 2024:10.1007/s11259-024-10496-9. [PMID: 39167256 DOI: 10.1007/s11259-024-10496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Evidence of exposure to the pandemic SARS-CoV-2 has been described in numerous animal species, including pets, which are predisposed to coming into contact with this virus due to their close relationship with owners. It has been accepted that dogs are poorly susceptible to this virus and that seroconversion, rather than shedding, occurs following infection, which can occur directly through contact with infected owners or indirectly through environmental contamination. In this study, the seroprevalence of SARS-CoV-2 was evaluated in apparently health hunting and stray dogs of Campania region, southern Italy (sampled in September 2023). A total of 5/112 (4.5%) animals tested seropositive using two different commercial ELISAs. Stray animals had greater exposure than hunting dogs. The feces and blood of each animal were tested with a real-time PCR targeting the nucleocapsid and ORF1ab coding sequences. No animal tested positive in molecular investigations, indicating a past exposure without active infection at the time of sampling.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy.
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| |
Collapse
|
3
|
Seekings AH, Shipley R, Byrne AMP, Shukla S, Golding M, Amaya-Cuesta J, Goharriz H, Vitores AG, Lean FZX, James J, Núñez A, Breed A, Frost A, Balzer J, Brown IH, Brookes SM, McElhinney LM. Detection of SARS-CoV-2 Delta Variant (B.1.617.2) in Domestic Dogs and Zoo Tigers in England and Jersey during 2021. Viruses 2024; 16:617. [PMID: 38675958 PMCID: PMC11053977 DOI: 10.3390/v16040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo animals in Great Britain and Jersey were tested by APHA for SARS-CoV-2 during 2020-2023. One domestic cat (Felis catus), three domestic dogs (Canis lupus familiaris), and three Amur tigers (Panthera tigris altaica) from a zoo were confirmed positive during 2020-2021 and reported to the WOAH. All seven positive animals were linked with known SARS-CoV-2 positive human contacts. Characterisation of the SARS-CoV-2 variants by genome sequencing indicated that the cat was infected with an early SARS-CoV-2 lineage. The three dogs and three tigers were infected with the SARS-CoV-2 Delta variant of concern (B.1.617.2). The role of non-human species in the onward transmission and emergence of new variants of SARS-CoV-2 remain poorly defined. Continued surveillance of SARS-CoV-2 in relevant domestic and captive animal species with high levels of human contact is important to monitor transmission at the human-animal interface and to assess their role as potential animal reservoirs.
Collapse
Affiliation(s)
- Amanda H. Seekings
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Rebecca Shipley
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alexander M. P. Byrne
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- Worldwide Influenza Centre, The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Shweta Shukla
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Megan Golding
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Joan Amaya-Cuesta
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Hooman Goharriz
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ana Gómez Vitores
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Fabian Z. X. Lean
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Joe James
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Núñez
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alistair Breed
- Government of Jersey, Infrastructure Housing and Environment, Howard Davis Farm, La Route de la Trinité, Trinity, Jersey JE3 5JP, UK
| | - Andrew Frost
- One Health, Animal Health and Welfare Advice Team, Animal and Plant Health Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Jörg Balzer
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Humboldtstraße 2, 70806 Kornwestheim, Germany
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Sharon M. Brookes
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Lorraine M. McElhinney
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
4
|
Rivas AL, Smith SD. Editorial: Interdisciplinary approaches in veterinary sciences after COVID-19. Front Vet Sci 2024; 11:1361813. [PMID: 38292464 PMCID: PMC10824909 DOI: 10.3389/fvets.2024.1361813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Affiliation(s)
- Ariel L. Rivas
- Center for Global Health, Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | | |
Collapse
|
5
|
Heydarifard Z, Chegeni AM, Heydarifard F, Nikmanesh B, Salimi V. An overview of SARS-CoV2 natural infections in companion animals: A systematic review of the current evidence. Rev Med Virol 2024; 34:e2512. [PMID: 38282405 DOI: 10.1002/rmv.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/10/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
This systematic review provides a comprehensive overview of natural SARS-CoV-2 infections in companion animals. The findings show that these infections are relatively rare. Among the examined dogs, only 1.32% tested positive for SARS-CoV-2, while for cats, the rate was 1.55%. Infections in rabbits and ferrets were even less common, at less than 1%. These results support previous research indicating the infrequency of natural infections in companion animals. The review also includes updated studies that involved various pets, such as cats, dogs, ferrets, and rabbits. The majority of the studies analyzed were primarily concerned with screening pets that visited veterinary clinics, regardless of whether they showed any specific signs of SARS-CoV-2 infection. Only a limited number of studies investigated infections in animals suspected of being in contact with owners or other animals that had COVID-19 or were exhibiting symptoms. The most common variant identified among the SARS-CoV-2 variants in the reviewed studies was B.1.1.7 (alpha), followed by B.1.617.2 (delta), B.1.526 (Iota), and others. The emergence of these variants raises concerns about their potential for increased transmissibility and virulence, highlighting the importance of ongoing monitoring of SARS-CoV-2 infections in both humans and animals. Furthermore, most of the reviewed studies indicated that infected pets either showed no symptoms or experienced mild symptoms. This aligns with previous reports suggesting that animals infected with SARS-CoV-2 generally have less severe illness compared to humans. However, it is essential to recognize the possibility of severe illness or death in animals, particularly those with underlying health conditions. Continuous surveillance of SARS-CoV-2 infections in companion animals is crucial for better understanding the virus's epidemiology in animals and developing effective strategies to protect both animal and human health.
Collapse
Affiliation(s)
- Zahra Heydarifard
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ardalan Maleki Chegeni
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Heydarifard
- Department of Veterinary, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Bahram Nikmanesh
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Zoonoses Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Zoonoses Research Centre, Tehran University of Medical Sciences, Tehran, Iran
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yamayoshi S, Ito M, Iwatsuki-Horimoto K, Yasuhara A, Okuda M, Hamabata T, Murakami J, Duong C, Yamamoto T, Kuroda Y, Maeda K, Kawaoka Y. Seroprevalence of SARS-CoV-2 antibodies in dogs and cats during the early and mid-pandemic periods in Japan. One Health 2023; 17:100588. [PMID: 37359748 PMCID: PMC10279464 DOI: 10.1016/j.onehlt.2023.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to circulate in humans since its emergence in 2019. While infection in humans continues, numerous spillover events to at least 32 animal species, including companion and zoo animals, have been reported. Since dogs and cats are highly susceptible to SARS-CoV-2 and have direct contact with their owners and other household members, it is important to know the prevalence of SARS-CoV-2 in dogs and cats. Here, we established an ELISA to detect serum antibodies against the receptor-binding domain and the ectodomain of the SARS-CoV-2 spike and nucleocapsid proteins. Using this ELISA, we assessed seroprevalence in 488 dog serum samples and 355 cat serum samples that were collected during the early pandemic period (between May and June of 2020) and 312 dog serum samples and 251 cat serum samples that were collected during the mid-pandemic period (between October 2021 and January 2022). We found that two dog serum samples (0.41%) collected in 2020, one cat serum sample (0.28%) collected in 2020, and four cat serum samples (1.6%) collected in 2021 were positive for antibodies against SARS-CoV-2. No dog serum samples collected in 2021 were positive for these antibodies. We conclude that the seroprevalence of SARS-CoV-2 antibodies in dogs and cats in Japan is low, suggesting that these animals are not a major SARS-CoV-2 reservoir.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Japan
- Research Center for Global Viral Infections, National Center for Global Health and Medicine Research Institute, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | | | - Atsuhiro Yasuhara
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Moe Okuda
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Taiki Hamabata
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Jurika Murakami
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Calvin Duong
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
- Research Center for Global Viral Infections, National Center for Global Health and Medicine Research Institute, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA
| |
Collapse
|
7
|
Dickey T, Junqueira H. COVID-19 scent dog research highlights and synthesis during the pandemic of December 2019-April 2023. J Osteopath Med 2023; 123:509-521. [PMID: 37452676 DOI: 10.1515/jom-2023-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
CONTEXT This review was undertaken to provide information concerning the advancement of research in the area of COVID-19 screening and testing during the worldwide pandemic from December 2019 through April 2023. In this review, we have examined the safety, effectiveness, and practicality of utilizing trained scent dogs in clinical and public situations for COVID-19 screening. Specifically, results of 29 trained scent dog screening peer-reviewed studies were compared with results of real-time reverse-transcription polymerase chain reaction (RT-PCR) and rapid antigen (RAG) COVID-19 testing methods. OBJECTIVES The review aims to systematically evaluate the strengths and weaknesses of utilizing trained scent dogs in COVID-19 screening. METHODS At the time of submission of our earlier review paper in August 2021, we found only four peer-reviewed COVID-19 scent dog papers: three clinical research studies and one preprint perspective paper. In March and April 2023, the first author conducted new literature searches of the MEDLINE/PubMed, Google Scholar, and Cochrane Library websites. Again, the keyword phrases utilized for the searches included "COVID detection dogs," "COVID scent dogs," and "COVID sniffer dogs." The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 Checklist was followed to ensure that our review adhered to evidence-based guidelines for reporting. Utilizing the results of the reviewed papers, we compiled statistics to intercompare and summarize basic information concerning the scent dogs and their training, the populations of the study participants, the types of sampling methods, the comparative tests utilized, and the effectiveness of the scent dog screening. RESULTS A total of 8,043 references were identified through our literature search. After removal of duplicates, there were 7,843 references that were screened. Of these, 100 were considered for full-text eligibility, 43 were included for qualitative synthesis, and 29 were utilized for quantitative analysis. The most relevant peer-reviewed COVID-19 scent dog references were identified and categorized. Utilizing all of the scent dog results provided for this review, we found that 92.3 % of the studies reached sensitivities exceeding 80 and 32.0 % of the studies exceeding specificities of 97 %. However, 84.0 % of the studies reported specificities above 90 %. Highlights demonstrating the effectiveness of the scent dogs include: (1) samples of breath, saliva, trachea-bronchial secretions and urine as well as face masks and articles of clothing can be utilized; (2) trained COVID-19 scent dogs can detect presymptomatic and asymptomatic patients; (3) scent dogs can detect new SARS-CoV-2 variants and Long COVID-19; and (4) scent dogs can differentiate SARS-CoV-2 infections from infections with other novel respiratory viruses. CONCLUSIONS The effectiveness of the trained scent dog method is comparable to or in some cases superior to the real-time RT-PCR test and the RAG test. Trained scent dogs can be effectively utilized to provide quick (seconds to minutes), nonintrusive, and accurate results in public settings and thus reduce the spread of the COVID-19 virus or other viruses. Finally, scent dog research as described in this paper can serve to increase the medical community's and public's knowledge and acceptance of medical scent dogs as major contributors to global efforts to fight diseases.
Collapse
Affiliation(s)
- Tommy Dickey
- Distinguished Professor Emeritus, Geography Department, University of California Santa Barbara, Santa Barbara, CA, USA
| | | |
Collapse
|
8
|
Michelitsch A, Allendorf V, Conraths FJ, Gethmann J, Schulz J, Wernike K, Denzin N. SARS-CoV-2 Infection and Clinical Signs in Cats and Dogs from Confirmed Positive Households in Germany. Viruses 2023; 15:v15040837. [PMID: 37112817 PMCID: PMC10144952 DOI: 10.3390/v15040837] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
On a global scale, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to the health of the human population. Not only humans can be infected, but also their companion animals. The antibody status of 115 cats and 170 dogs, originating from 177 German households known to have been SARS-CoV-2 positive, was determined by enzyme-linked immunosorbent assay (ELISA), and the results were combined with information gathered from a questionnaire that was completed by the owner(s) of the animals. The true seroprevalences of SARS-CoV-2 among cats and dogs were 42.5% (95% CI 33.5–51.9) and 56.8% (95% CI 49.1–64.4), respectively. In a multivariable logistic regression accounting for data clustered in households, for cats, the number of infected humans in the household and an above-average contact intensity turned out to be significant risk factors; contact with humans outside the household was a protective factor. For dogs, on the contrary, contact outside the household was a risk factor, and reduced contact, once the human infection was known, was a significant protective factor. No significant association was found between reported clinical signs in animals and their antibody status, and no spatial clustering of positive test results was identified.
Collapse
|