1
|
Wei X, Li H, Wu S, Zhu T, Sui R. Genetic analysis and clinical features of three Chinese patients with Oguchi disease. Doc Ophthalmol 2023; 146:17-32. [PMID: 36417138 DOI: 10.1007/s10633-022-09910-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Oguchi disease is a rare autosomal recessive form of congenital stationary night blindness caused by disease-causing variants in the rhodopsin kinase gene (GRK1) or the arrestin gene (SAG). Our study aims to describe the clinical features and identify the genetic defects for three Chinese patients with Oguchi disease. METHODS We conducted detailed ophthalmologic examinations for three patients from three unrelated non-consanguineous Chinese families. Targeted next-generation sequencing (targeted NGS) and copy number variations (CNVs) analysis were applied to screen pathogenic variants. Sanger sequencing validation, quantitative real-time PCR (qPCR), and segregation analysis were further performed for confirmation. Subsequently, a combined genetic and structural biology approach was used to infer the likely functional consequences of novel variants. RESULTS All three patients presented with typical clinical features of Oguchi disease, including night blindness, characteristic fundus appearance (Mizuo-Nakamura phenomenon), attenuated rod responses, and negative ERG waveforms. Their visual acuity and visual field were normal. Genetic analysis revealed two pathogenic variants in SAG and four pathogenic variants in GRK1. Patient 1 was identified to harbor compound heterozygous SAG variants c.874C > T (p.R292*) and exon2 deletion. Compound heterozygous GRK1 variants c.55C > T (p.R19*) and c.1412delC (p.P471Lfs*52) were found in patient 2. In patient 3, compound heterozygous GRK1 variants c.946C > A (p.R316S) and c.1388 T > C (p. L463P) were detected. CONCLUSIONS We reported the first two Chinese Oguchi patients with novel GRK1 pathogenic variants (P471Lfs*52, R316S, L463P) and one Oguchi case with SAG, indicating both GRK1 and SAG are important causative genes in Chinese Oguchi patients.
Collapse
Affiliation(s)
- Xing Wei
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Hui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Shijing Wu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Tian Zhu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1, Shuai Fu Yuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
2
|
Tawfik CA, Elbagoury NM, Khater NI, Essawi ML. Mutation analysis reveals novel and known mutations in SAG gene in first two Egyptian families with Oguchi disease. BMC Ophthalmol 2022; 22:217. [PMID: 35549688 PMCID: PMC9103117 DOI: 10.1186/s12886-022-02444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Oguchi disease is a rare type of congenital stationary night blindness associated with an abnormal fundus appearance. It is inherited in an autosomal recessive manner where two types exist according to the gene affected; type 1 associated with S-antigen (SAG) gene mutations and type 2 associated with rhodopsin kinase (GRK1) gene mutations. Purpose The aim of this work was to describe the clinical and genetic findings of the first two reported families of Oguchi disease in Egypt and African region. Methods Four members of two consanguineous Egyptian families with history of night blindness since childhood underwent complete ophthalmological examination, standard automated static perimetry, fundus color photography, fundus autofluorescence (FAF), fundus fluorescein angiography (FFA) in light-adapted state and spectral-domain optical coherence tomography (SD-OCT) of both the macula and the optic nerve head as well as central corneal thickness with repeated fundus photography following prolonged dark adaptation. Mutation screening of 7 coding exons of GRK1 gene and 15 coding exons of SAG gene as well as some flanking regions were performed using Sanger sequencing technique. The variants were tested for pathogenicity using different in silico functional analysis tools. Results The clinical examination and investigations confirmed Oguchi disease phenotype. One patient showed p.R193* (c.577C > T) which is a previously reported SAG gene mutation in a homozygous form. The other three patients from a different family showed (c.649–1 G > C), a novel canonical splice site SAG gene mutation in a homozygous form. Conclusion The identification of the novel canonical splice site SAG gene variant in three members of the same family with clinically confirmed Oguchi disease reinforces its pathogenicity. A fourth patient from another family carried a previously reported mutation in the same gene. SAG gene variants may be the underlying genetic cause for Oguchi disease in Egypt. Our findings have expanded the spectrum of Oguchi disease-associated mutations in SAG gene and may serve as a basis for genetic diagnosis for Oguchi disease.
Collapse
Affiliation(s)
- Caroline Atef Tawfik
- Department of Ophthalmology, Ain Shams University, 38 Abbasseya, Nour Mosque, El-Mohamady, Al Waili, Cairo, 11566, Egypt.
| | - Nagham Maher Elbagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Noha Ibrahim Khater
- Department of Ophthalmology, Cairo University, Giza, Egypt.,Al Mouneer Diabetic Eye Center, Dokki, Giza, Egypt
| | - Mona Lotfi Essawi
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Poulter JA, Gravett MSC, Taylor RL, Fujinami K, De Zaeytijd J, Bellingham J, Rehman AU, Hayashi T, Kondo M, Rehman A, Ansar M, Donnelly D, Toomes C, Ali M, De Baere E, Leroy BP, Davies NP, Henderson RH, Webster AR, Rivolta C, Zeitz C, Mahroo OA, Arno G, Black GCM, McKibbin M, Harris SA, Khan KN, Inglehearn CF. New variants and in silico analyses in GRK1 associated Oguchi disease. Hum Mutat 2021; 42:164-176. [PMID: 33252155 PMCID: PMC7898643 DOI: 10.1002/humu.24140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022]
Abstract
Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.
Collapse
Affiliation(s)
- James A. Poulter
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | | | - Rachel L. Taylor
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and HealthUniversity of ManchesterManchesterUK
| | - Kaoru Fujinami
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical CentreTokyoJapan
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
- Keio University School of MedicineTokyoJapan
| | | | | | - Atta Ur Rehman
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV)University of LausanneLausanneSwitzerland
| | | | - Mineo Kondo
- Mie University Graduate School of MedicineMieJapan
| | - Abdur Rehman
- Department of Genetics, Faculty of ScienceHazara University MansehraDhodialPakistan
| | - Muhammad Ansar
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
| | - Dan Donnelly
- School of Biomedical Sciences, University of LeedsLeedsUK
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | - Manir Ali
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | | | | | - Bart P. Leroy
- Ghent UniversityGhentBelgium
- Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | | | | | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Carlo Rivolta
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
- Department of OphthalmologyUniversity Hospital BaselBaselSwitzerland
| | - Christina Zeitz
- Sorbonne UniversitéINSERM, CNRS, Institut de la VisionParisFrance
| | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Gavin Arno
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical CentreTokyoJapan
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Graeme C. M. Black
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and HealthUniversity of ManchesterManchesterUK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation TrustManchesterUK
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
- Leeds Teaching Hospitals NHS Trust, St James’ University HospitalLeedsUK
| | | | - Kamron N. Khan
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation TrustManchesterUK
| | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| |
Collapse
|
4
|
Nishiguchi KM, Ikeda Y, Fujita K, Kunikata H, Akiho M, Hashimoto K, Hosono K, Kurata K, Koyanagi Y, Akiyama M, Suzuki T, Kawasaki R, Wada Y, Hotta Y, Sonoda KH, Murakami A, Nakazawa M, Nakazawa T, Abe T. Phenotypic Features of Oguchi Disease and Retinitis Pigmentosa in Patients with S-Antigen Mutations: A Long-Term Follow-up Study. Ophthalmology 2019; 126:1557-1566. [PMID: 31257036 DOI: 10.1016/j.ophtha.2019.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To present phenotypic features of 22 patients with S-antigen (SAG) mutations. DESIGN Retrospective cohort study. PARTICIPANTS Twenty-one Japanese patients from 16 families with a homozygous c.924delA mutation and 1 patient with a homozygous c.636delT mutation in the SAG gene. METHODS Clinical records on symptoms; best-corrected visual acuity; and Goldmann perimetry, fundus photography, fundus autofluorescence (FAF), OCT, and electroretinography results were reviewed. MAIN OUTCOME MEASURES Best-corrected visual acuity, Goldmann perimetry results, imaging findings, and electroretinography results. RESULTS Ten patients had Oguchi disease and 12 had retinitis pigmentosa (RP) with mean follow-up periods of 13.8 and 10.2 years, respectively. Retinitis pigmentosa patients were older (mean age, 56.0 years) than those with Oguchi disease (mean age, 22.1 years; P < 0.001) at the initial visit. Night blindness noted in childhood was the most common initial symptom for both Oguchi disease (80.0%) and RP (91.7%) patients. Best-corrected visual acuity in the logarithm of the minimum angle of resolution (logMAR) was well preserved in Oguchi disease patients (mean, 0.02 logMAR in both eyes) but reduced in most RP patients (mean, 1.32 logMAR [right eye] and 1.35 logMAR [left eye]). Similarly, the visual field in the retinal area was preserved in Oguchi disease patients (mean, 677 mm2 right eye and 667 mm2 left eye) and reduced in RP patients (mean, 369 mm2 right eye and 294 mm2 left eye). Fundus images revealed a characteristic golden sheen with no retinal degeneration in Oguchi disease patients, excluding 2 with macular degeneration detected by FAF, OCT, or both and 1 with mild retinal degeneration confirmed by OCT and fluorescein angiography. Pigmentary retinal degeneration most evident posteriorly was observed in RP patients, accompanied by a characteristic golden sheen in 12 of 14 patients undergoing ultra-widefield fundus imaging. OCT showed disrupted macular structure, and FAF revealed variable hypofluorescence. Electroretinography identified absent rod responses in both diseases, along with relative preservation of cone responses in Oguchi disease patients. Three patients showed progressive loss of the golden sheen based on fundus images, including 1 who demonstrated RP 26 years after the initial diagnosis of Oguchi disease. CONCLUSIONS Retinitis pigmentosa with SAG mutations often shows a characteristic golden sheen surrounding posterior pigmentary retinal degeneration. Oguchi disease can show progressive degeneration in adulthood, rarely resulting in RP.
Collapse
Affiliation(s)
- Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Fujita
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Akiho
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Ryo Kawasaki
- Department of Ophthalmology, Yamagata University School of Medicine, Yamagata, Japan
| | | | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mitsuru Nakazawa
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Nakazawa
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Dammalli M, Murthy KR, Pinto SM, Murthy KB, Nirujogi RS, Madugundu AK, Dey G, Nair B, Gowda H, Keshava Prasad TS. Toward Postgenomics Ophthalmology: A Proteomic Map of the Human Choroid–Retinal Pigment Epithelium Tissue. ACTA ACUST UNITED AC 2017; 21:114-122. [DOI: 10.1089/omi.2016.0170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Manjunath Dammalli
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | - Krishna R. Murthy
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita VishwaVidyapeetham, Kollam, India
- Vittala International Institute of Ophthalmology, Bangalore, India
| | - Sneha M. Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
| | | | - Raja Sekhar Nirujogi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Anil K. Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Manipal University, Manipal, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita VishwaVidyapeetham, Kollam, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
- NIMHANS-IOB Bioinformatics and Proteomics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
6
|
|
7
|
Reinstein E, Liberman M, Feingold-Zadok M, Tenne T, Graham JM. Terminal microdeletions of 13q34 chromosome region in patients with intellectual disability: Delineation of an emerging new microdeletion syndrome. Mol Genet Metab 2016; 118:60-3. [PMID: 27067448 DOI: 10.1016/j.ymgme.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/20/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022]
Abstract
The increasing use of chromosomal microarray studies in patients with intellectual disability has led to the description of new microdeletion and microduplication syndromes. We report terminal microdeletions in 13q34 chromosome region in 5 adult patients of two unrelated families. Patients harboring 13q34 microdeletions display common clinical features, including intellectual disability, obesity, and mild facial dysmorphism. These individuals can become fairly self-sufficient, however they do not live independently, and require community and social support. Further systematic analysis of the genes comprised in the deleted region will allow the identification of genes whose haploinsufficiency is expected to lead to disease manifestations, in particular intellectual disability.
Collapse
Affiliation(s)
- Eyal Reinstein
- Medical Genetics Institute, Meir Medical Center, Israel; Sackler School of Medicine, Tel Aviv University, Israel.
| | | | | | - Tamar Tenne
- Medical Genetics Institute, Meir Medical Center, Israel
| | - John M Graham
- Dept. of Pediatrics, Cedars Sinai Medical Center, Harbor-UCLA Medical Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Congenital stationary night blindness: An analysis and update of genotype–phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res 2015; 45:58-110. [DOI: 10.1016/j.preteyeres.2014.09.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 01/18/2023]
|
9
|
Occult macular dystrophy with bilateral chronic subfoveal serous retinal detachment associated with a novel RP1L1 mutation (p.S1199P). Doc Ophthalmol 2014; 129:49-56. [DOI: 10.1007/s10633-014-9443-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
10
|
|
11
|
Kunst S, Wolloscheck T, Hölter P, Wengert A, Grether M, Sticht C, Weyer V, Wolfrum U, Spessert R. Transcriptional analysis of rat photoreceptor cells reveals daily regulation of genes important for visual signaling and light damage susceptibility. J Neurochem 2013; 124:757-69. [PMID: 23145934 DOI: 10.1111/jnc.12089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/02/2012] [Accepted: 11/07/2012] [Indexed: 01/20/2023]
Abstract
Photoreceptor cells face the challenge of adjusting their function and, possibly, their susceptibility to light damage to the marked daily changes in ambient light intensity. To achieve a better understanding of photoreceptor adaptation at the transcriptional level, this study aimed to identify genes which are under daily regulation in photoreceptor cells using microarray analysis and quantitative PCR. Included in the gene set obtained were a number of genes which up until now have not been shown to be expressed in photoreceptor cells, such as Atf3 (activating transcription factor 3) and Pde8a (phosphodiesterase 8A), and others with a known impact on phototransduction and/or photoreceptor survival, such as Grk1 (G protein-coupled receptor kinase 1) and Pgc-1α (peroxisome proliferator-activated receptor γ, coactivator 1alpha). According to their daily dynamics, the genes identified could be clustered in two groups: those with peak expression during the second part of the day which are uniformly promoted to cycle by light/dark transitions and those with peak expression during the second part of the night which are predominantly driven by a clock. Since Grk1 and Pgc-1α belong in the first group, the present results support a concept in which transcriptional regulation of genes by ambient light contributes to the functional adjustment of photoreceptor cells over the 24-h period.
Collapse
Affiliation(s)
- Stefanie Kunst
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Improvement in S-cone-mediated visual fields and rod function after correction of vitamin A deficiency. Eur J Ophthalmol 2011; 21:657-60. [PMID: 21319138 DOI: 10.5301/ejo.2011.6337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE To evaluate S-cone-mediated visual fields and full-field electroretinograms (ERGs) in a patient with vitamin A deficiency. METHODS A 65-year-old woman diagnosed with primary sclerosing cholangitis reported experiencing night blindness. The patient underwent comprehensive ophthalmic examination, including funduscopy, ERGs, Humphrey standard automated perimetry (SAP), and short-wavelength automated perimetry (SWAP). Serum vitamin A concentrations were measured. RESULTS The patient's best-corrected visual acuity was 1.2 in both eyes. The ERG results showed no rod b-waves, reduced combined rod-plus-cone responses (negative type), and normal cone and 30-Hz flicker responses. Serum vitamin A concentration was 18 IU/dL (normal range 97-316 IU/dL). The SAP mean deviation (MD) values were -1.09 dB (OD) and -0.97 dB (OS), whereas the SWAP MD values were -10.10 dB (OD) and -10.50 dB (OS). The rate of sensitivity decreased with increasing eccentricity in SWAP. Four months after starting oral administration of vitamin A, all ERG values were normalized, and SWAP MD values were greatly improved (OD -3.47 dB, OS -4.10 dB) compared with changes in SAP MD values (OD +0.67 dB, OS +0.41 dB). Rod dysfunction and impaired S-cone-mediated pathways were preferentially observed and found to be reversed after the treatment. CONCLUSIONS The findings in this patient suggest that rods and S cones are more susceptible to vitamin A deficiency than L and M cones. Vitamin A deficiency visual impairment may therefore be reversible with appropriate therapy.
Collapse
|
14
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2011; 133:40-69. [PMID: 21903131 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
15
|
Hayashi T, Tsuzuranuki S, Kozaki K, Urashima M, Tsuneoka H. Macular Dysfunction in Oguchi Disease with the Frequent Mutation 1147delA in the SAG Gene. Ophthalmic Res 2011; 46:175-80. [PMID: 21447990 DOI: 10.1159/000325024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/03/2011] [Indexed: 11/19/2022]
Abstract
AIM/BACKGROUND A 1-bp deletion (1147delA) in the SAG (also known as arrestin or S-antigen) gene is the most frequently seen mutation in Japanese patients suffering from Oguchi disease, a recessively inherited stationary night blindness. We investigated macular function in a patient with Oguchi disease with the 1147delA mutation. METHODS A 43-year-old Japanese male patient was diagnosed with Oguchi disease. The patient underwent complete ophthalmic examinations, including spectral-domain optical coherence tomography and Humphrey visual field testing. Full-field electroretinograms (ff-ERG) and multifocal ERG (mf-ERG) were recorded. Mutational analysis of the SAG gene was performed. RESULTS Corrected visual acuity was good in both eyes. Funduscopy showed retinal pigment epithelium atrophy along the vascular arcade bilaterally. The inner segment-outer segment (ISOS) boundary lines were preserved in the foveal and parafoveal areas, whereas ISOS boundary defects and thinning of the outer nuclear layer (ONL) were seen outside the preserved ISOS boundary. Humphrey testing showed significant paracentral field defects in both eyes. In addition to an absence of rod responses, cone and 30-Hz flicker responses were markedly reduced in ff-ERG. The central (ring 1) and paracentral (ring 2) responses with normal latencies were relatively preserved, but the outer waveforms (rings 3-5) were attenuated and prolonged in mf-ERG. The deletion mutation (1147delA) was identified homozygously. CONCLUSIONS The reduced/delayed mf-ERG responses and visual field defects in paracentral macula areas are most likely to be correlated with ISOS boundary defects and thinning of the ONL. Macular dysfunction can occur in Oguchi disease with the 1147delA mutation in the SAG gene.
Collapse
Affiliation(s)
- Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
16
|
Abstract
Clarin 1 (CLRN1) is a four-transmembrane protein expressed in cochlear hair cells and neural retina, and when mutated it causes Usher syndrome type 3 (USH3). The main human splice variant of CLRN1 is composed of three exons that code for a 232-aa protein. In this study, we aimed to refine the structure of CLRN1 by an examination of transcript splice variants and promoter regions. Analysis of human retinal cDNA revealed 11 CLRN1 splice variants, of which 5 have not been previously reported. We studied the regulation of gene expression by several promoter domains using a luciferase assay, and identified 1000 nt upstream of the translation start site of the primary CLRN1 splice variant as the principal promoter region. Our results suggest that the CLRN1 gene is significantly more complex than previously described. The complexity of the CLRN1 gene and the identification of multiple splice variants may partially explain why mutations in CLRN1 result in substantial variation in clinical phenotype.
Collapse
|
17
|
Burns ME, Pugh EN. Lessons from photoreceptors: turning off g-protein signaling in living cells. Physiology (Bethesda) 2010; 25:72-84. [PMID: 20430952 DOI: 10.1152/physiol.00001.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phototransduction in retinal rods is one of the most extensively studied G-protein signaling systems. In recent years, our understanding of the biochemical steps that regulate the deactivation of the rod's response to light has greatly improved. Here, we summarize recent advances and highlight some of the remaining puzzles in this model signaling system.
Collapse
Affiliation(s)
- Marie E Burns
- Departments of Ophthalmology and Vision Science, University of California, Davis, California, USA.
| | | |
Collapse
|
18
|
Takeuchi T, Hayashi T, Bedell M, Zhang K, Yamada H, Tsuneoka H. A novel haplotype with the R345W mutation in the EFEMP1 gene associated with autosomal dominant drusen in a Japanese family. Invest Ophthalmol Vis Sci 2009; 51:1643-50. [PMID: 19850834 DOI: 10.1167/iovs.09-4497] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To describe ophthalmic and molecular genetic findings in a family of Japanese patients with Malattia leventinese (ML)/Doyne honeycomb retinal dystrophy (DHRD), also known as autosomal dominant drusen. METHODS Four patients with ML/DHRD, including a 42-year-old female proband, were ascertained. The proband underwent complete ophthalmic examinations, including fundus and electrodiagnostic investigations, and Humphrey visual field (VF) perimetry. Mutation screening of the EFEMP1 gene and haplotype analysis were performed in the family, an Indian ML/DHRD family, and a branch of 1 of 39 ML/DHRD families in the United States, in which all affected patients shared a common haplotype. RESULTS A heterozygous missense mutation (p.R345W) was identified in all four Japanese patients and in affected patients of the other two families. This mutation was the only mutation that has been exclusively found in the gene. The disease haplotype in the Japanese family was different from those of the other two families. Clinically, central retinas were prominently affected in the proband and her mother, and subsequently the proband developed subfoveal choroidal neovascularization in the left eye, whereas her younger sister with the mutation, who was asymptomatic, exhibited only fine macular drusen. Long-term follow-up of Humphrey VF and multifocal-electroretinography (mfERG) in the proband also revealed progressive attenuation of macular function in the right eye. CONCLUSIONS This is the first report to describe a Japanese family with variable expressivity of ML/DHRD, in which a novel disease haplotype was identified. Humphrey VF and mfERG testing may be helpful in determining the long-term outcome of macular function.
Collapse
Affiliation(s)
- Tomokazu Takeuchi
- Department of Ophthalmology, he Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This article reports recent advances in the diagnosis, genetic analysis, and treatment of hereditary retinal disease. RECENT FINDINGS Clinicians and scientists continue to reveal the relationship between phenotype and genotype in hereditary retinal diseases. Persistent investigation and progressive technology are advancing the efficiency of mutation discovery. This technology is also leading to readily available genetic testing that aids clinicians in the diagnosis of these diseases. Functional genetic studies, and laboratory and human clinical trials are occurring that may lead to future treatment of these disorders. SUMMARY A literature review of the recent discoveries and potential treatments for retinitis pigmentosa, Leber's congenital amaurosis, X-linked retinoschisis, Best's disease, Stargardt's disease, and congenital stationary night blindness is presented, along with a guide for clinicians seeking genetic testing of patients.
Collapse
|
20
|
Singh P, Wang B, Maeda T, Palczewski K, Tesmer JJG. Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J Biol Chem 2008; 283:14053-62. [PMID: 18339619 PMCID: PMC2376226 DOI: 10.1074/jbc.m708974200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/04/2008] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1.(Mg2+)2.ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.
Collapse
Affiliation(s)
- Puja Singh
- Life Sciences Institute, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | |
Collapse
|
21
|
Thompson MD, Percy ME, McIntyre Burnham W, Cole DEC. G protein-coupled receptors disrupted in human genetic disease. Methods Mol Biol 2008; 448:109-37. [PMID: 18370233 DOI: 10.1007/978-1-59745-205-2_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic variation in G protein-coupled receptors (GPCRs) results in the disruption of GPCR function in a wide variety of human genetic diseases. In vitro strategies have been used to elucidate the molecular pathologies that underlie naturally occurring GPCR mutations. Various degrees of inactive, overactive, or constitutively active receptors have been identified. These mutations often alter ligand binding, G protein coupling, receptor desensitization, and receptor recycling. The role of inactivating and activating calcium-sensing receptor (CASR) mutations is discussed with respect to familial hypocalciuric hypercalemia (FHH) and autosomal dominant hypocalemia (ADH). Among ADH mutations, those associated with tonic-clonic seizures are discussed. Other receptors discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone, luteinizing hormone, gonadotropin-releasing hormone (GnRHR), adrenocorticotropic hormone, vasopressin, endothelin-beta, purinergic, and the G protein associated with asthma (GPRA). Diseases caused by mutations that disrupt GPCR function are significant because they might be selectively targeted by drugs that rescue altered receptors. Examples of drug development based on targeting GPCRs mutated in disease include the calcimimetics used to compensate for some CASR mutations, obesity therapeutics targeting melanocortin receptors, interventions that alter GnRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor in a rare bleeding disorder. The discovery of GPRA suggests that drug screens against variant GPCRs may identify novel drugs. This review of the variety of GPCRs that are disrupted in monogenic disease provides the basis for examining the significance of common pharmacogenetic variants.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Oishi A, Akimoto M, Kawagoe N, Mandai M, Takahashi M, Yoshimura N. Novel mutations in the GRK1 gene in Japanese patients With Oguchi disease. Am J Ophthalmol 2007; 144:475-7. [PMID: 17765441 DOI: 10.1016/j.ajo.2007.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 11/20/2022]
Abstract
PURPOSE To report novel mutations in the GRK1 gene in Japanese patients with Oguchi disease. DESIGN Observational case report. METHODS Two unrelated Japanese patients with Oguchi disease were examined. After informed consent was obtained, the coding regions of SAG and GRK1 were analyzed by direct sequencing. RESULTS Although no mutation was found in SAG, two novel homozygous mutations in GRK1, c.1079 del T and c.1408-1412 CCCCC to CCC, were identified. Both mutations are expected to generate null alleles of GRK1. CONCLUSIONS The authors found two different novel mutations in Japanese patients. The results indicate that a considerable number of GRK1 mutations exist in the Japanese population.
Collapse
Affiliation(s)
- Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|