1
|
Halász H, Szatmári Z, Kovács K, Koppán M, Papp S, Szabó-Meleg E, Szatmári D. Changes of Ex Vivo Cervical Epithelial Cells Due to Electroporation with JMY. Int J Mol Sci 2023; 24:16863. [PMID: 38069185 PMCID: PMC10706833 DOI: 10.3390/ijms242316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The ionic environment within the nucleoplasm might diverge from the conditions found in the cytoplasm, potentially playing a role in the cellular stress response. As a result, it is conceivable that interactions of nuclear actin and actin-binding proteins (ABPs) with apoptosis factors may differ in the nucleoplasm and cytoplasm. The primary intracellular stress response is Ca2+ influx. The junctional mediating and regulating Y protein (JMY) is an actin-binding protein and has the capability to interact with the apoptosis factor p53 in a Ca2+-dependent manner, forming complexes that play a regulatory role in cytoskeletal remodelling and motility. JMY's presence is observed in both the cytoplasm and nucleoplasm. Here, we show that ex vivo ectocervical squamous cells subjected to electroporation with JMY protein exhibited varying morphological alterations. Specifically, the highly differentiated superficial and intermediate cells displayed reduced nuclear size. In inflamed samples, nuclear enlargement and simultaneous cytoplasmic reduction were observable and showed signs of apoptotic processes. In contrast, the less differentiated parabasal and metaplastic cells showed increased cytoplasmic activity and the formation of membrane protrusions. Surprisingly, in severe inflammation, vaginosis or ASC-US (Atypical Squamous Cells of Undetermined Significance), JMY appears to influence only the nuclear and perinuclear irregularities of differentiated cells, and cytoplasmic abnormalities still existed after the electroporation. Our observations can provide an appropriate basis for the exploration of the relationship between cytopathologically relevant morphological changes of epithelial cells and the function of ABPs. This is particularly important since ABPs are considered potential diagnostic and therapeutic biomarkers for both cancers and chronic inflammation.
Collapse
Affiliation(s)
- Henriett Halász
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | | | - Krisztina Kovács
- Department of Pathology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | | | - Szilárd Papp
- DaVinci Clinics, 7635 Pécs, Hungary; (M.K.); (S.P.)
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | - Dávid Szatmári
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| |
Collapse
|
2
|
Şahin A, Enver N, Erçetin SY, Cinel ZL, Batman AÇ. The promising role of Gelsolin expression to predict survival in patients with squamous cell carcinoma of the larynx. Braz J Otorhinolaryngol 2022; 88 Suppl 4:S1-S8. [PMID: 34144901 DOI: 10.1016/j.bjorl.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Gelsolin protein has important cellular functions, including cell motility and apoptosis. Altered gelsolin expression has been reported in several types of neoplasms, but clinicopathological features of gelsolin are currently unclear in patients with laryngeal squamous cell carcinoma. OBJECTIVES Our aim is to investigate the clinicopathological significance of gelsolin as a prognostic biomarker for laryngeal squamous cell carcinoma. METHODS Tissue specimens from 168 patients with laryngeal squamous cell carcinoma were immunohistochemically assessed for the Gelsolin expression. Prognostic significance of Gelsolin and its interaction with clinical parameters was analysed. RESULTS Gelsolin expression was confirmed in 70.2% of cases. Gelsolin expression is significantly associated with tumor stage, tumor grade, and locoregional recurrence. Kaplan-Meier survival curves revealed that Gelsolin expression inversely correlated with both disease-specific and overall survival. CONCLUSION This research is the first to demonstrate that Gelsolin expression is associated with a poor prognosis in laryngeal squamous cell carcinoma. Gelsolin is a novel promising biomarker and attractive target for the treatment of laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Akın Şahin
- Marmara University School of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey.
| | - Necati Enver
- Marmara University School of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey
| | - Selim Yiğit Erçetin
- Marmara University School of Medicine, Department of Pathology, Istanbul, Turkey
| | - Zeliha Leyla Cinel
- Marmara University School of Medicine, Department of Pathology, Istanbul, Turkey
| | - Abdullah Çağlar Batman
- Marmara University School of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey
| |
Collapse
|
3
|
The p53 and Calcium Regulated Actin Rearrangement in Model Cells. Int J Mol Sci 2022; 23:ijms23169078. [PMID: 36012344 PMCID: PMC9408879 DOI: 10.3390/ijms23169078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term cellular stress maintains high intracellular Ca2+ concentrations which ultimately initiates apoptosis. Our interest is focused on how the gelsolin (GSN) and junctional mediating and regulating Y protein (JMY) play important roles in stress response. Both of these proteins can bind p53 and actin. We investigated using in vitro fluorescence spectroscopy and found that the p53 competes with actin in GSN to inhibit p53–JMY complex formation. A high Ca2+ level initializes p53 dimerization; the dimer competes with actin on JMY, which can lead to p53–JMY cotransport into the nucleus. Here we investigated how the motility and division rate of HeLa cells changes due to low-voltage electroporation of GSN or JMY in scratching assays. We revealed that JMY inhibits their motion, but that it can accelerate the cell division. GSN treatment slows down cell division but does not affect cell motility. HeLa cells fully recovered the gap 20 h after the electroporation with JMY and then started to release from the glass slides. Taken together, our in vitro results indicate that GSN and JMY may play an important role in the cellular stress response.
Collapse
|
4
|
Chantada-Vázquez MDP, Conde-Amboage M, Graña-López L, Vázquez-Estévez S, Bravo SB, Núñez C. Circulating Proteins Associated with Response and Resistance to Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14041087. [PMID: 35205837 PMCID: PMC8870308 DOI: 10.3390/cancers14041087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The goal of this study was to find circulating proteins that can be easily sampled and incorporated into a clinical setting to improve predictive treatment response in HER2-positive breast cancer patients receiving neoadjuvant chemotherapy. We looked for potential biomarkers in serum, which we identified using two proteomics techniques: qualitative LC-MS/MS and a quantitative assay that assessed protein expression between responders and non-responders HER2-positive breast cancer patients to neoadjuvant chemotherapy. Abstract Despite the increasing use of neoadjuvant chemotherapy (NAC) in HER2-positive breast cancer (BC) patients, the clinical problem of predicting individual treatment response remains unanswered. Furthermore, the use of ineffective chemotherapeutic regimens should be avoided. Serum biomarker levels are being studied more and more for their ability to predict therapy response and aid in the development of personalized treatment regimens. This study aims to identify effective protein networks and biomarkers to predict response to NAC in HER2-positive BC patients through an exhaustive large-scale LC-MS/MS-based qualitative and quantitative proteomic profiling of serum samples from responders and non-responders. Serum samples from HER2-positive BC patients were collected before NAC and were processed by three methods (with and without nanoparticles). The qualitative analysis revealed differences in the proteomic profiles between responders and non-responders, mainly in proteins implicated in the complement and coagulation cascades and apolipoproteins. Qualitative analysis confirmed that three proteins (AFM, SERPINA1, APOD) were correlated with NAC resistance. In this study, we show that serum biomarker profiles can predict treatment response and outcome in the neoadjuvant setting. If these findings are further developed, they will be of significant clinical utility in the design of treatment regimens for individual BC patients.
Collapse
Affiliation(s)
- María del Pilar Chantada-Vázquez
- Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Mercedes Conde-Amboage
- Models of Optimization Decision, Statistics and Applications Research Group (MODESTYA), Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- CITMAga, 15782 Santiago de Compostela, Spain
| | - Lucía Graña-López
- Breast Pathology Group, Lucus Augusti University Hospital (HULA)-IDIS, Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Radiology Department, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain
| | - Sergio Vázquez-Estévez
- Oncology Division, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Correspondence: (S.B.B.); (C.N.)
| | - Cristina Núñez
- Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence: (S.B.B.); (C.N.)
| |
Collapse
|
5
|
Chiu CT, Wang PW, Asare-Werehene M, Tsang BK, Shieh DB. Circulating Plasma Gelsolin: A Predictor of Favorable Clinical Outcomes in Head and Neck Cancer and Sensitive Biomarker for Early Disease Diagnosis Combined with Soluble Fas Ligand. Cancers (Basel) 2020; 12:cancers12061569. [PMID: 32545773 PMCID: PMC7353036 DOI: 10.3390/cancers12061569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Head and neck cancer (HNC) accounts for more than 330,000 cancer deaths annually worldwide. Despite late diagnosis being a major factor contributing to HNC mortality, no satisfactory biomarkers exist for early disease detection. Cytoplasmic gelsolin (cGSN) was discovered to predict disease progression in HNC and other malignancies, and circulating plasma gelsolin (pGSN) levels are significantly correlated with infectious and inflammatory disease prognoses. Here, the plasma levels of five candidate biomarkers (circulating pGSN, squamous cell carcinoma antigen, cytokeratin 19 fragment, soluble Fas, and soluble Fas ligand (sFasL)) in 202 patients with HNC and 45 healthy controls were measured using enzyme-linked immunosorbent assay or Millipore cancer multiplex assay. The results demonstrated that circulating pGSN levels were significantly lower in patients with HNC than in healthy controls. Moreover, circulating pGSN outperformed other candidate biomarkers as an independent diagnostic biomarker of HNC in both sensitivity (82.7%) and specificity (95.6%). Receiver operating characteristic curves indicated that combined pGSN and sFasL levels further augmented this sensitivity (90.6%) for early disease detection. Moreover, higher pGSN levels predicted improved prognosis at both 5-year overall survival and progression-free survival. In conclusion, circulating pGSN could be an independent predictor of favorable clinical outcomes and a novel biomarker for the early HNC detection in combination with sFasL.
Collapse
Affiliation(s)
- Chen-Tzu Chiu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Pei-Wen Wang
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 70101, Taiwan;
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Meshach Asare-Werehene
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada; (M.A.-W.); (B.K.T.)
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Benjamin K. Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada; (M.A.-W.); (B.K.T.)
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Dar-Bin Shieh
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 70101, Taiwan;
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5899)
| |
Collapse
|
6
|
Lee HJ, Kim MJ, Kim YS, Choi MY, Cho GJ, Choi WS. UHRF1 silences gelsolin to inhibit cell death in early stage cervical cancer. Biochem Biophys Res Commun 2020; 526:1061-1068. [PMID: 32312517 DOI: 10.1016/j.bbrc.2020.03.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Persistent infection with high-risk strains of human papillomavirus (HPV) is the primary cause of cervical cancer, the fourth most common cancer among women worldwide. Two oncoproteins encoded by the HPV genome, E6 and E7, are required for epigenetic modifications that promote cervical cancer development. We found that knockdown of HPV E6/E7 by siRNA reduced the levels of ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) but increased the levels of gelsolin (GSN) in early stage cervical cancer cells. In addition, we found that UHRF1 levels were increased and GSN levels were decreased in early stage cervical cancer compared with those in normal cervical tissues, as shown by Western blot analysis, immunohistochemistry, and analysis of the Oncomine database. Moreover, knockdown of UHRF1 resulted in increased cell death in cervical cancer cell lines. Treatment of E6/E7-transformed HaCaT (HEK001) cells and HeLa cells with the DNA-hypomethylating agent 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor Trichostatin A increased GSN expression levels. UHRF1 knockdown in HEK001 cells by siRNA or the UHRF1 antagonist thymoquinone increased GSN levels, induced cell cycle arrest and apoptosis, and increased the levels of p27 and cleaved PARP. Those results indicate that upregulation of UHRF1 by HPV E6/E7 causes GSN silencing and a reduction of cell death in early stage cervical cancer, suggesting that GSN might be a useful therapeutic target in early stage cervical cancer.
Collapse
Affiliation(s)
- Han Ju Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Min Jun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Mee Young Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.
| |
Collapse
|
7
|
Miyauchi E, Furuta T, Ohtsuki S, Tachikawa M, Uchida Y, Sabit H, Obuchi W, Baba T, Watanabe M, Terasaki T, Nakada M. Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. PLoS One 2018. [PMID: 29513714 PMCID: PMC5841790 DOI: 10.1371/journal.pone.0193799] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecular biomarkers in blood are needed to aid the early diagnosis and clinical assessment of glioblastoma (GBM). Here, in order to identify biomarker candidates in plasma of GBM patients, we performed quantitative comparisons of the plasma proteomes of GBM patients (n = 14) and healthy controls (n = 15) using SWATH mass spectrometry analysis. The results were validated by means of quantitative targeted absolute proteomics analysis. As a result, we identified eight biomarker candidates for GBM (leucine-rich alpha-2-glycoprotein (LRG1), complement component C9 (C9), C-reactive protein (CRP), alpha-1-antichymotrypsin (SERPINA3), apolipoprotein B-100 (APOB), gelsolin (GSN), Ig alpha-1 chain C region (IGHA1), and apolipoprotein A-IV (APOA4)). Among them, LRG1, C9, CRP, GSN, IGHA1, and APOA4 gave values of the area under the receiver operating characteristics curve of greater than 0.80. To investigate the relationships between the biomarker candidates and GBM biology, we examined correlations between plasma concentrations of biomarker candidates and clinical presentation (tumor size, progression-free survival time, or overall survival time) in GBM patients. The plasma concentrations of LRG1, CRP, and C9 showed significant positive correlations with tumor size (R2 = 0.534, 0.495, and 0.452, respectively).
Collapse
Affiliation(s)
- Eisuke Miyauchi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Wataru Obuchi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tomoko Baba
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Michitoshi Watanabe
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
8
|
Jayapalan JJ, Lee CS, Lee CC, Ng KL, Junit SM, Hashim OH. iTRAQ analysis of urinary proteins: Potential use of gelsolin and osteopontin to distinguish benign thyroid goiter from papillary thyroid carcinoma. Clin Biochem 2018; 53:127-131. [PMID: 29355489 DOI: 10.1016/j.clinbiochem.2018.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/12/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Benign thyroid goiter (BTG) and papillary thyroid carcinoma (PTC) are often interchangeably misdiagnosed. METHODS Pooled urine samples of patients with BTG (n=10), patients with PTC (n=9) and healthy controls (n=10) were subjected to iTRAQ analysis and immunoblotting. RESULTS The ITRAQ analysis of the urine samples detected 646 proteins, 18 of which showed significant altered levels (p<0.01; fold-change>1.5) between patients and controls. Whilst four urinary proteins were commonly altered in both BTG and PTC patients, 14 were unique to either BTG or PTC. Amongst these, four proteins were further chosen for validation using immunoblotting, and the enhanced levels of osteopontin in BTG patients and increased levels of a truncated gelsolin fragment in PTC patients, relative to controls, appeared to corroborate the findings of the iTRAQ analysis. CONCLUSION The data of the present study is suggestive of the potential application of urinary osteopontin and gelsolin to discriminate patients with BTG from those with PTC non-invasively. However, this needs to be further validated in studies of individual urine samples.
Collapse
Affiliation(s)
- Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Cheng-Siang Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ching Chin Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khoon Leong Ng
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Onn Haji Hashim
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion. Oncotarget 2018; 7:52832-52848. [PMID: 27391159 PMCID: PMC5288152 DOI: 10.18632/oncotarget.10451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/28/2016] [Indexed: 12/13/2022] Open
Abstract
The actin-binding protein, gelsolin, is a well known regulator of cancer cell invasion. However, the mechanisms by which gelsolin promotes invasion are not well established. As reactive oxygen species (ROS) have been shown to promote cancer cell invasion, we investigated on the hypothesis that gelsolin-induced changes in ROS levels may mediate the invasive capacity of colon cancer cells. Herein, we show that increased gelsolin enhances the invasive capacity of colon cancer cells, and this is mediated via gelsolin's effects in elevating intracellular superoxide (O2.-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained elevation of intracellular O2.-. Using microarray data of human colorectal cancer tissues from Gene Omnibus, we found that gelsolin gene expression positively correlates with urokinase plasminogen activator (uPA), an important matrix-degrading protease invovled in cancer invasion. Consistent with the in vivo evidence, we show that increased levels of O2.- induced by gelsolin overexpression triggers the secretion of uPA. We further observed reduction in invasion and intracellular O2.- levels in colon cancer cells, as a consequence of gelsolin knockdown using two different siRNAs. In these cells, concurrent repression of Cu/ZnSOD restored intracellular O2.- levels and rescued invasive capacity. Our study therefore identified gelsolin as a novel regulator of intracellular O2.- in cancer cells via interacting with Cu/ZnSOD and inhibiting its enzymatic activity. Taken together, these findings provide insight into a novel function of gelsolin in promoting tumor invasion by directly impacting the cellular redox milieu.
Collapse
|
10
|
Yang XD, Zhao SF, Zhang Q, Li W, Wang YX, Hong XW, Hu QG. Gelsolin rs1078305 and rs10818524 polymorphisms were associated with risk of oral squamous cell carcinoma in a Chinese Han population. Biomarkers 2016; 21:267-71. [PMID: 26848502 DOI: 10.3109/1354750x.2015.1134664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gelsolin (GSN) is one of the most abundant actin-binding proteins, and is involved in cancer development and progression. PATIENTS AND METHODS A hospital-based case-control study including 201 patients with OSCC and 199 healthy controls was conducted. Seventeen single-nucleotide polymorphisms (SNPs) of GSN were investigated by Sequenom Mass ARRAY and iPLEX-MALDI-TOF technology. RESULTS Through comparison of the 17 SNPs on GSN gene between the two groups, SNP rs1078305 and rs10818524 were verified to be significantly associated with an increased risk of OSCC. For GSN rs1078305, the TT genotype was associated with increased risk for OSCC (OR = 1.92, 95% CI = 1.11-3.32, p = 0.028). CT/TT variants were also associated with increased risk for OSCC compared to the CC genotype (OR = 1.83, 95% CI = 1.25-3.84, p = 0.032). CONCLUSION The rs1078305 and rs10818524 SNPs of GSN were associated with increased risk for OSCC development in a Chinese Han population.
Collapse
Affiliation(s)
- Xu-Dong Yang
- a Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Su-Feng Zhao
- a Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Qian Zhang
- a Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Wei Li
- a Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Yu-Xin Wang
- a Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Xiao-Wei Hong
- a Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Qin-Gang Hu
- a Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital, Medical School of Nanjing University , Nanjing , PR China
| |
Collapse
|
11
|
Mazur AJ, Radaszkiewicz T, Makowiecka A, Malicka-Błaszkiewicz M, Mannherz HG, Nowak D. Gelsolin interacts with LamR, hnRNP U, nestin, Arp3 and β-tubulin in human melanoma cells as revealed by immunoprecipitation and mass spectrometry. Eur J Cell Biol 2016; 95:26-41. [DOI: 10.1016/j.ejcb.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 01/25/2023] Open
|
12
|
Gelsolin promotes cell growth and invasion through the upregulation of p-AKT and p-P38 pathway in osteosarcoma. Tumour Biol 2015; 37:7165-74. [DOI: 10.1007/s13277-015-4565-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
|
13
|
Xiao H, Langerman A, Zhang Y, Khalid O, Hu S, Cao CX, Lingen MW, Wong DT. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery. Oral Oncol 2015; 51:1011-1019. [DOI: 10.1016/j.oraloncology.2015.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
14
|
Chen ZY, Wang PW, Shieh DB, Chiu KY, Liou YM. Involvement of gelsolin in TGF-beta 1 induced epithelial to mesenchymal transition in breast cancer cells. J Biomed Sci 2015; 22:90. [PMID: 26482896 PMCID: PMC4615330 DOI: 10.1186/s12929-015-0197-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/29/2015] [Indexed: 11/21/2022] Open
Abstract
Background Increasing evidence suggests that transforming growth factor-beta 1 (TGF-β1) triggers epithelial to mesenchymal transition (EMT) and facilitates breast cancer stem cell differentiation. Gelsolin (GSN) is a ubiquitous actin filament-severing protein. However, the relationship between the expression level of GSN and the TGF-β signaling for EMT progression in breast cancer cells is not clear. Results TGF-β1 acted on MDA-MB231 breast cancer cells by decreasing cell proliferation, changing cell morphology to a fibroblast-like shape, increasing expressions for CD44 and GSN, and increasing EMT expression and cell migration/invasion. Study with GSN overexpression (GSN op) in both MDA-MB231 and MCF-7 cells demonstrated that increased GSN expression resulted in alterations of cell proliferation and cell cycle progression, modification of the actin filament assembly associated with altering cell surface elasticity and cell detachment in these breast cancer cells. In addition, increased cell migration was found in GSN op MDA-MB231 cells. Studies with GSN op and silencing by small interfering RNA verified that GSN could modulate the expression of vimentin. Sorted by flow cytometry, TGF-β1 increased subpopulation of CD44+/CD22- cells increasing their expressions for GSN, Nanog, Sox2, Oct4, N-cadherin, and vimentin but decreasing the E-cadherin expression. Methylation specific PCR analysis revealed that TGF-β1 decreased 50 % methylation but increased 3-fold unmethylation on the GSN promoter in CD44+/CD22- cells. Two DNA methyltransferases, DNMT1and DNMT3B were also inhibited by TGF-β1. Conclusions TGF-β1 induced epigenetic modification of GSN could alter the EMT process in breast cancer cells.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan.
| | - Pei-Wen Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Dar-Bin Shieh
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Kuan-Ying Chiu
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan.
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
15
|
Chai YD, Zhang L, Yang Y, Su T, Charugundla P, Ai J, Messadi D, Wong DT, Hu S. Discovery of potential serum protein biomarkers for lymph node metastasis in oral cancer. Head Neck 2015; 38:118-25. [PMID: 25223295 DOI: 10.1002/hed.23870] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of our study was to identify serum protein biomarkers for node-positive oral squamous cell carcinoma (OSCC). Biomarkers indicating lymph node metastasis provides a valuable classification methodology to optimize treatment plans for patients with OSCC. METHODS Quantitative serum proteomic analysis of OSCCs with either node-positive or node-negative disease was performed with tandem mass spectrometry and isobaric tagging for relative and absolute quantitation (iTRAQ). Immunoassays were used to validate a panel of candidate protein biomarkers and receiver operating characteristic (ROC) analysis was used to evaluate the performance of the candidate biomarkers. RESULTS A total of 282 serum proteins were quantified between node-positive and node-negative OSCCs with the proteomic approach. Four candidate biomarkers, gelsolin, fibronectin, angiotensinogen, and haptoglobin, were validated in an independent group of patients with node-positive or node-negative OSCC. The best candidate biomarker, gelsolin, yielded a ROC value of 89% for node-positive OSCC, although the sample size for validation is relatively small. Fibronectin, gelsolin, and angiotensinogen were also found to be differentially expressed between cancer cell lines of node-positive and node-negative cancer origin. CONCLUSION Our studies suggest that testing of serum protein biomarkers might help detect lymph node metastasis of oral cancer. Because of limited sample size in our studies, long-term longitudinal studies with large populations of individuals with oral cancer are needed to validate these potential biomarkers.
Collapse
Affiliation(s)
- Yang D Chai
- School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Lifeng Zhang
- School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Yan Yang
- School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Trent Su
- School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Prashant Charugundla
- School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Jiye Ai
- School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Diana Messadi
- School of Dentistry, University of California-Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - David T Wong
- School of Dentistry, University of California-Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| | - Shen Hu
- School of Dentistry, University of California-Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, School of Dentistry, University of California-Los Angeles, Los Angeles, California
| |
Collapse
|
16
|
Deng R, Hao J, Han W, Ni Y, Huang X, Hu Q. Gelsolin regulates proliferation, apoptosis, migration and invasion in human oral carcinoma cells. Oncol Lett 2015; 9:2129-2134. [PMID: 26137026 DOI: 10.3892/ol.2015.3002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 11/28/2014] [Indexed: 12/14/2022] Open
Abstract
Gelsolin (GSN) is one of the most abundant actin-binding proteins, and is involved in several pathological processes, including Alzheimer's disease, cardiac injury and cancer. The aim of the present study was to assess the effect of GSN on the growth and motility of oral squamous cell carcinoma Tca8113 cells. The overexpression vector pcDNA3.1-GSN was transfected into Tca8113 cells and the stable GSN overexpression cell line was identified based on G418 antibiotic selection. The effect of GSN overexpression on the proliferation, apoptosis, migration and invasion of Tca8113 cells was examined using a cell counting kit-8 assay, flow cytometry and Transwell assays. The results revealed that GSN overexpression significantly promoted the cell proliferation and apoptosis of Tca8113 cells. In addition, Transwell assays demonstrated that the migration and invasion abilities of Tca8113 cells were enhanced by GSN overexpression. Therefore, the upregulation of GSN promotes cell growth and motility, indicating that it may perform a vital function in the progression of human oral cancers.
Collapse
Affiliation(s)
- Runzhi Deng
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Medical School, Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Jing Hao
- Central Laboratory of Nanjing Stomatological Hospital, Nanjing, Jiangsu, P.R. China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Medical School, Nanjing University, Nanjing, Jiangsu, P.R. China ; Central Laboratory of Nanjing Stomatological Hospital, Nanjing, Jiangsu, P.R. China
| | - Yanhong Ni
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Medical School, Nanjing University, Nanjing, Jiangsu, P.R. China ; Central Laboratory of Nanjing Stomatological Hospital, Nanjing, Jiangsu, P.R. China
| | - Xiaofeng Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Medical School, Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Medical School, Nanjing University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
17
|
Nowak JM, Klimaszewska-Wiśniewska A, Izdebska M, Gagat M, Grzanka A. Gelsolin is a potential cellular target for cotinine to regulate the migration and apoptosis of A549 and T24 cancer cells. Tissue Cell 2015; 47:105-14. [DOI: 10.1016/j.tice.2014.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 11/26/2022]
|
18
|
Desouza M, Gunning PW, Stehn JR. The actin cytoskeleton as a sensor and mediator of apoptosis. BIOARCHITECTURE 2014; 2:75-87. [PMID: 22880146 PMCID: PMC3414384 DOI: 10.4161/bioa.20975] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Apoptosis is an important biological process required for the removal of unwanted or damaged cells. Mounting evidence implicates the actin cytoskeleton as both a sensor and mediator of apoptosis. Studies also suggest that actin binding proteins (ABPs) significantly contribute to apoptosis and that actin dynamics play a key role in regulating apoptosis signaling. Changes in the organization of the actin cytoskeleton has been attributed to the process of malignant transformation and it is hypothesized that remodeling of the actin cytoskeleton may enable tumor cells to evade normal apoptotic signaling. This review aims to illuminate the role of the actin cytoskeleton in apoptosis by systematically analyzing how actin and ABPs regulate different apoptosis pathways and to also highlight the potential for developing novel compounds that target tumor-specific actin filaments.
Collapse
Affiliation(s)
- Melissa Desouza
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Sydney, Australia
| | | | | |
Collapse
|
19
|
Does human papilloma virus play a role in sinonasal inverted papilloma? Curr Opin Otolaryngol Head Neck Surg 2014; 22:47-51. [PMID: 24322658 DOI: 10.1097/moo.0000000000000017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Inverted papillomas are a benign sinonasal tumor with a propensity for recurrence and malignant transformation. Although many investigations have been made into the nature of this disease, its etiology and causes for malignant transformation have yet to be fully elucidated. It is the authors' objective to present a review on management of the disease and evaluate the present relationship between human papilloma virus (HPV) and inverted papilloma. RECENT FINDINGS A causal relationship between HPV and the pathogenesis and progression of inverted papilloma has been posited since the 1980s. Although widely varied HPV detection rates have been reported, recent studies have noted a substantial increase in both recurrence and malignant transformation in HPV-infected inverted papillomas. However, exact cellular mechanisms by which infection leads to subsequent recurrence and development of carcinoma have yet to be elucidated. SUMMARY Evidence exists suggesting that HPV infection plays a role in the progression of inverted papilloma and confers an increased risk for recurrence and malignant transformation. PCR is the preferred detection method, and fresh or frozen specimens are the ideal source of tissue for evaluation. Although multiple studies have detected an association between HPV and inverted papilloma (both recurrent and malignant transformation), further studies are necessary to elucidate the underlying molecular pathways before an association can be changed to causation.
Collapse
|
20
|
Abstract
Chemoresistance is a major hurdle in cancer treatment. Down-regulation of apoptosis pathways is one of the key determinants for chemoresistance. Here, we report higher gelsolin (GSN) levels in chemoresistant gynecological cancer cells compared with their sensitive counterparts. cis-Diammine dichloroplatinium (II) (CDDP)-induced GSN down-regulation is associated with its cleavage and apoptosis. Although the C-terminal GSN fragment (C-GSN) sensitized chemoresistant cells to CDDP, intact GSN and its N-terminal fragment (N-GSN) attenuated this response. GSN silencing also facilitated CDDP-induced apoptosis in chemoresistant cells. In contrast, intact GSN (I-GSN) was prosurvival in the presence of CDDP through a FLICE-like inhibitory protein (FLIP)-Itch interaction. This interaction was colocalized in the perinuclear region that could be dissociated by CDDP in sensitive cells, thereby inducing FLIP ubiquitination and degradation, followed by apoptosis. In resistant cells, GSN was highly expressed and CDDP failed to abolish the I-GSN-FLIP-Itch interaction, resulting in the dysregulation of the downstream responses. In addition, we investigated the association between GSN expression in ovarian serous adenocarcinoma and progression free survival and overall survival, as well as clinical prognosis. GSN overexpression was significantly associated with more aggressive behavior and more cancer deaths and supported our hypothesis that high GSN expression confers chemoresistance in cancer cells by altering the GSN-FLIP-Itch interaction. These findings are in agreement with the notion that GSN plays an important role in the regulation of gynecological cell fate as reflected in dysregulation in chemosensitivity.
Collapse
|
21
|
Wang PW, Abedini MR, Yang LX, Ding AA, Figeys D, Chang JY, Tsang BK, Shieh DB. Gelsolin regulates cisplatin sensitivity in human head-and-neck cancer. Int J Cancer 2014; 135:2760-9. [PMID: 24771612 DOI: 10.1002/ijc.28928] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
Chemoresistance is a major challenge in cancer therapy. Cisplatin is commonly used for chemotherapy in patients with head-and-neck cancer (HNC), but it increases control of the disease by only 10-15%. Downregulation of proapoptotic pathways is a key determinant for chemoresistance in which gelsolin (GSN) is critically involved. We analyzed the association between GSN expression and cisplatin resistance in HNC cell lines, animals with HNC and cancer tissue samples from 58 cisplatin-treated patients with HNC. GSN expression levels were positively associated with chemoresistance in vitro and in vivo. Cisplatin-induced GSN downregulation was associated with the cleavage of GSN and the promotion of apoptosis. GSN silencing facilitated cisplatin-induced apoptosis in chemoresistant cells. In contrast, intact gelsolin was prosurvival in the presence of cisplatin by interacting with X-linked inhibitor of apoptosis protein (XIAP). In chemosensitive cells, cisplatin suppressed GSN-XIAP interaction, promoted translocation of XIAP from the perinuclear region to the nucleus and induced apoptosis. In chemoresistant cells, GSN was highly expressed, and cisplatin had no significant effect on GSN-XIAP interaction and apoptosis. We conclude that GSN is important for chemoresistance in HNC and may be an appropriate therapeutic target in chemoresistant cancers.
Collapse
Affiliation(s)
- Pei-Wen Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Polisetty RV, Gautam P, Gupta MK, Sharma R, Uppin MS, Challa S, Ankathi P, Purohit AK, Renu D, Harsha HC, Pandey A, Sirdeshmukh R. Heterogeneous nuclear ribonucleoproteins and their interactors are a major class of deregulated proteins in anaplastic astrocytoma: a grade III malignant glioma. J Proteome Res 2013; 12:3128-38. [PMID: 23741984 DOI: 10.1021/pr400339h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Anaplastic astrocytoma is a high grade malignant glioma (WHO grade III) of the central nervous system which arises from a low grade II tumor and invariably progresses into lethal glioblastoma (WHO grade IV). We have studied differentially expressed proteins from the microsomal fraction of the clinical specimens of these tumors, using iTRAQ and high-resolution mass spectrometry followed by immunohistochemistry for representative proteins on tissue sections. A total of 2642 proteins were identified, 266 of them with minimum 2 peptide signatures and 2-fold change in expression. The major groups of proteins revealed to be differentially expressed were associated with key cellular processes such as post transcriptional processing, protein translation, and acute phase response signaling. A distinct inclusion among these important proteins is 10 heterogeneous nuclear ribonucleoproteins (hnRNPs) and their interacting partners which have regulatory functions in the cell. hnRNP-mediated post transcriptional events are known to play a major role in mRNA processing, stability, and distribution. Their altered levels have also been observed by us in lower (diffused astrocytoma) and higher (glioblastoma) grades of gliomas, and membrane localization of hnRNPs has also been documented in the literature. hnRNPs may thus be major factors underlying global gene expression changes observed in glial tumors while their differential presence in the microsomal fraction suggests yet additional and unknown roles in tumorigenesis.
Collapse
|
23
|
Radwanska A, Litwin M, Nowak D, Baczynska D, Wegrowski Y, Maquart FX, Malicka-Blaszkiewicz M. Overexpression of lumican affects the migration of human colon cancer cells through up-regulation of gelsolin and filamentous actin reorganization. Exp Cell Res 2012; 318:2312-23. [DOI: 10.1016/j.yexcr.2012.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
24
|
Zhuo J, Tan EH, Yan B, Tochhawng L, Jayapal M, Koh S, Tay HK, Maciver SK, Hooi SC, Salto-Tellez M, Kumar AP, Goh YC, Lim YC, Yap CT. Gelsolin induces colorectal tumor cell invasion via modulation of the urokinase-type plasminogen activator cascade. PLoS One 2012; 7:e43594. [PMID: 22927998 PMCID: PMC3424201 DOI: 10.1371/journal.pone.0043594] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
Gelsolin is a cytoskeletal protein which participates in actin filament dynamics and promotes cell motility and plasticity. Although initially regarded as a tumor suppressor, gelsolin expression in certain tumors correlates with poor prognosis and therapy-resistance. In vitro, gelsolin has anti-apoptotic and pro-migratory functions and is critical for invasion of some types of tumor cells. We found that gelsolin was highly expressed at tumor borders infiltrating into adjacent liver tissues, as examined by immunohistochemistry. Although gelsolin contributes to lamellipodia formation in migrating cells, the mechanisms by which it induces tumor invasion are unclear. Gelsolin's influence on the invasive activity of colorectal cancer cells was investigated using overexpression and small interfering RNA knockdown. We show that gelsolin is required for invasion of colorectal cancer cells through matrigel. Microarray analysis and quantitative PCR indicate that gelsolin overexpression induces the upregulation of invasion-promoting genes in colorectal cancer cells, including the matrix-degrading urokinase-type plasminogen activator (uPA). Conversely, gelsolin knockdown reduces uPA levels, as well as uPA secretion. The enhanced invasiveness of gelsolin-overexpressing cells was attenuated by treatment with function-blocking antibodies to either uPA or its receptor uPAR, indicating that uPA/uPAR activity is crucial for gelsolin-dependent invasion. In summary, our data reveals novel functions of gelsolin in colorectal tumor cell invasion through its modulation of the uPA/uPAR cascade, with potentially important roles in colorectal tumor dissemination to metastatic sites.
Collapse
Affiliation(s)
- Jingli Zhuo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Hong Tan
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Benedict Yan
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Lalchhandami Tochhawng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Jayapal
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shiuan Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hwee Kee Tay
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Sutherland K. Maciver
- Department of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manuel Salto-Tellez
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Yaw Chong Goh
- Department of Surgery, Singapore General Hospital, Singapore, Singapore
| | - Yaw Chyn Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Hospital, Singapore, Singapore
- * E-mail: (CTY); (YCL)
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (CTY); (YCL)
| |
Collapse
|
25
|
Litwin M, Nowak D, Mazur AJ, Baczyńska D, Mannherz HG, Malicka-Błaszkiewicz M. Gelsolin affects the migratory ability of human colon adenocarcinoma and melanoma cells. Life Sci 2012; 90:851-61. [DOI: 10.1016/j.lfs.2012.03.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/02/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
|
26
|
Discovery and verification of gelsolin as a potential biomarker of colorectal adenocarcinoma in the Chinese population: Examining differential protein expression using an iTRAQ labelling-based proteomics approach. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2012; 26:41-7. [PMID: 22288069 DOI: 10.1155/2012/645218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To identify and validate potential biomarkers of colorectal adenocarcinoma using a proteomic approach. METHODS Multidimensional liquid chromatography⁄mass spectrometry was used to analyze biological samples labelled with isobaric mass tags for relative and absolute quantitation to identify differentially expressed proteins in human colorectal adenocarcinoma and paired normal mucosa for the discovery of cancerous biomarkers. Cancerous and noncancerous samples were compared using online and offline separation. Protein identification was performed using mass spectrometry. The downregulation of gelsolin protein in colorectal adenocarcinoma samples was confirmed by Western blot analysis and validated using immunohistochemistry. RESULTS A total of 802 nonredundant proteins were identified in colorectal adenocarcinoma samples, 82 of which fell outside the expression range of 0.8 to 1.2, and were considered to be potential cancer-specific proteins. Immunohistochemistry revealed a complete absence of gelsolin expression in 86.89% of samples and a reduction of expression in 13.11% of samples, yielding a sensitivity of 86.89% and a specificity of 100% for distinguishing colorectal adenocarcinoma from normal tissue. CONCLUSIONS These findings suggest that decreased expression of gelsolin is a potential biomarker of colorectal adenocarcinoma.
Collapse
|
27
|
Tsai MH, Wu CC, Peng PH, Liang Y, Hsiao YC, Chien KY, Chen JT, Lin SJ, Tang RP, Hsieh LL, Yu JS. Identification of secretory gelsolin as a plasma biomarker associated with distant organ metastasis of colorectal cancer. J Mol Med (Berl) 2011; 90:187-200. [DOI: 10.1007/s00109-011-0817-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/28/2011] [Accepted: 09/05/2011] [Indexed: 02/03/2023]
|
28
|
Qazi AS, Sun M, Huang Y, Wei Y, Tang J. Subcellular proteomics: Determination of specific location and expression levels of lymphatic metastasis associated proteins in hepatocellular carcinoma by subcellular fractionation. Biomed Pharmacother 2011; 65:407-16. [DOI: 10.1016/j.biopha.2011.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/23/2011] [Indexed: 01/05/2023] Open
|
29
|
Abstract
The actin cytoskeleton is indispensable for normal cellular function. In particular, several actin-based structures coordinate cellular motility, a process hijacked by tumor cells in order to facilitate their propagation to distant sites. The actin cytoskeleton, therefore, represents a point for chemotherapeutic intervention. The challenge in disrupting the actin cytoskeleton is in preserving actin-driven contraction of cardiac and skeletal muscle. By targeting actin-binding proteins with altered expression in malignancy, it may be possible to achieve tumor-specific toxicity. A number of actin-binding proteins act cooperatively and synergistically to regulate actin structures required for motility. The actin cytoskeleton is characterized by a significant degree of plasticity. Targeting specific actin-binding proteins for chemotherapy will only be successful if no other compensatory mechanisms exist.
Collapse
|
30
|
Overexpression of gelsolin in human cervical carcinoma and its clinicopathological significance. Gynecol Oncol 2011; 120:135-44. [DOI: 10.1016/j.ygyno.2010.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/30/2010] [Accepted: 10/03/2010] [Indexed: 12/19/2022]
|
31
|
Li GH, Arora PD, Chen Y, McCulloch CA, Liu P. Multifunctional roles of gelsolin in health and diseases. Med Res Rev 2010; 32:999-1025. [PMID: 22886630 DOI: 10.1002/med.20231] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gelsolin, a Ca(2+) -regulated actin filament severing, capping, and nucleating protein, is an ubiquitous, multifunctional regulator of cell structure and metabolism. More recent data show that gelsolin can act as a transcriptional cofactor in signal transduction and its own expression and function can be influenced by epigenetic changes. Here, we review the functions of the plasma and cytoplasmic forms of gelsolin, and their manifold impacts on cancer, apoptosis, infection and inflammation, cardiac injury, pulmonary diseases, and aging. An improved understanding of the functions and regulatory mechanisms of gelsolin may lead to new considerations of this protein as a potential biomarker and/or therapeutic target.
Collapse
Affiliation(s)
- Guo Hua Li
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Ohnishi M, Matsumoto T, Nagashio R, Kageyama T, Utsuki S, Oka H, Okayasu I, Sato Y. Proteomics of tumor-specific proteins in cerebrospinal fluid of patients with astrocytoma: Usefulness of gelsolin protein. Pathol Int 2009; 59:797-803. [DOI: 10.1111/j.1440-1827.2009.02447.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Garcia-Crespo D, Knock E, Jabado N, Rozen R. Intestinal neoplasia induced by low dietary folate is associated with altered tumor expression profiles and decreased apoptosis in mouse normal intestine. J Nutr 2009; 139:488-94. [PMID: 19176749 DOI: 10.3945/jn.108.095661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Epidemiological studies suggest that low dietary folate increases risk for intestinal neoplasia. We recently developed a unique tumor model in which mice fed low dietary folate developed DNA damage and intestinal tumors. To identify additional mechanisms by which reduced folate intake contributes to tumor formation in this model, we characterized gene expression signatures in tumors. A total of 175 probe sets had altered expression, with the majority (173) showing increased expression compared with normal intestine. Functional categorization revealed that most genes were involved in cancer (51 genes) or cell death (37 genes); 31 genes appeared in both categories. Because apoptosis resistance is a hallmark of neoplasia, we assessed apoptosis in normal intestine of mice fed control (CD) and low-folate diets (FD); apoptosis was reduced in FD normal intestine compared with CD intestine by active caspase-3 expression (P = 0.027) and caspase-3/7 activities (P = 0.059). We selected candidate genes with antiapoptotic properties that had increased expression in tumor microarrays, CD44, and gelsolin and confirmed these increases at the mRNA and protein levels. CD44 and gelsolin protein also increased in mice fed the FD compared with the CD, normal intestine. Bcl-2-like 1:Bcl-2-antagonist/killer 1 mRNA ratios tended to be greater in FD than in CD normal intestine (P = 0.056). In conclusion, tumors induced by low dietary folate exhibited gene expression profiles that are characteristic of disrupted apoptosis. Folate depletion in normal intestine may trigger neoplasia through increased DNA damage and defective apoptosis; upregulation of CD44 and gelsolin, and the mitochondrial apoptotic pathway are implicated.
Collapse
Affiliation(s)
- David Garcia-Crespo
- Department of Human Genetics, McGill University Health Center-Montreal Children's Hospital, Montreal, Canada H3Z 2Z3
| | | | | | | |
Collapse
|
34
|
Gay F, Estornes Y, Saurin JC, Joly-Pharaboz MO, Friederich E, Scoazec JY, Abello J. In colon carcinogenesis, the cytoskeletal protein gelsolin is down-regulated during the transition from adenoma to carcinoma. Hum Pathol 2008; 39:1420-30. [PMID: 18656242 DOI: 10.1016/j.humpath.2008.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/07/2008] [Accepted: 02/25/2008] [Indexed: 11/19/2022]
Abstract
The actin-binding protein gelsolin is involved in cell motility via the regulation of actin cytoskeleton, and its expression is modified in several human cancers. However, the potential implication of this protein in colorectal carcinogenesis is debated. By using immunohistochemistry, we studied gelsolin expression in 69 cases of colon adenocarcinomas and in 72 lesions representative of the different stages of colonic tumorigenesis. In addition, we performed Northern blot analysis of gelsolin messenger RNA in 12 paired samples of human colon cancer and normal corresponding mucosa. Gelsolin protein and messenger RNA expressions were severely down-regulated in all adenocarcinomas tested. Moreover, gelsolin protein was down-regulated in a large proportion of high-grade adenomas (14/16) before the acquisition of invasive properties but in only a small proportion of low grade adenomas and serrated adenomas (2/30) and in none of the 9 cases of nonneoplastic hyperplastic polyps tested. Our results therefore demonstrate that gelsolin down-regulation is an early and almost constant event in colon carcinogenesis and is associated with the transition from adenoma to carcinoma.
Collapse
|
35
|
Nomura H, Uzawa K, Ishigami T, Kouzu Y, Koike H, Ogawara K, Siiba M, Bukawa H, Yokoe H, Kubosawa H, Tanzawa H. Clinical significance of gelsolin-like actin-capping protein expression in oral carcinogenesis: an immunohistochemical study of premalignant and malignant lesions of the oral cavity. BMC Cancer 2008; 8:39. [PMID: 18237446 PMCID: PMC2263057 DOI: 10.1186/1471-2407-8-39] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 02/01/2008] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Gelsolin-like actin-capping protein (CapG) is a ubiquitous gelsolin-family actin-modulating protein involved in cell signalling, receptor-mediated membrane ruffling, phagocytosis, and motility. CapG has generated great interest due to its oncogenic function in the control of cell migration or invasion in a variety of cancer cells. We previously applied proteomic methods to characterize differentially expressed proteins in oral squamous-cell carcinoma (OSCC) cells and detected significantly high expression levels of CapG in OSCC-derived cell lines compared to human normal oral keratinocytes. In the current study, to further determine the potential involvement of CapG in OSCC, we evaluated the status of CapG protein and mRNA expression in human oral premalignant lesions (OPLs) and primary OSCCs and correlated the results with clinicopathologic variables. METHODS Matched normal and tumour tissue sections of 79 human primary OSCCs and 28 OPLs were analyzed for CapG expression by immunohistochemistry (IHC). Correlations between CapG-immunohistochemical staining scores of OSCCs and clinicopathologic features were evaluated by Fisher's exact test. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to estimate CapG expression at the mRNA level. RESULTS In IHC, substantial up-regulation of CapG protein was observed in primary OSCCs (52%) and OPLs (64%), whereas corresponding normal tissues showed consistently weak or absent immunoreactivity of CapG. qRT-PCR data were consistent with the protein expression status. Moreover, CapG expression was correlated with the TNM stage grading of OSCCs. CONCLUSION Our finding of frequent dysregulated expression of CapG in premalignant and malignant lesions together with an association with an advanced clinical disease stage suggests that CapG could contribute to cancer development and progression and that CapG may have potential as a biomarker and a therapeutic target for OSCC.
Collapse
Affiliation(s)
- Hitomi Nomura
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Van den Abbeele A, De Corte V, Van Impe K, Bruyneel E, Boucherie C, Bracke M, Vandekerckhove J, Gettemans J. Downregulation of gelsolin family proteins counteracts cancer cell invasion in vitro. Cancer Lett 2007; 255:57-70. [PMID: 17493746 DOI: 10.1016/j.canlet.2007.03.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 03/26/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
Gelsolin and CapG are both actin binding proteins that modulate a variety of physiological processes by interacting differently with the actin cytoskeleton. Several studies suggest that overexpression of these proteins promotes invasion in vitro. In this study we explored the contribution of these proteins in human cancer cell invasion and motility. We show that down regulation of CapG or gelsolin in several types of cancer cells, including MDA-MB 231 and PC-3 cells, significantly reduces the invasive and motile properties of cells, as well as cell aggregation. These results point to a role for CapG and gelsolin as tumor activator.
Collapse
Affiliation(s)
- Anske Van den Abbeele
- Department of Medical Protein Research, Faculty of Medicine and Health Sciences,VIB, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
This paper reviews the main papers related to oral squamous cell carcinoma published in 2006 in oral oncology - an international interdisciplinary journal which publishes high quality original research, clinical trials and review articles, and all other scientific articles relating to the aetiopathogenesis, epidemiology, prevention, clinical features, diagnosis, treatment and management of patients with neoplasms in the head and neck, and orofacial disease in patients with malignant disease.
Collapse
Affiliation(s)
- Crispian Scully
- Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | | |
Collapse
|