1
|
Hsu RJ, Peng KY, Hsu WL, Chen YT, Liu DW. Z-Ligustilide Induces c-Myc-Dependent Apoptosis via Activation of ER-Stress Signaling in Hypoxic Oral Cancer Cells. Front Oncol 2022; 12:824043. [PMID: 35494068 PMCID: PMC9043595 DOI: 10.3389/fonc.2022.824043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Z-ligustilide (or ligustilide) is found in Angelica sinensis (Oliv.) Diels and may exert potential benefits in cancer treatment. Previous research has reported that ligustilide has anti-cancer effects on several types of cancer cells. However, studies of ligustilide on oral cancer cells have not been reported, especially under hypoxic conditions. This study focuses on the molecular mechanism of ligustilide-induced apoptosis in hypoxic oral cancer cells. We found that in hypoxic TW2.6 cells, ligustilide inhibited cell migration and induced caspase-dependent apoptosis. Accumulation of c-Myc accompanied by BH3-only members suggests that ligustilide may induce c-Myc-dependent apoptosis. In addition, we reported that ligustilide has an effect on ER-stress signaling. By using inhibitors of c-Myc, IRE1α, and ER-stress inhibitors, we found that cell morphologies or cell viability were rescued to some degree. Moreover, ligustilide is able to increase the expression of γ-H2AX and enhance the occurrence of DNA damage in oral cancer cells after radiation treatment. This result suggests that ligustilide has potential as a radiation sensitizer. Altogether, we propose that ligustilide may induce c-Myc-dependent apoptosis via ER-stress signaling in hypoxic oral cancer cells.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kui-Yuan Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Wen-Lin Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Tang Chen
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dai-Wei Liu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
2
|
Liu YH, Chen YL, Lai TY, Ko YC, Chou YF, Chen PR, Hsiao JR, Chang JY, Shiah SG, Lee JW, Yang JL, Lin SF. Identification of Prognostic Biomarkers Originating From the Tumor Stroma of Betel Quid-Associated Oral Cancer Tissues. Front Oncol 2021; 11:769665. [PMID: 34869001 PMCID: PMC8637169 DOI: 10.3389/fonc.2021.769665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 01/06/2023] Open
Abstract
Background Partial epithelial-mesenchymal transition (p-EMT) is a distinct clinicopathological feature prevalent in oral cavity tumors of The Cancer Genome Atlas. Located at the invasion front, p-EMT cells require additional support from the tumor stroma for collective cell migration, including track clearing, extracellular matrix remodeling and immune evasion. The pathological roles of otherwise nonmalignant cancer-associated fibroblasts (CAFs) in cancer progression are emerging. Methods Gene set enrichment analysis was used to reveal differentially enriched genes and molecular pathways in OC3 and TW2.6 xenograft tissues, representing mesenchymal and p-EMT tumors, respectively. R packages of genomic data science were executed for statistical evaluations and data visualization. Immunohistochemistry and Alcian blue staining were conducted to validate the bioinformatic results. Univariate and multivariate Cox proportional hazards models were performed to identify covariates significantly associated with overall survival in clinical datasets. Kaplan–Meier curves of estimated overall survival were compared for statistical difference using the log-rank test. Results Compared to mesenchymal OC3 cells, tumor stroma derived from p-EMT TW2.6 cells was significantly enriched in microvessel density, tumor-excluded macrophages, inflammatory CAFs, and extracellular hyaluronan deposition. By translating these results to clinical transcriptomic datasets of oral cancer specimens, including the Puram single-cell RNA-seq cohort comprising ~6000 cells, we identified the expression of stromal TGFBI and HYAL1 as independent poor and protective biomarkers, respectively, for 40 Taiwanese oral cancer tissues that were all derived from betel quid users. In The Cancer Genome Atlas, TGFBI was a poor marker not only for head and neck cancer but also for additional six cancer types and HYAL1 was a good indicator for four tumor cohorts, suggesting common stromal effects existing in different cancer types. Conclusions As the tumor stroma coevolves with cancer progression, the cellular origins of molecular markers identified from conventional whole tissue mRNA-based analyses should be cautiously interpreted. By incorporating disease-matched xenograft tissue and single-cell RNA-seq results, we suggested that TGFBI and HYAL1, primarily expressed by stromal CAFs and endothelial cells, respectively, could serve as robust prognostic biomarkers for oral cancer control.
Collapse
Affiliation(s)
- Yi-Hong Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Lian Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Ting-Yu Lai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Fu Chou
- Department of Otolaryngology, Tzu Chi University Hospital, Hualien, Taiwan
| | - Peir-Rong Chen
- Department of Otolaryngology, Tzu Chi University Hospital, Hualien, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Head and Neck Collaborative Oncology Group, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan.,Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Jeng-Woei Lee
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Jia-Ling Yang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
3
|
Liu SC, Wu YC, Huang CM, Hsieh MS, Huang TY, Huang CS, Hsu TN, Huang MS, Lee WH, Yeh CT, Lin CS. Inhibition of Bruton's tyrosine kinase as a therapeutic strategy for chemoresistant oral squamous cell carcinoma and potential suppression of cancer stemness. Oncogenesis 2021; 10:20. [PMID: 33640903 PMCID: PMC7914253 DOI: 10.1038/s41389-021-00308-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Locally advanced oral squamous cell carcinoma (OSCC) requires multimodal therapy, including surgery and concurrent chemoradiotherapy (CCRT). CCRT-resistant and recurrent cancer has a poor prognosis. We investigated the effects of Bruton's tyrosine kinase (BTK) on CCRT-resistant OSCC tissues. The effect of ibrutinib, a first-in-class BTK inhibitor, was tested on stem cell-like OSCC tumorspheres. A tissue array was constructed using tissue samples from 70 patients with OSCC. Human OSCC cell lines, SAS, TW2.6 and HSC-3, were examined. Wound healing, Matrigel invasion, and tumorsphere formation assays, as well as immunofluorescence analysis and flow cytometry, were used to investigate the effects of BTK knockdown (shBTK), ibrutinib, cisplatin, and ibrutinib/cisplatin combination on OSCC cells. We demonstrated that BTK was aberrantly highly expressed in the clinical CCRT-resistant OSCC tissue array, which resulted in poor overall survival in our local Tri-Service General Hospital and freely accessible TCGA OSCC cohorts. shBTK significantly downregulated the stemness markers Nanog, CD133, T cell immunoglobulin-3 (TIM-3), and Krüppel-like factor 4 (KLF4) in SAS tumorspheres and attenuated OSCC cell migration and colony formation. Ibrutinib reduced the number of aldehyde dehydrogenase (ALDH)-rich OSCC cells and reduced tumorsphere formation, migration, and invasion in a dose-dependent manner. Compared with ibrutinib or cisplatin monotherapy, the ibrutinib/cisplatin combination significantly reduced the formation of ALDH + OSCC tumorspheres and enhanced apoptosis. These results demonstrate that ibrutinib effectively inhibits the CSCs-like phenotype of OSCC cells through dysregulation of BTK/CD133 signaling. The ibrutinib/cisplatin combination may be considered for future clinical use.
Collapse
Affiliation(s)
- Shao-Cheng Liu
- grid.260565.20000 0004 0634 0356Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114 Taiwan
| | - Yang-Che Wu
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, 110 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Chih-Ming Huang
- grid.413593.90000 0004 0573 007XDepartment of Otolaryngology, Taitung Mackay Memorial Hospital, Taipei City, Taiwan
| | - Ming-Shou Hsieh
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, 110 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Ting-Yi Huang
- grid.412955.e0000 0004 0419 7197Department of Hematology and Oncology, Cancer Center, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Chin-Sheng Huang
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, 110 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Tung-Nien Hsu
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, 110 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Mao-Suan Huang
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, 110 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Dentistry, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Wei-Hwa Lee
- grid.412955.e0000 0004 0419 7197Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Pathology, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan
| | - Chi-Tai Yeh
- grid.412955.e0000 0004 0419 7197Department of Medical Research & Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan ,grid.412955.e0000 0004 0419 7197Department of Pathology, Taipei Medical University—Shuang Ho Hospital, New Taipei City, 235 Taiwan ,grid.413051.20000 0004 0444 7352Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City, 30015 Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114 Taiwan
| |
Collapse
|
4
|
Chen YL, Yen YC, Jang CW, Wang SH, Huang HT, Chen CH, Hsiao JR, Chang JY, Chen YW. Ephrin A4-ephrin receptor A10 signaling promotes cell migration and spheroid formation by upregulating NANOG expression in oral squamous cell carcinoma cells. Sci Rep 2021; 11:644. [PMID: 33436772 PMCID: PMC7804096 DOI: 10.1038/s41598-020-80060-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Ephrin type-A receptor 10 (EPHA10) has been implicated as a potential target for breast and prostate cancer therapy. However, its involvement in oral squamous cell carcinoma (OSCC) remains unclear. We demonstrated that EPHA10 supports in vivo tumor growth and lymphatic metastasis of OSCC cells. OSCC cell migration, epithelial mesenchymal transition (EMT), and sphere formation were found to be regulated by EPHA10, and EPHA10 was found to drive expression of some EMT- and stemness-associated transcription factors. Among EPHA10 ligands, exogenous ephrin A4 (EFNA4) induced the most OSCC cell migration and sphere formation, as well as up-regulation of SNAIL, NANOG, and OCT4. These effects were abolished by extracellular signal-regulated kinase (ERK) inhibition and NANOG knockdown. Also, EPHA10 was required for EFNA4-induced cell migration, sphere formation, and expression of NANOG and OCT4 mRNA. Our microarray dataset revealed that EFNA4 mRNA expression was associated with expression of NANOG and OCT4 mRNA, and OSCC patients showing high co-expression of EFNA4 with NANOG or OCT4 mRNA demonstrated poor recurrence-free survival rates. Targeting forward signaling of the EFNA4-EPHA10 axis may be a promising therapeutic approach for oral malignancies, and the combination of EFNA4 mRNA and downstream gene expression may be a useful prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Yu-Lin Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Yi-Chen Yen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Chuan-Wei Jang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Ssu-Han Wang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Hsin-Ting Huang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Chung-Hsing Chen
- grid.59784.370000000406229172Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan ,grid.59784.370000000406229172Taiwan Bioinformatics Core, National Health Research Institutes, Miaoli, Taiwan
| | - Jenn-Ren Hsiao
- grid.64523.360000 0004 0532 3255Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jang-Yang Chang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan
| | - Ya-Wen Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053 Taiwan ,grid.254145.30000 0001 0083 6092Ph.D. Program for Aging, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
LDOC1 Suppresses Microbe-Induced Production of IL-1β in Human Normal and Cancerous Oral Cells through the PI3K/Akt/GSK-3β Axis. Cancers (Basel) 2020; 12:cancers12113148. [PMID: 33120999 PMCID: PMC7694066 DOI: 10.3390/cancers12113148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Oral microbes often proliferate due to poor oral hygiene (POH). POH is associated with OSCC (oral squamous cell carcinoma). We investigated the role of LDOC1 in the production of IL-1β, an oncogenic proinflammatory cytokine in OSCC, induced by microorganisms in human oral cells. Candida albicans (CA) was detected in OSCC tissues. CA and the oral bacterium Fusobacterium nucleatum stimulate higher levels of IL-1β production in LDOC1-deficient OSCC cells than in LDOC1-expressing oral cells. CA SC5314 increased OSCC incidence in carcinogen-treated mice. Loss and gain of LDOC1 function resulted in increased and decreased, respectively, CA SC5314-induced IL-1β production. LDOC1 deficiency increased active pAktS473 upon SC5314 stimulation and inactive pGSK-3βS9 phosphorylated by pAktS473. PI3K and Akt inhibitors and expression of constitutively active mutant GSK-3βS9A reduced the SC5314-stimulated IL-1β production in LDOC1-deficient cells. These results indicate that the PI3K/Akt/pGSK-3β signaling contributes to LDOC1-mediated inhibition of microbe-induced IL-1β production, suggesting LDOC1 may determine the role of oral microbes in POH-associated OSCC. Abstract Poor oral hygiene (POH) is associated with oral squamous cell carcinoma (OSCC). Oral microbes often proliferate due to POH. Array data show that LDOC1 plays a role in immunity against pathogens. We investigated whether LDOC1 regulates the production of oral microbe-induced IL-1β, an oncogenic proinflammatory cytokine in OSCC. We demonstrated the presence of Candida albicans (CA) in 11.3% of OSCC tissues (n = 80). CA and the oral bacterium Fusobacterium nucleatum stimulate higher levels of IL-1β secretion by LDOC1-deficient OSCC cells than by LDOC1-expressing oral cells. CA SC5314 increased OSCC incidence in 4-NQO (a synthetic tobacco carcinogen) and arecoline-cotreated mice. Loss and gain of LDOC1 function significantly increased and decreased, respectively, CA SC5314-induced IL-1β production in oral and OSCC cell lines. Mechanistic studies showed that LDOC1 deficiency increased active phosphorylated Akt upon CA SC5314 stimulation and subsequent inhibitory phosphorylation of GSK-3βS9 by activated Akt. PI3K and Akt inhibitors and expression of the constitutively active mutant GSK-3βS9A significantly reduced the CA SC5314-stimulated IL-1β production in LDOC1-deficient cells. These results indicate that the PI3K/Akt/pGSK-3β signaling pathway contributes to LDOC1-mediated inhibition of oral microbe-induced IL-1β production, suggesting that LDOC1 may determine the pathogenic role of oral microbes in POH-associated OSCC.
Collapse
|
6
|
Ko YC, Lai TY, Hsu SC, Wang FH, Su SY, Chen YL, Tsai ML, Wu CC, Hsiao JR, Chang JY, Wu YM, Robinson DR, Lin CY, Lin SF. Index of Cancer-Associated Fibroblasts Is Superior to the Epithelial-Mesenchymal Transition Score in Prognosis Prediction. Cancers (Basel) 2020; 12:cancers12071718. [PMID: 32605311 PMCID: PMC7408083 DOI: 10.3390/cancers12071718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
In many solid tumors, tissue of the mesenchymal subtype is frequently associated with epithelial–mesenchymal transition (EMT), strong stromal infiltration, and poor prognosis. Emerging evidence from tumor ecosystem studies has revealed that the two main components of tumor stroma, namely, infiltrated immune cells and cancer-associated fibroblasts (CAFs), also express certain typical EMT genes and are not distinguishable from intrinsic tumor EMT, where bulk tissue is concerned. Transcriptomic analysis of xenograft tissues provides a unique advantage in dissecting genes of tumor (human) or stroma (murine) origins. By transcriptomic analysis of xenograft tissues, we found that oral squamous cell carcinoma (OSCC) tumor cells with a high EMT score, the computed mesenchymal likelihood based on the expression signature of canonical EMT markers, are associated with elevated stromal contents featured with fibronectin 1 (Fn1) and transforming growth factor-β (Tgfβ) axis gene expression. In conjugation with meta-analysis of these genes in clinical OSCC datasets, we further extracted a four-gene index, comprising FN1, TGFB2, TGFBR2, and TGFBI, as an indicator of CAF abundance. The CAF index is more powerful than the EMT score in predicting survival outcomes, not only for oral cancer but also for the cancer genome atlas (TCGA) pan-cancer cohort comprising 9356 patients from 32 cancer subtypes. Collectively, our results suggest that a further distinction and integration of the EMT score with the CAF index will enhance prognosis prediction, thus paving the way for curative medicine in clinical oncology.
Collapse
Affiliation(s)
- Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
| | - Ting-Yu Lai
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan;
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan; (S.-C.H.); (F.-H.W.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Fu-Hui Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan; (S.-C.H.); (F.-H.W.)
| | - Sheng-Yao Su
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan; (S.-Y.S.); (C.-Y.L.)
| | - Yu-Lian Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
| | - Min-Lung Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
| | - Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Head and Neck Collaborative Oncology Group, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.-M.W.); (D.R.R.)
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan R. Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.-M.W.); (D.R.R.)
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan; (S.-Y.S.); (C.-Y.L.)
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
- Correspondence: ; Tel.: +886-37-206166 (ext. 35107)
| |
Collapse
|
7
|
Discoidin Domain Receptor-1 (DDR1) is Involved in Angiolymphatic Invasion in Oral Cancer. Cancers (Basel) 2020; 12:cancers12040841. [PMID: 32244515 PMCID: PMC7226486 DOI: 10.3390/cancers12040841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
The discoidin domain receptor-1 (DDR1) is a non-integrin collagen receptor recently implicated in the collective cell migration of other cancer types. Previously, we identified an elevated expression of DDR1 in oral squamous cell carcinoma (OSCC) cells. Through the data mining of a microarray dataset composed of matched tumor-normal tissues from forty OSCC patients, we distilled overexpressed genes statistically associated with angiolymphatic invasion, including DDR1, COL4A5, COL4A6 and PDPN. Dual immunohistochemical staining further confirmed the spatial locations of DDR1 and PDPN in OSCC tissues indicative of collective cancer cell invasion. An elevated DDR1 expression at both the transcription and protein level was observed by treating keratinocytes with collagen of fibrillar or basement membrane types. In addition, inhibition of DDR1 kinase activity in OSCC TW2.6 cells disrupted cell cohesiveness in a 2D culture, reduced spheroid invasion in a collagen gel matrix, and suppressed angiolymphatic invasion in xenograft tissues. Taken together, these results suggest that collagen deposition in the affected tissues followed by DDR1 overexpression could be central to OSCC tumor growth and angiolymphatic invasion. Thus, DDR1 inhibitors are potential therapeutic compounds in restraining oral cancer, which has not been previously explored.
Collapse
|
8
|
Mil’ EM, Erokhin VN, Binyukov VI, Albantova AA, Volod’kin AA, Goloshchapov AN. Apoptotic effect of the anphen sodium antioxidant in combination with H2O2 on Lewis carcinoma cells. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2712-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Yang WE, Ho YC, Tang CM, Hsieh YS, Chen PN, Lai CT, Yang SF, Lin CW. Duchesnea indica extract attenuates oral cancer cells metastatic potential through the inhibition of the matrix metalloproteinase-2 activity by down-regulating the MEK/ERK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:152960. [PMID: 31280137 DOI: 10.1016/j.phymed.2019.152960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Duchesnea indica (Andr.) Focke, an herb in folk medicine used extensively in traditional Chinese medicine, has cytostatic properties as well as antioxidant and antimetastasis activities in various cancer cells. However, the effects and underlying mechanisms of Duchesnea indica extracts (DIEs) on human oral squamous cell carcinoma (OSCC) metastases remain unclear. PURPOSE In this study, we posit the hypothesis that DIE possesses antimetastatic effects on human OSCC cells. METHODS The effects of DIE on cell viability, motility, migration, and invasion were investigated. Gelatin zymography, Western blotting, migration and invasion assays were used to further study the underlying mechanisms involved in the antimetastatic effects of DIE in OSCC cells. RESULTS The results from MTT assay revealed that DIE did not affect the cell viability of OSCC cells. Moreover, DIE significantly attenuated OSCC cells' motility, migration, and invasion by reducing the MMP-2 protein expression and MMP-2 activity in a dose-dependent manner. In addition, DIE reduced the phosphorylation of both ERK1/2 and its upstream kinase but had no effect on the phosphorylation of p38 and JNK. CONCLUSION DIE triggers the antimetastatic activity in OSCC cells by suppressing the MMP-2 activity via the MEK/ERK signaling pathways. Therefore, these findings are promising for the use of DIE antimetastatic activity in oral cancer metastasis treatment.
Collapse
Affiliation(s)
- Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yung-Chuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Ming Tang
- Graduate Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Ting Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chiao-Wen Lin
- Graduate Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
10
|
Establishment and genomic characterization of gingivobuccal carcinoma cell lines with smokeless tobacco associated genetic alterations and oncogenic PIK3CA mutation. Sci Rep 2019; 9:8272. [PMID: 31164688 PMCID: PMC6547758 DOI: 10.1038/s41598-019-44143-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Smokeless tobacco associated Gingivobuccal squamous cell carcinoma (GB-SCC) is a major public health problem but available oral cancer cell lines are mostly from smoking associated tongue SCC raising the need for pertinent GB-SCC cell line models. As part of the International Cancer Genome Consortium (ICGC) Project, 4 novel cell lines, namely, Indian Tata Memorial Centre Oral Cancer (ITOC) -01 to -04 were established and characterized with conventional methods, karyotyping, ultrastructure, in vivo tumourigenicity, Whole exome sequencing (WES) and RNA sequencing. These hyperploid cell lines form xenografts in mice and show metabolically active and necrotic areas on fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging. WES of ITOC cell lines recapitulate the genomic tumor profile of ICGC GB-SCC database. We further identified smokeless tobacco associated genetic alterations (PCLO, FAT3 and SYNE2) and oncogenic PIK3CA mutation in GB-SCC cell lines. Transcriptome profiling identified deregulation of pathways commonly altered in cancer and down-regulation of arachidonic acid metabolism pathway, implying its possible role in GB-SCC. Clinical application of high throughput sequencing data depends on relevant cell line models to validate potential targets. Extensively characterized, these oral SCC cell lines are particularly suited for mechanistic studies and pre-clinical drug development for smokeless tobacco associated oral cancer.
Collapse
|
11
|
Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 2018; 6:1479568. [PMID: 30252599 PMCID: PMC6389128 DOI: 10.1080/21688370.2018.1479568] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the function of oral mucosal epithelial barriers is essential for a plethora of research fields such as tumor biology, inflammation and infection diseases, microbiomics, pharmacology, drug delivery, dental and biomarker research. The barrier properties are comprised by a physical, a transport and a metabolic barrier, and all these barrier components play pivotal roles in the communication between saliva and blood. The sum of all epithelia of the oral cavity and salivary glands is defined as the blood-saliva barrier. The functionality of the barrier is regulated by its microenvironment and often altered during diseases. A huge array of cell culture models have been developed to mimic specific parts of the blood-saliva barrier, but no ultimate standard in vitro models have been established. This review provides a comprehensive overview about developed in vitro models of oral mucosal barriers, their applications, various cultivation protocols and corresponding barrier properties.
Collapse
Affiliation(s)
- Lisa Bierbaumer
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| | - Uwe Yacine Schwarze
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Reinhard Gruber
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria.,d Department of Periodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Winfried Neuhaus
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| |
Collapse
|
12
|
Liao MY, Chuang CY, Hsieh MJ, Chou YE, Lin CW, Chen WR, Lai CT, Chen MK, Yang SF. Antimetastatic effects of Eclipta prostrata extract on oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:923-930. [PMID: 29962088 DOI: 10.1002/tox.22577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Eclipta prostrata, a traditional Chinese medication, has been used for the treatment of several diseases. However, the molecular mechanism underlying the effects of Eclipta prostrata extracts (EPE) on human oral cancer cell metastasis remains unclear. We thus examined the effects of EPE on metastasis promoting proteins in oral cancer. Our results revealed that the EPE attenuated SCC-9, HSC-3, and TW2.6 cell migration and invasiveness by reducing matrix metalloproteinase (MMP)-2 enzyme activities. In addition, Western blot analysis revealed that EPE significantly reduced the levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK 1/2) but not those of c-Jun N-terminal kinase (JNK) 1/2 and p38. In conclusion, we found that EPE could inhibit oral cancer metastasis through the inhibition of MMP-2 expression. Therefore, EPE may be used to prevent the metastasis of oral cancer, and has the potential to be applied to cancer treatment.
Collapse
Affiliation(s)
- Miao-Yu Liao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Rong Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Ting Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
MMP-11 promoted the oral cancer migration and Fak/Src activation. Oncotarget 2018; 8:32783-32793. [PMID: 28427180 PMCID: PMC5464827 DOI: 10.18632/oncotarget.15824] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/08/2017] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinase-11 (MMP-11) has been observed in most invasive human carcinomas. The current study investigated the association between the clinicopathological characteristics and MMP-11 expression in oral squamous cell carcinoma (OSCC) patients. Immunohistochemistry (IHC) staining was performed to assess MMP-11 expression in 279 patients with OSCC. In addition, the metastatic effects of the MMP-11 overexpression on the OSCC cells were also investigated. We found that MMP-11 expression was present in 118/279 (42.3%) cases and expression of MMP-11 was associated with higher incidence of lymph node metastasis and worse grade of tumor differentiation. Importantly, OSCC patients with strong expression of MMP-11 had a significantly lower survival rate (p=0.010). Furthermore, MMP-11 overexpression in OSCC cells increased in vitro cell migration. Mechanistically, MMP-11 increased the cell motility of OSCC cells through focal adhesion kinase/Src kinase (FAK/Src) pathway. In conclusion, our results revealed that the MMP-11 expression in OSCC samples can predict the progression, especially lymph node metastasis, and the survival of OSCC patients in Taiwan.
Collapse
|
14
|
Lin YM, Kuo WW, Velmurugan BK, Hsien HH, Hsieh YL, Hsu HH, Tu CC, Bau DT, Viswanadha VP, Huang CY. Helioxanthin suppresses the cross talk of COX-2/PGE2 and EGFR/ERK pathway to inhibit Arecoline-induced Oral Cancer Cell (T28) proliferation and blocks tumor growth in xenografted nude mice. ENVIRONMENTAL TOXICOLOGY 2016; 31:2045-2056. [PMID: 26464283 DOI: 10.1002/tox.22204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Helioxanthin, an active compound from Taiwania cryptomerioides Hayata, has been shown to have various biological activities. However, their anticancer effect in oral squamous cell carcinoma has not been well established yet. Helioxanthin inhibited the proliferation of oral squamous cell carcinoma cells in a dose-dependent manner by inducing G2/M phase arrest. Similarly, helioxanthin inhibited cyclooxygenase-2, (COX-2), phosphorylated EGFR, and extracellular-signal-regulated kinases (ERK) protein level and further reduced the nuclear accumulation of phosphorylated epidermal growth factor receptor (pEGFR) and activator protein-1(AP-1) family protein, c-fos. Moreover, helioxanthin at the dose of 20 and 30 mg kg-1 for 15 days reduced the tumor growth in animal model. This study demonstrated that Helioxanthin exerts its anticancer activity against oral cancer cells by downregulating EGFR/ERK/c-fos signaling pathway to inhibit COX-2 level and by activating cyclin-dependent kinase inhibitor (p27) to further induce G2/M cell cycle arrest. This helioxanthin may serve as a novel candidate for oral cancer prevention. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2045-2056, 2016.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | - Hau-Hsueh Hsien
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - You-Liang Hsieh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Fang WY, Chen YW, Hsiao JR, Liu CS, Kuo YZ, Wang YC, Chang KC, Tsai ST, Chang MZ, Lin SH, Wu LW. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production. Oncotarget 2016; 6:28401-24. [PMID: 26315114 PMCID: PMC4695068 DOI: 10.18632/oncotarget.4951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022] Open
Abstract
S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis.
Collapse
Affiliation(s)
- Wei-Yu Fang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yi-Wen Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Chiang-Shin Liu
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Yi-Zih Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C.,Department of Radiation Oncology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Mei-Zhu Chang
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Siao-Han Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| |
Collapse
|
16
|
Lin CW, Yang WE, Lee WJ, Hua KT, Hsieh FK, Hsiao M, Chen CC, Chow JM, Chen MK, Yang SF, Chien MH. Lipocalin 2 prevents oral cancer metastasis through carbonic anhydrase IX inhibition and is associated with favourable prognosis. Carcinogenesis 2016; 37:712-722. [PMID: 27207653 DOI: 10.1093/carcin/bgw050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/12/2016] [Indexed: 12/11/2022] Open
Abstract
Lipocalin 2 (LCN2), a secreted glycoprotein, is up- or downregulated in different human cancers. At present, the functional role of LCN2 in the progression of oral squamous cell carcinoma (OSCC), which accounts for most head and neck cancers, remains poorly understood, particularly with respect to its involvement in invasion and metastasis. In this study, we observed that LCN2 expression decreased in patients with OSCC and lymph node metastasis compared with that in patients without metastasis. A higher LCN2 expression correlated with the survival of patients with OSCC. Furthermore, LCN2 overexpression in OSCC cells reduced in vitro migration and invasion and in vivo metastasis, whereas its silencing induced an increase in cell motility. Mechanistically, LCN2 inhibited the cell motility of OSCC cells through hypoxia-inducible factor (HIF)-1α-dependent transcriptional inhibition of the carbonic anhydrase IX (CAIX). CAIX overexpression relieved the migration inhibition imposed by LCN2 overexpression in OSCC cells. Moreover, a microRNA (miR) analysis revealed that LCN2 can suppress CAIX expression and cell migration through miR-4505 induction. Examination of tumour tissues from patients with OSCC and OSCC-transplanted mice revealed an inverse correlation between LCN2 and CAIX expression. Furthermore, patients with LCN2(strong)/CAIX(weak) revealed the lowest frequency of lymph node metastasis and the longest survival. Our findings suggest that LCN2 suppresses tumour metastasis by targeting the transcriptional and post-transcriptional regulation of CAIX in OSCC cells. LCN2 overexpression may be a novel OSCC treatment strategy and a useful biomarker for predicting OSCC progression.
Collapse
Affiliation(s)
- Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wei-Jiunn Lee
- Department of Medical Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Feng-Koo Hsieh
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Cheng Chen
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Shin-Kong Memorial Hospital, Taipei 111, Taiwan
| | - Jyh-Ming Chow
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 505, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan and
| | - Ming-Hsien Chien
- Department of Medical Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.,Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
17
|
Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. Int J Mol Sci 2015; 16:10748-66. [PMID: 25984601 PMCID: PMC4463674 DOI: 10.3390/ijms160510748] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/07/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancers, which affect 650,000 people and cause 350,000 deaths per year, is the sixth leading cancer by cancer incidence and eighth by cancer-related death worldwide. Oral cancer is the most common type of head and neck cancer. More than 90% of oral cancers are oral and oropharyngeal squamous cell carcinoma (OSCC). The overall five-year survival rate of OSCC patients is approximately 63%, which is due to the low response rate to current therapeutic drugs. In this review we discuss the possibility of using caffeic acid phenethyl ester (CAPE) as an alternative treatment for oral cancer. CAPE is a strong antioxidant extracted from honeybee hive propolis. Recent studies indicate that CAPE treatment can effectively suppress the proliferation, survival, and metastasis of oral cancer cells. CAPE treatment inhibits Akt signaling, cell cycle regulatory proteins, NF-κB function, as well as activity of matrix metalloproteinase (MMPs), epidermal growth factor receptor (EGFR), and Cyclooxygenase-2 (COX-2). Therefore, CAPE treatment induces cell cycle arrest and apoptosis in oral cancer cells. According to the evidence that aberrations in the EGFR/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling, NF-κB function, COX-2 activity, and MMPs activity are frequently found in oral cancers, and that the phosphorylation of Akt, EGFR, and COX-2 correlates to oral cancer patient survival and clinical progression, we believe that CAPE treatment will be useful for treatment of advanced oral cancer patients.
Collapse
|
18
|
Lee CH, Chang JSM, Syu SH, Wong TS, Chan JYW, Tang YC, Yang ZP, Yang WC, Chen CT, Lu SC, Tang PH, Yang TC, Chu PY, Hsiao JR, Liu KJ. IL-1β promotes malignant transformation and tumor aggressiveness in oral cancer. J Cell Physiol 2015; 230:875-84. [PMID: 25204733 DOI: 10.1002/jcp.24816] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022]
Abstract
Chronic inflammation, coupled with alcohol, betel quid, and cigarette consumption, is associated with oral squamous cell carcinoma (OSCC). Interleukin-1 beta (IL-1β) is a critical mediator of chronic inflammation and implicated in many cancers. In this study, we showed that increased pro-IL-1β expression was associated with the severity of oral malignant transformation in a mouse OSCC model induced by 4-Nitroquinolin-1-oxide (4-NQO) and arecoline, two carcinogens related to tobacco and betel quid, respectively. Using microarray and quantitative PCR assay, we showed that pro-IL-1β was upregulated in human OSCC tumors associated with tobacco and betel quid consumption. In a human OSCC cell line TW2.6, we demonstrated nicotine-derived nitrosamine ketone (NNK) and arecoline stimulated IL-1β secretion in an inflammasome-dependent manner. IL-1β treatment significantly increased the proliferation and dysregulated the Akt signaling pathways of dysplastic oral keratinocytes (DOKs). Using cytokine antibodies and inflammation cytometric bead arrays, we found that DOK and OSCC cells secreted high levels of IL-6, IL-8, and growth-regulated oncogene-α following IL-1β stimulation. The conditioned medium of IL-1β-treated OSCC cells exerted significant proangiogenic effects. Crucially, IL-1β increased the invasiveness of OSCC cells through the epithelial-mesenchymal transition (EMT), characterized by downregulation of E-cadherin, upregulation of Snail, Slug, and Vimentin, and alterations in morphology. These findings provide novel insights into the mechanism underlying OSCC tumorigenesis. Our study suggested that IL-1β can be induced by tobacco and betel quid-related carcinogens, and participates in the early and late stages of oral carcinogenesis by increasing the proliferation of dysplasia oral cells, stimulating oncogenic cytokines, and promoting aggressiveness of OSCC.
Collapse
Affiliation(s)
- Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hsin CH, Chen MK, Tang CH, Lin HP, Chou MY, Lin CW, Yang SF. High level of plasma matrix metalloproteinase-11 is associated with clinicopathological characteristics in patients with oral squamous cell carcinoma. PLoS One 2014; 9:e113129. [PMID: 25423087 PMCID: PMC4244114 DOI: 10.1371/journal.pone.0113129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/20/2014] [Indexed: 12/01/2022] Open
Abstract
Background Matrix metalloproteinase-11 (MMP-11) is reported to be overexpressed in several cancers and may contribute to tumorigenesis. The current study investigated the association between the clinicopathological characteristics and plasma level of MMP-11 in oral squamous cell carcinoma (OSCC) patients. Methodology and Principal Findings The plasma MMP-11 concentration was determined by ELISA on 330 male OSCC patients. In addition, the metastatic effects of the MMP-11 knockdown on the oral cancer cells were investigated by cell migration assay. Our results showed that the plasma MMP-11 levels were significantly higher in patients with advanced T status (p = 0.001), lymph node metastasis (p = 0.006) and higher TNM stages (p<0.001). Moreover, treatment with the MMP-11 shRNA exerted an inhibitory effect on migration in SCC9 oral cancer cells. Conclusion Our study showed that plasma level of MMP-11 may be useful for assessment of the disease progression, especially lymph node metastasis, in patients with OSCC.
Collapse
Affiliation(s)
- Chung-Han Hsin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Huang-Pin Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Yung Chou
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (CWL); (SFY)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (CWL); (SFY)
| |
Collapse
|
20
|
Yen YC, Shiah SG, Chu HC, Hsu YM, Hsiao JR, Chang JY, Hung WC, Liao CT, Cheng AJ, Lu YC, Chen YW. Reciprocal regulation of microRNA-99a and insulin-like growth factor I receptor signaling in oral squamous cell carcinoma cells. Mol Cancer 2014; 13:6. [PMID: 24410957 PMCID: PMC3895693 DOI: 10.1186/1476-4598-13-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/06/2014] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs), small noncoding RNA molecules can function as oncogenes or tumor suppressors in tumorigenesis. Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide with a 5-year survival rate of approximately 50%. Methods The expression of microRNA-99a (miR-99a) in OSCC tissues and cell lines was investigated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. The functions of miR-99a in migration/invasion and lung colonization were determined by transwell and tail vein injection assays, respectively. Specific targets of miR-99a were determined by software prediction, correlation with target protein expression, and luciferase reporter assay. The signaling pathways involved in regulation of miR-99a were investigated using the kinase inhibitors. Results We observed reduced levels of miR-99a, identified as one of the most downregulated miRNA in OSCC and all tested OSCC cell lines compared to normal oral keratinocytes. Ectopic miR-99a expression in OSCC cells markedly reduced migration and invasion in vitro as well as lung colonization in vivo. When evaluating the specific targets of miR-99a, we found that ectopic miR-99a expression downregulates insulin-like growth factor 1 receptor (IGF1R) protein and that the expression of miR-99a correlates negatively with IGF1R protein in OSCC cells. Insertion of the 3′UTR of IGF1R mRNA into the 3′UTR of a reporter gene markedly reduced luciferase activity in OSCC cells expressing miR-99a, suggesting that miR-99a reduces luciferase activity by targeting the 3′UTR of IGF1R mRNA. When evaluating the mechanisms of miR-99a downregulation, we observed the upregulation of miR-99a expression in serum-starved conditions and its suppression in response to insulin-like growth factor (IGF1) stimulation. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) kinase inhibited IGF1-induced suppression of miR-99a, suggesting the negative regulation of miR-99a expression by IGF1R signaling. Conclusion Overall, results indicate that miR-99a functions as a tumor metastasis suppressor in OSCC cells and mutually regulates IGF1R expression in a reciprocal regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
21
|
Chang CC, Hsu WH, Wang CC, Chou CH, Kuo MYP, Lin BR, Chen ST, Tai SK, Kuo ML, Yang MH. Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells. Cancer Res 2013; 73:4147-57. [PMID: 23687336 DOI: 10.1158/0008-5472.can-12-4085] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a key mechanism in both embryonic development and cancer metastasis. The EMT introduces stem-like properties to cancer cells. However, during somatic cell reprogramming, mesenchymal-epithelial transition (MET), the reverse process of EMT, is a crucial step toward pluripotency. Connective tissue growth factor (CTGF) is a multifunctional secreted protein that acts as either an oncoprotein or a tumor suppressor among different cancers. Here, we show that in head and neck squamous cell carcinoma (HNSCC), CTGF promotes the MET and reduces invasiveness. Moreover, we found that CTGF enhances the stem-like properties of HNSCC cells and increases the expression of multiple pluripotency genes. Mechanistic studies showed that CTGF induces c-Jun expression through αvβ3 integrin and that c-Jun directly activates the transcription of the pluripotency genes NANOG, SOX2, and POU5F1. Knockdown of CTGF in TW2.6 cells was shown to reduce tumor formation and attenuate E-cadherin expression in xenotransplanted tumors. In HNSCC patient samples, CTGF expression was positively correlated with the levels of CDH1, NANOG, SOX2, and POU5F1. Coexpression of CTGF and the pluripotency genes was found to be associated with a worse prognosis. These findings are valuable in elucidating the interplay between epithelial plasticity and stem-like properties during cancer progression and provide useful information for developing a novel classification system and therapeutic strategies for HNSCC.
Collapse
Affiliation(s)
- Cheng-Chi Chang
- Graduate Institute of Oral Biology, Graduate Institute of Clinical Dentistry, School of Dentistry, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Caffeic acid phenethyl ester suppresses proliferation and survival of TW2.6 human oral cancer cells via inhibition of Akt signaling. Int J Mol Sci 2013; 14:8801-17. [PMID: 23615471 PMCID: PMC3676757 DOI: 10.3390/ijms14058801] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/02/2013] [Accepted: 04/15/2013] [Indexed: 12/20/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is a bioactive component extracted from honeybee hive propolis. Our observations indicated that CAPE treatment suppressed cell proliferation and colony formation of TW2.6 human oral squamous cell carcinoma (OSCC) cells dose-dependently. CAPE treatment decreased G1 phase cell population, increased G2/M phase cell population, and induced apoptosis in TW2.6 cells. Treatment with CAPE decreased protein abundance of Akt, Akt1, Akt2, Akt3, phospho-Akt Ser473, phospho-Akt Thr 308, GSK3β, FOXO1, FOXO3a, phospho-FOXO1 Thr24, phospho-FoxO3a Thr32, NF-κB, phospho-NF-κB Ser536, Rb, phospho-Rb Ser807/811, Skp2, and cyclin D1, but increased cell cycle inhibitor p27Kip. Overexpression of Akt1 or Akt2 in TW2.6 cells rescued growth inhibition caused by CAPE treatment. Co-treating TW2.6 cells with CAPE and 5-fluorouracil, a commonly used chemotherapeutic drug for oral cancers, exhibited additive cell proliferation inhibition. Our study suggested that administration of CAPE is a potential adjuvant therapy for patients with OSCC oral cancer.
Collapse
|
23
|
Mil’ EM, Gurevich SM, Kozachenko AI, Nagler LG, Albantova AA, Fatkullina LD, Burlakova EB. Effects of smoking and tumor process on the contents of key proteins of apoptosis and activity of antioxidant enzymes in blood. BIOL BULL+ 2012. [DOI: 10.1134/s1062359011060094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Kok SH, Chang HH, Tsai JY, Hung HC, Lin CY, Chiang CP, Liu CM, Kuo MYP. Expression of Cyr61 (CCN1) in human oral squamous cell carcinoma: An independent marker for poor prognosis. Head Neck 2011; 32:1665-73. [PMID: 20848406 DOI: 10.1002/hed.21381] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cysteine-rich 61 (Cyr61 [CCN1]) has disparate functions in tumorigenesis that are dependent on the cell types. The aim of the study was to investigate its role in the growth of oral squamous cell carcinoma (SCC). METHODS The study used immunohistochemistry to examine Cyr61 expression in 93 oral SCC specimens and assessed the effect of Cyr61 overexpression on proliferation and migration of oral SCC cells in vitro and xenograft growth in severe combined immunodeficient (SCID) mice. RESULTS High expression of Cyr61 significantly correlated with large tumor size (p = .009) and advanced tumor stage (p = .036). Multivariate analysis revealed that high Cyr61 (relative risk [RR] 2.44, 95% confidence interval [CI] 1.209-4.95, p = .010) significantly correlated with mortality. Forced expression of Cyr61 stimulated the motility and growth of Ca9-22 cells in vitro and enhanced xenograft growth in SCID mice. CONCLUSIONS Cyr61 is a positive growth modulator of oral SCC and Cyr61 overexpression is an independent prognostic indicator for patients with oral SCC.
Collapse
Affiliation(s)
- Sang-Heng Kok
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fine DH, Kaplan JB, Furgang D, Karched M, Velliyagounder K, Yue G. Mapping the epithelial-cell-binding domain of the Aggregatibacter actinomycetemcomitans autotransporter adhesin Aae. MICROBIOLOGY-SGM 2010; 156:3412-3420. [PMID: 20688817 PMCID: PMC3090143 DOI: 10.1099/mic.0.037606-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Gram-negative periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) binds selectively to buccal epithelial cells (BECs) of human and Old World primates by means of the outer-membrane autotransporter protein Aae. We speculated that the exposed N-terminal portion of the passenger domain of Aae would mediate binding to BECs. By using a series of plasmids that express full-length or truncated Aae proteins in Escherichia coli, we found that the BEC-binding domain of Aae was located in the N-terminal surface-exposed region of the protein, specifically in the region spanning amino acids 201–284 just upstream of the repeat region within the passenger domain. Peptides corresponding to amino acids 201–221, 222–238 and 201–240 were synthesized and tested for their ability to reduce Aae-mediated binding to BECs based on results obtained with truncated Aae proteins expressed in E. coli. BEC-binding of E. coli expressing Aae was reduced by as much as 50 % by pre-treatment of BECs with a 40-mer peptide (201–240; P40). Aae was also shown to mediate binding to cultured human epithelial keratinocytes (TW2.6), OBA9 and TERT, and endothelial (HUVEC) cells. Pre-treatment of epithelial cells with P40 resulted in a dose-dependent reduction in binding and reduced the binding of both full-length and truncated Aae proteins expressed in E. coli, as well as Aae expressed in Aa. Fluorescently labelled P40 peptides reacted in a dose-dependent manner with BEC receptors. We propose that these proof-of-principle experiments demonstrate that peptides can be designed to interfere with Aa binding mediated by host-cell receptors specific for Aae adhesins.
Collapse
Affiliation(s)
- Daniel H Fine
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - Jeffrey B Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - David Furgang
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | | | | | - Gang Yue
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| |
Collapse
|
26
|
Shen C, Gu M, Liang D, Miao L, Hu L, Zheng C, Chen J. Establishment and characterization of three new human breast cancer cell lines derived from Chinese breast cancer tissues. Cancer Cell Int 2009; 9:2. [PMID: 19121212 PMCID: PMC2646685 DOI: 10.1186/1475-2867-9-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer is a major malignancy affecting females worldwide. It is the most common cause of death from cancer in women. Cell lines are widely used in laboratory research and particularly as in vitro models in cancer research. But we found that the routinely used breast cancer cell lines were mostly derived from Caucasians or African-Americans. There were few standard models to study the pathogenic mechanism at molecular level and cell signaling pathway of breast cancer for Asian patients. It is quite necessary to establish new breast cancer cell lines from xanthoderm to study the pathogenic mechanism and therapeutic methods. RESULTS Three new breast cancer cell lines, designated BC-019, BC-020 and BC-021, were successfully established and characterized from breast invasive ductal carcinoma tissues of three Chinese female patients. These new cell lines growing as adherent monolayer with characteristic epithelial morphology could be maintained continuously in vitro, and they were ER-, PR- and C-erbB-2-positive. Their chromosomes showed high hyperdiploidy and complex rearrangements, and they displayed aggressive tumorigencity in tumorigenesis test. CONCLUSION The three newly established breast cancer cell lines from Chinese patients were tested for a number of, and the results indicate that the cell lines were in good quality and could be served as new cell models in breast cancer study.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, PR China
| | - Meijia Gu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, PR China
| | - Dan Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, PR China
| | - Lixia Miao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Liu Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, PR China
| | - Jiakuan Chen
- Zhongnan Hospital, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
27
|
Bagan JV, Scully C. Recent advances in Oral Oncology 2007: epidemiology, aetiopathogenesis, diagnosis and prognostication. Oral Oncol 2008; 44:103-8. [PMID: 18252251 DOI: 10.1016/j.oraloncology.2008.01.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper provides a synopsis of the main papers on epidemiology, diagnosis and prognosis of oral and oropharyngeal squamous cell carcinoma (OSCC) and head and neck SCC (HNSCC) published in 2007 in Oral Oncology - an international interdisciplinary journal which publishes high quality original research, clinical trials and review articles, and all other scientific articles relating to the aetiopathogenesis, epidemiology, prevention, clinical features, diagnosis, treatment and management of patients with neoplasms in the head and neck, and orofacial disease in patients with malignant disease.
Collapse
Affiliation(s)
- Jose V Bagan
- Valencia University and Hospital General Universitario de Valencia, Valencia, Spain
| | | |
Collapse
|
28
|
Lee J, Huang MS, Yang IC, Lai TC, Wang JL, Pang VF, Hsiao M, Kuo MY. Essential roles of caspases and their upstream regulators in rotenone-induced apoptosis. Biochem Biophys Res Commun 2008; 371:33-8. [DOI: 10.1016/j.bbrc.2008.03.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 03/26/2008] [Indexed: 11/25/2022]
|